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Abstract. The concept of cylindrical measures on locally 
compact Abelian groups is discussed. It is proved that if the 
convolution of two cylindrical measures ,u and v on G extends to a 
Radon measure, then there exists an element a belonging to the 
Bohr compactification of G such that both p*S, and v * &  have 
extensions to Radon measures. 

1;. Cyldsisal measures on locally compact Ahban group. Let G be a 
locally compact Abelian (LCA) group and let r = G* denote its dual group 
equipped with the standard topology of the uniform convergence on compact 
subsets of G. We shall use the addive notation for the group operation in G 
and the multiplicative notation for T. fd will denote algebraically the same 
group r ,  but considered with the discrete topology. Bohr compactification 
bG of G is defined as the dual of T,. There exists a natural continuous 
injection G into bG, and in this sense G c bG. Because (bG)* = rd and G* 
= r ,  the sets of characters of bG and G coincide. 

Cylindrical subsets of G. For every n-tuple y,, . . . , y, a function 
= ( y  . . . , y,J forms a continuous homomorphism of G into the n- 

dimensional torus T". ay will denote the smallest a-field of subsets of G such 
that y is measurable, i.e. 

By = (y-I (B): BE BOREL(Tn)] 

go = @O(G) stands for the union of all By. go is a field of sets but in 
general it is not a a-field. By an analogy with the notion of cylindrical 
subsets of locally convex linear spaces elements of B" will be called 
cylindrical subsets of G. Following this analogy, a non-negative normed 
finitely additive function p: go -+ 10, 1) such that, for every y, p restricted to 
By is countably additive, is called a cylindrical measure (c.m.) on G. 

Obviously, the restriction of a probability Radon measure on G to 93' is 
a c.m. If a c.m. has any extension to a Radon measure, then it is unique. 
A c.m. having an extension to a Radon measure will be called a Radon c.m. 

It should be noted than even if G = R cylindrical sets and c.rn.3 in the 
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above sense differ from the objects with the same name studied in the 
measure theory on locally convex topological vector spaces. This will be easy 
to see by bijective characteristics of c.m.'s discussed further on (sae 
Ptoposition 1). 

We define now basic operations on c.mY.s. 
Image o f a  c-m. by  a homomrphism. If p1 is a c.m. on G, and h: GI -, G2 

is a continuous homomorphsm of a group G1 into a group G2, then p,(C) 
= pl (h-'(C)), CEL@O(G~), defines a c.m. p2 on G,. pz is called an image of 
p, by a homomorphism h and denoted by p2 = h(p, ) .  

Product of~c.m3.s. Let pi be a c.m. on LCA group G,, i = 1, 2. We define 
the product p = pl @I p2 as a cam. on G = GI x G, .  First we observe that, for 
every continuous homomorphism y of G into a finite-dimensional torus, there 
exist homomorphisms yr and y2 of GI and G,, respectively, into finite- 
dimensional toruses such that By c: 1 z. Since Byl,,z = .%,.I Q 5 4 2 ,  we 

? .@r 
can define a countably additive probabll~ty measure on 3, as the restriction 
of the product measure ( p , ( ~ 7 1 ) @ ( p 2 J ~ , z )  to A?T ( (v ) ,d )  denotes the 
restriction of v to .d). The consistency allows to define a unique c.m. p on G 
= GI @I G ,  such that 

for every continuous homomorphism of Gi (i = 1, 2) into a finite- 
dimensional torus. We write p  = p ,  @ p,. It is easy to see that if p1 and p, 
are Radon c.m.'s, then ,u is also a Radon c.m. 

Convolution of c.m.'s. Let pi ( i  = 1,  2) be a c.m, on a group G. We define 
the convolution p, * p2 by the formula 

P1 *P2 = h(~lOP21,  

where h: G x G  -+ G is defined by h(g,, g2) = g, + g 2 .  We observe that, for 
every CEBO, 

(PI * ~ 2 )  CC) = J PI (C - 9)  PZ (d9) 
G 

and the integral is. well-defined since the function g +  pl(C-g) is By- 
measurable and bounded, provided C E gy. 

We shall discuss now some objects defined by c.m.'s. 
Characteristic functional of a c.m. For a c.m. p  we define 

r i i ( ~ ) = j ~ ( g ) ~ ( d g ) ,  Y E T ,  
C 

Note that the integral is well-defined. fi is called the characteristic 
functional of p. f i  is a positive definite normed (p.d.n.1 complex value function 
on r which uniquely determines p. Moreover, we have (p* v)- = @$ for c.m.'s 
p and v. 
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Radon probability measures on bG. Let f :  F + G be a p.d.n. function. 
ObviousIy f is continuous on rd. Thus f is the Fourier transform of a Radon 
probability measure pb on bG = (rd)*. 

Random character. A stochastic process {X(y): y E T) with values in the 
unit circle T such that, for every y,, y2 E r, 

is called a random c h r a a e r .  
Observe that if p, is a Radon probability measure on bG, then the 

formula 

defines a random character on a probability space (bG,  BOREL(bG), pb). 
Every random character { X ( y ) :  y~ TI determines a c.rn. p on G as 

P(C) = P {(X( lJ l ) ,  .. ., X{Y"I)E B ) ,  

where C = y - I  (B), y = (yl, . . . , yn) and B E  BQREL(T7. 
Above constructions lead to the following statement: 
PROPOSITION 1. There exist bijections between the .following: 

(i) The set of all c.m.'s on G .  
(ii) The set of all p.d.n. complex functions defined on r (no:~necessary 

continuous). 
(iii) The set of all R d o n  probabiiity measures on bG. 
(iv) The class of all random characters (under the assumption that 

processes with the same finite-dimensional distributions are identical). 
To complete this section let us note one more characterization of c.m.'s 

on LCA groups. Namely, there exists a bijection between c.m.'s on G and 
positive normed functionals on the space r lP(G)  of strongly almost periodic 
functions defmed on G. This bijection A tt 1 is determined by the equation 

where A E  [AP(G)]'  and satisfies A 2 0 and A ( 1 )  = 1. 

2. When the convolution of c.m.'s is a Radon measure? In papers [I] and 
[2] it was proved that if p and v are cylindrical measures on a vector space 
E such that p * v is a Radon cylindrical measure, then there exists an element 
a€@')* such that both p * S a  and v r are Radon cylindrical measures. 
Here (E3* denotes the set of all real linear forms defined on the topological 
dual E' of E. 

Nguyen Van Thu [I] studied the case where E is a Banach space and 
gave some applications of this fact in the prediction theory of stochastic 
processes. Rosiliski 121 proved this fact in the general case of locally convex 
topological vector space. In this paper we shall study the case where E = G 
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is an LCA group. As we noted in the last section, c.m.'s on LCA groups form 
a class of objects different from considered in the measure theory on locally 
convex topological vector spaces and we cannot simply extend the above 
mentioned results. There is, however, a formal analogy of that fact and we 
shall prove the following 

THEOREM 1. Let p and v be r.m.'s on an LCA group G .  If p*'v is a Radon 
c.m. on G,  then there exists an element U E  bG such that both p * 6, and v * 6 - ,  
ure Radon measures. 

Proof.  For a c.m. B on G, Ob will stand for the unique extension of 4 to 
a Radon probability measure on bG (see Proposition 1) .  We set I = p*v. 
Then we have ;l, = pb * vb. By the assumption there exists a rrcompact 
subgroup K c G, bG, such that 5 (K) = 1. Then 

I 
I Hence there exists an a ~ b G  such that 

i 1 = pb (K - a) = ( ~ b  * *a) IK) = (P *6alb (K), 

and so p * 6 ,  extends to a Radon measure on G (see, e.g. 143, Theorem 12, 
Ch. I). v *a_, is also a Radon c.m. since 

I vb[(K+aYl  d Lb(Kc)+pb[(K-aY] = 0 .  

The proof is complete. 
By Bochner Theorem and Proposition 1 the following statement is 

equivalent to just proved Theorem 1 : 
THEOREM 2. Let cp, $: r -+ C be p.d.n. functions defined on an LCA group 

r. If the product cp$ is a continuous function, then there exists a character 
x ~ ( r a ) *  such that both functions cp;l and $x-' are continuous. 

Seemingly weaker but in fact equivalent version of Theorem 2 we obtain 
taking $ = in Theorem 2. 

THEOREM 3. Let tp: r -+ C be a p.d.n. function defined on an LCA group 
r. If lcpl is a continuous function, then there exists a character ;/~(i',,)* such 
that the function cpx is continuous. 

Even in the case r = R the authors do not know any straightforward 
proof of Theorem 3. 

3. Continuity of positive defined fumctions. This section contains more 
open questions than completed results. Our general problem we can 
formulated as follows. 

Suppose that cp: G + C is a p.d.n. function defined on an arbitrary 
topological group G (non-necessary Abelian). Assume that (tpl is continuous. 
What we can say about cp? 
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We begin with a description of the weakest group topology such that a 
fixed p.d. function is continuous. 

Let q: G -+ C be a p.d.n. function. Let t, be the weakest topology of G 
such that all functions of the form 

are continuous (we use the multiplicative notation if G is non-necessarily 
Abelian). Note that not always z, is a Hausdorff topology. 

THEOREM 4. zq is the weakest group topology on G such that q is 
continuous. Moreover, 2, is determined by a subbasis of neighbourhoods of the 
identity of G of' the jorm 

where E > 0 and Y E  G.  
Proof.  It is well known that cp can be written in the form 

where U(-) is a unitary representation of G in some Hilbert space H and 
(E H is a unit cyclic vector of this representation. The strong topology of the 
group U ( H )  of the unitary operators on H is a group topology. The proof 
follows now by the observation that z, is induced by the strong operator 
topology of U (H) via the representation U (.). The last statement can be easy 
verified, since 

and the span { U ( y ) c :  Y E  G )  is dense in H. This ends the proof. 
Remark  I. For Abelian groups the topology z, is semimetrizable with 

a seminorm 
1x1 = [ l - ~ e ~ ( x ) ] ~ / ~ .  

Remark  2. For countable groups (non-necessary Abelian) z, is semi- 
metrizable and separable. 

We can formulate now a problem concerning p.d.n. functions on 
arbitrary Abelian groups. 

Let G be an AbeIian group (now without any topology) and let 
q: GHC be a p.d.n. function. Does there exist a homomorphism x :  G ++ T 
such that q ; ~  is continuous in the zlP12 topology? 

Note that the positive answer to this question kads to an extension of 
Theorem 3. 

The authors of this note do not know the answer even when G = Z .  In 
this case 

cp(4 = J Z ~ C L ~ ~ Z ) ,  ~ E Z ,  
T 
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and the question is: does there exist a complex number z, E T such that the 
impIication "if Irp(n)l -t 1, then z",cp(+ 2" is true? The answer is "yes" if p 
has either nontrivial atomic or absolutely continuous part. 
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