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ON A THEOREM OF SALISBURY 

KRZYSZTOF BURDZY (LUBLIN) 

Abstract. Salisbury proved that there exist a domain and 
attainable minimal Martin boundary points x and y such that no h- 
process can start at x and terminate at y. A new, less computational 
proof is supplied in this note. 

1. Introduction. Salisbury [4, 51 has recently proved that in some 
Greenian domains there exist attainable Martin boundary points x and y 
such that there does not exist an h-process starting from x and terminating 
at y. 

His   roof is based on two lemmas: Theorem 3.3 and Theorem 3.4. An 
alternative proof is presented below. Theorem 3.4 is generalized and 
Theorem 3.3 is replaced by a similar one. New proofs use many ideas taken 
from the original ones but are less computational in nature, for example they 
do not require Schwarz-Christoffel formulae or estimates of Cranston and 
McConnel [I]. 

The reader is referred to Doob [2] for the definitions of an h-process, 
  art in boundary and related concepts. 

The author would like to thank Thomas Salisbury for the interesting 
and stimulating discussion of Martin boundaries. 

2. T k  IWardn boundary. It will be convenient to use the complex 
notation. Let 

A,= ( z E C :  Imz=a,,  b,<Rez < l-b,), n >  1, 
and 

m 

D = ( z E C :  O < R e z < l , O < I m z < l ) \ ~  A,. 
n= 1 

Assume that 
O < a , < l , 0 < b n < 1 / 2  for n 2 1 ,  

a, < a, for n < m, 



Write a,, , - a, = en. Let {z,) be a sequence of points such that Z,E D, 
Rez, = 1/2 for n 2 1 and 

lim Im 2, = 1. 
n +GO 

Then there exists a subsequence z,, which converges (in the Martin 
topology) to a Martin boundary point z, of D. Let h be a Martin function in 
D corresponding to 20. 

THEOREM 2.1. ~ Z B  function h is not minimal. 
Re marks  2.1. (i) Theorem 2.1 generalizes Theorem 3.4 of Salisbury [ 5 ] ,  

who assumed in addition that b,/e, < c < m for all n. 
(ii) The idea of the proof is the following. Brownian motion in D is 

unlikely to travel thin canals. This property is inherited by the h-process. The 
h-paths are therefore likely to cluster near the points i or i+ 1 .  By symmetry 
these events have probability 1/2 and thg: tail a-field is not trivial. This 
implies that h is not minimal. 

The proof of the theorem will be preceded by some more notation and 
two lemmas. 

Let b = (b ,  + 1/2)/2. It will be assumed WLOG that b, < b for all n 3 1. 
Define B! for a >, I and k = 1, 2, ..., 6 by 

6-k k-f 
i e C :  a n < I m r  <a,+l ,Rer=-b+T(l-b) / .  5 

The distribution of the Brownian motion in D (h-process) starting from 
X E D  will be denoted by P x ( P a .  If x = 1/2+iaI/2, then the superscript will 
be suppressed. 

The paths of processes will be denoted by X (t) and the lifetime R can be 
written as 

R = inf I t :  lirn infdist (X(s ) ,  ?D) = Oj . 
S-+t - 

The hitting time of a set B  will be called T,. For sets 
B, ,  B2, .. ., B,, c D and j = 1, 2, ..., m define events 

F j  (B1 (B2), B3 (B4), * - r B ~ k -  1 ( B 2 k ) )  

dl 
= (TI GI < m and T,  < G, and T, zinf{t  > T,: x ( t ) ~ B ~ )  < co 

and T, <infi t  > TI:  X ( t ) € B , ) . .  
dl 

and T, =infi t  > T,- , :  X ( ~ ) E B , , - ~ )  < oo 

and T, < i n f f t >  T,-,: X ( t ) € B Z k )  and T ,< in f ( t>o :  I m X ( t ) > a j ) ) .  

If one of the sets B,, B,, . . ., BZk is equal to 2D, then it is suppressed in 
I the notation. 



A theorem of Salisbury 163 

LEMMA 2.1. There exists a constant co < o0 such that for all n 3 1 and 
j B n + l  

P (F,  (Bi , B:)) < c0 . en P ( F j  (B:)).  

Proof.  There exists a constant'c, < c~ such that if K is an interval of 
the real line of the length a > 0, then the chance that Brownian motion in 
{Imz > O ]  starting from i(1-2b)/5 will terminate at K is less than a -c , .  It 
follows that for k = 2, 3,4, 5 and ~ € 3 ;  

and 

The event Fj(B:) is a union of an event N such that P x ( N )  = 0 for all 
XE B: and a countable union from m = 0 to co of the events 

m timed 

The Px-probability of such an event is less than ( e , - c l )mf '  for all KGB:, 
which follows from (2.1% b) and the repeated use of the strong Markov 
property. Thus, for X E B , ~ ,  

m 

(2.2) P"(Fj(%))< C ( e ; ~ , ) l " + ~  < c o n e n .  
In= 0 

The last inequality holds for some c, < rn and all en small enough. It 
will be assumed WLOG- that it holds for all en. 

By the strong Markov property at T 3 and (2.2) one obtains 
B ,  

which completes the proof. 
LEMMA 2.2. Let ,u be a measure on B: (or on 8:)). Then Pp-distribution of 

X(T,:",;) has a density (x) ,  xs B: u B: . There exists a function gn(x) such 
that, for enmy p, 

(2.3) g! (x)/g, (x) = c (p, n) k: (x) for ail x E 9: u B: . 
Here C ( F ,  n) does not depend on x and 

The constant c, ,  1 < c ,  < oo, does not depend' on p or n. 
Proof.  Let f 'be  a conformal bijection of the rectangle U, bounded by 

A,, A, , , ,  8: and B: onto the disc Dl = ilzl < 1). Assume that the midpoint 
of 8: is mapped onto OE Dl and 3; and 8: are mapped onto arcs symmetric 



1 64 K. Burdzy  

! 

wrt real axis. For smaII en the Pxchance, XE B:, of hitting aUn to the right 
from B: is arbitrarily close to 1/2 so Bi is mapped on an arc close to the 
imaginary axis. 

I A conformal mapping of Brownian motion is a timechanged Brownian 
I 

motion so the hitting probabilities are preserved. Therefore it is enough to 
I prove (2.3) with g:(x) replaced by gE(x), X E  f ( B f  u Bi), where z ( x )  is the 

density of X ( R - )  for Brownian motion in Dl with the initial distribution 
p of l . If en is small, then f ( ~ i  u 3;) consists of two small arcs. The hitting 
distribution for Brownian motion in Dl may be written down explicitly (see 
p. 102 of [3]) and it is easy to verify (2.3) for z ( x )  directly. 

I Proof  of  Theorem 2.1. Let Cj = {Imz = aj) n D. The lemmas and the 
strong Markov property applied at T 2 5 imply that the density of the P- 

a n  UB, 
distribution of 

is at most en . c o .  c$ times the P-density of 

( ~ I ~ x ( ~ ) + ( I - R ~ x ( ~ ) ) E . ,  F,(B;)) 

for all the points of Cj. Therefore formula (2.1) of [2] (p. 672) and the 
I symmetry of h imply that 

P, ( F ~  (B:, B:)) < en - co - C; - P, ( F ~  (B;)) G en co C; . 
If j -t a, then F j  ( B i ,  Bi )  )t F ,  (B: , Bf f )  and, therefore, 

BY symmetry P, ( F ,  (B:, 8:)) < en . cO . C: . Thus 

It follows that Ph-a.s. only finitely many events F,(8,3, e) u F a  (B:, B:) 
happen and this implies that P,-a.s. 

By symmetry the P,-probability of each of these events is 112. Since 
these events are in the taiI a-field, it follows from [2], p. 730, that h is not 
minimal. 

3. Estimates of the Nairn kerml. By Theorem 2.1 there exist at least two 
minimal Martin boundary points x,, x2, such that if x -t x1 or x -+ x,, then 
Imx + 1. The points x1 and x, are attainable by results of Cranston and 
McConnell El]. Salisbury [ 5 ]  (Corollary 3.5) has shown under some 
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assumptions that there does not exist an h-process which starts at x, and 
terminates at x2. A new proof of this result will be given below. Salisbury's 
basic lemma (Theorem 3.3) will be replaced by Proposition 3.1. 

K ( x , ,  x), XED, will denote the Martin function and G D ( x ,  y ) ,  x, y E D, 
WIII be the Green function. Let z, = 1/2+ia,/2. Fix a,'s for the rest of this 
section. 

PROPOSITION 3.1. If b, 4 0 suficiently fast as n 4 m, then 

lim sup K (x , , T (t))/G, (z, , T (t)) = co 
t - t l -  

for every continuous path r = {r ( t ) ,  0 < t < I} c D such that 

lim Im T (t) = 1 . 
t + l -  

P r o  of. The functions K(xl, -) and G, (z,, a) have limits 0 at the parts of 
the boundary dD n (Imz < a,) for every 1 < n < m. The set D, = D n (a, 
< Imz < a,, ,} is a Lipschitz domain. An easy variation of Theorem 1 of 
Wu [ti] applied to the subset D: of D,, 

1 2  
< Imz <-a,+-a,,, 

3 3 

I shows that if K (x,, x)/G, (z,, x) = d for some x E D, Im x = (a,,+ a,+ J2, 
then 

(3.1) K(xl' 2 d -en for all y ED, im y = (an+an+,)/2. 
G,(z,, Y )  

The constants c, > 0 do not depend on d or b,'s. 
I 

It is easy to see that b1 can be chosen so small that GD(z0, x)  < 1 for all 
X E D ,  Imx 2 al. 

For each n 2 2 choose b, so small that if a harmonic function g in 
D n {Im z < (a, + a,, ,)/2) has the boundary limit 0 for each 

x E dD n {Imz < (a, + a,+ ,)/2) 
l and is bounded by 1 on (Imz = (a, + a,, ,)/2}, then g (2,) < cdn. 

Normalize K(xl, y) so that K(x,, zo) = 1. By the choice of 6,'s for n 2 2 
we have K (x, , z,J 2 n/c, for some Z, E D, Imz, = (an + a,, l)/2. It follows from 
(3.1) that 

for all y E D, Im y = (a, + a,, ,)/2 and this completes the proof. 
COROLLARY 3.1 (Salisbury). If b, -+ 0 suficiently fast as n-t m, then there 

does not exist an h-process in D starting from xl and terminating at x2. 
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Proof. Use Proposition 3.1 and Theorem 2.3 (c) of Salisbury [5]. 
Remark 3.1 How fast is "fast" in the last corollary? The above method 

of proof does not provide an answer, see however Salisbury [ S ] .  
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