ON A THEOREM OF SALISBURY

BY
KRZYSZTOF BURDZY (LUBLIN)

Abstract. Salisbury proved that there exist a domain and attainable minimal Martin boundary points x and y such that no h process can start at x and terminate at y. A new, less computational proof is supplied in this note.

1. Introduction. Salisbury $[4,5]$ has recently proved that in some Greenian domains there exist attainable Martin boundary points x and y such that there does not exist an h-process starting from x and terminating at y.

His proof is based on two lemmas: Theorem 3.3 and Theorem 3.4. An alternative proof is presented below. Theorem 3.4 is generalized and Theorem 3.3 is replaced by a similar one. New proofs use many ideas taken from the original ones but are less computational in nature, for example they do not require Schwarz-Christoffel formulae or estimates of Cranston and McConnel [1].

The reader is referred to Doob [2] for the definitions of an h-process, Martin boundary and related concepts.

The author would like to thank Thomas Salisbury for the interesting and stimulating discussion of Martin boundaries.
2. The Martin boundary. It will be convenient to use the complex notation. Let

$$
A_{n}=\left\{z \in C: \operatorname{Im} z=a_{n}, b_{n}<\operatorname{Re} z<1-b_{n}\right\}, n \geqslant 1,
$$

and

$$
D=\{z \in C: 0<\operatorname{Re} z<1,0<\operatorname{Im} z<1\} \backslash \bigcup_{n=1}^{\infty} A_{n}
$$

Assume that

$$
\begin{gathered}
0<a_{n}<1,0<b_{n}<1 / 2 \quad \text { for } n \geqslant 1, \\
a_{n}<a_{m} \quad \text { for } n<m, \\
\lim _{n \rightarrow \infty} a_{n}=a_{\infty}=1, \quad \limsup _{n \rightarrow \infty} b_{n}=b_{\infty}<1 / 2
\end{gathered}
$$

Write $a_{n+1}-a_{n}=e_{n}$. Let $\left\{z_{n}\right\}$ be a sequence of points such that $z_{n} \in D$, $\operatorname{Re} z_{n}=1 / 2$ for $n \geqslant 1$ and

$$
\lim _{n \rightarrow \infty} \operatorname{Im} z_{n}=1
$$

Then there exists a subsequence $z_{n_{k}}$ which converges (in the Martin topology) to a Martin boundary point z_{0} of D. Let h be a Martin function in D corresponding to z_{0}.

Theorem 2.1. The function h is not minimal.
Remarks 2.1. (i) Theorem 2.1 generalizes Theorem 3.4 of Salisbury [5], who assumed in addition that $b_{n} / e_{n}<c<\infty$ for all n.
(ii) The idea of the proof is the following. Brownian motion in D is unlikely to travel thin canals. This property is inherited by the h-process. The h-paths are therefore likely to cluster near the points i or $i+1$. By symmetry these events have probability $1 / 2$ and the tail σ-field is not trivial. This implies that h is not minimal.

The proof of the theorem will be preceded by some more notation and two lemmas.

Let $b=\left(b_{\infty}+1 / 2\right) / 2$. It will be assumed WLOG that $b_{n}<b$ for all $n \geqslant 1$. Define B_{n}^{k} for $n \geqslant 1$ and $k=1,2, \ldots, 6$ by

$$
B_{n}^{k}=\left\{z \in C: a_{n}<\operatorname{Im} z<a_{n+1}, \operatorname{Re} z=\frac{6-k}{5} b+\frac{k-1}{5}(1-b)\right\}
$$

The distribution of the Brownian motion in D (h-process) starting from $x \in D$ will be denoted by $P^{x}\left(P_{h}^{x}\right)$. If $x=1 / 2+i a_{1} / 2$, then the superscript will be suppressed.

The paths of processes will be denoted by $X(t)$ and the lifetime R can be written as

The hitting time of a set B will be called T_{B}. For sets $B_{1}, B_{2}, \ldots, B_{2 k} \subset D$ and $j=1,2, \ldots, \infty$ define events
$F_{j}\left(B_{1}\left(B_{2}\right), B_{3}\left(B_{4}\right), \ldots, B_{2 k-1}\left(B_{2 k}\right)\right)$
$\stackrel{\mathrm{dr}}{=}\left\{T_{1} \stackrel{\mathrm{dr}}{=} T_{B_{1}}<\infty\right.$ and $T_{1}<T_{B_{2}}$ and $T_{2} \stackrel{\mathrm{df}}{=} \inf \left\{t>T_{1}: X(t) \in B_{3}\right\}<\infty$ and $T_{2}<\inf \left\{t>T_{1}: X(t) \in B_{4}\right\} \ldots$

$$
\text { and } T_{k} \stackrel{d f}{=} \inf \left\{t>T_{k-1}: X(t) \in B_{2 k-1}\right\}<\infty
$$

and $T_{k}<\inf \left\{t>T_{k-1}: X(t) \in B_{2 k}\right\}$ and $\left.T_{k}<\inf \left\{t \geqslant 0: \operatorname{Im} X(t) \geqslant a_{j}\right\}\right\}$.
If one of the sets $B_{2}, B_{4}, \ldots, B_{2 k}$ is equal to ∂D, then it is suppressed in the notation.

Lemma 2.1. There exists a constant $c_{0}<\infty$ such that for all $n \geqslant 1$ and $j \geqslant n+1$

$$
P\left(F_{j}\left(B_{n}^{3}, B_{n}^{4}\right)\right)<c_{0} \cdot e_{n} \cdot P\left(F_{j}\left(B_{n}^{3}\right)\right)
$$

Proof. There exists a constant $c_{1}<\infty$ such that if K is an interval of the real line of the length $a>0$, then the chance that Brownian motion in $\{\operatorname{Im} z>0\}$ starting from $i(1-2 b) / 5$ will terminate at K is less than $a \cdot c_{1}$. It follows that for $k=2,3,4,5$ and $x \in B_{n}^{k}$

$$
\begin{equation*}
P^{x}\left(F_{j}\left(B_{n}^{k-1}\left(B_{n}^{k+1}\right)\right)\right)<e_{n} \cdot c_{1} \tag{2.1a}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{x}\left(F_{j}\left(B_{n}^{k+1}\left(B_{n}^{k-1}\right)\right)\right)<e_{n} \cdot c_{1} . \tag{2.1b}
\end{equation*}
$$

The event $F_{j}\left(B_{n}^{4}\right)$ is a union of an event N such that $P^{x}(N)=0$ for all $x \in B_{n}^{3}$ and a countable union from $m=0$ to ∞ of the events

$$
F_{j} \underbrace{\left(B_{n}^{2} \cup B_{n}^{6}\left(B_{n}^{4}\right), B_{n}^{3} \cup B_{n}^{5}, \ldots, B_{n}^{2} \cup B_{n}^{6}\left(B_{n}^{4}\right), B_{n}^{3} \cup B_{n}^{5}\right.}_{m \text { times }}, B_{n}^{4}\left(B_{n}^{2} \cup B_{n}^{6}\right)) .
$$

The P^{x}-probability of such an event is less than $\left(e_{n} \cdot c_{1}\right)^{m+1}$ for all $x \in B_{n}^{3}$, which follows from ($2.1 \mathrm{a}, \mathrm{b}$) and the repeated use of the strong Markov property. Thus, for $x \in B_{n}^{3}$,

$$
\begin{equation*}
P^{x}\left(F_{j}\left(B_{n}^{4}\right)\right) \leqslant \sum_{m=0}^{\infty}\left(e_{n} \cdot c_{1}\right)^{m+1}<c_{0} \cdot e_{n} \tag{2.2}
\end{equation*}
$$

The last inequality holds for some $c_{0}<\infty$ and all e_{n} small enough. It will be assumed WLOG that it holds for all e_{n}.

By the strong Markov property at $T_{B_{n}^{3}}$ and (2.2) one obtains

$$
P\left(F_{j}\left(B_{n}^{3}, B_{n}^{4}\right)\right)<c_{0} \cdot e_{n} \cdot P\left(F_{j}\left(B_{n}^{3}\right)\right),
$$

which completes the proof.
Lemma 2.2. Let μ be a measure on B_{n}^{3} (or on B_{n}^{4})). Then P^{μ}-distribution of $X\left(T_{B_{n}^{2} \cup B_{n}^{5}}\right)$ has a density. $g_{n}^{\mu}(x), x \in B_{n}^{2} \cup B_{n}^{5}$. There exists a function $g_{n}(x)$ such that, for every μ,

$$
\begin{equation*}
g_{n}^{\mu}(x) / g_{n}(x)=c(\mu, n) k_{n}^{\mu}(x) \quad \text { for all } x \in B_{n}^{2} \cup B_{n}^{5} \tag{2.3}
\end{equation*}
$$

Here $c(\mu, n)$ does not depend on x and

$$
0<1 / c_{2}<k_{n}^{\mu}(x)<c_{2}<\infty \quad \text { for all } x \in B_{n}^{2} \cup B_{n}^{5}
$$

The constant $c_{2}, 1<c_{2}<\infty$, does not depend on μ or n.
Proof. Let f be a conformal bijection of the rectangle U_{n} bounded by $A_{n}, A_{n+1}, B_{n}^{2}$ and B_{n}^{5} onto the $\operatorname{disc} D_{1}=\{|z|<1\}$. Assume that the midpoint of B_{n}^{3} is mapped onto $0 \in D_{1}$ and B_{n}^{2} and B_{n}^{5} are mapped onto arcs symmetric
wrt real axis. For small e_{n} the P^{x}-chance, $x \in B_{n}^{3}$, of hitting ∂U_{n} to the right from B_{n}^{3} is arbitrarily close to $1 / 2$, so B_{n}^{3} is mapped on an arc close to the imaginary axis.

A conformal mapping of Brownian motion is a time-changed Brownian motion so the hitting probabilities are preserved. Therefore it is enough to prove (2.3) with $g_{n}^{\mu}(x)$ replaced by $\tilde{g}_{n}^{\mu}(x), x \in f\left(B_{n}^{2} \cup B_{n}^{5}\right)$, where $\tilde{g}_{n}^{\mu}(x)$ is the density of $X(R-)$ for Brownian motion in D_{1} with the initial distribution $\mu \circ f^{-1}$. If e_{n} is small, then $f\left(B_{n}^{2} \cup B_{n}^{5}\right)$ consists of two small arcs. The hitting distribution for Brownian motion in D_{1} may be written down explicitly (see p. 102 of [3]) and it is easy to verify (2.3) for $\tilde{g}_{n}^{u}(x)$ directly.

Proof of Theorem 2.1. Let $C_{j}=\left\{\operatorname{Im} z=a_{j}\right\} \cap D$. The lemmas and the strong Markov property applied at $T_{\boldsymbol{B}_{\boldsymbol{n}}^{2} \cup \boldsymbol{B}_{n}^{5}}$ imply that the density of the P distribution of

$$
\left(X\left(T_{C_{j}}\right) \in \cdot, F_{j}\left(B_{n}^{3}, B_{n}^{4}\right)\right), \quad j \geqslant n+1
$$

is at most $e_{n} \cdot c_{0} \cdot c_{2}^{2}$ times the P-density of

$$
\left(i \operatorname{Im} X\left(T_{C_{j}}\right)+\left(1-\operatorname{Re} X\left(T_{C_{j}}\right)\right) \in \cdot, F_{j}\left(B_{n}^{3}\right)\right)
$$

for all the points of C_{j}. Therefore formula (2.1) of [2] (p. 672) and the symmetry of h imply that

$$
P_{h}\left(F_{j}\left(B_{n}^{3}, B_{n}^{4}\right)\right)<e_{n} \cdot c_{0} \cdot c_{2}^{2} \cdot P_{h}\left(F_{j}\left(B_{n}^{3}\right)\right) \leqslant e_{n} \cdot c_{0} \cdot c_{2}^{2}
$$

If $j \rightarrow \infty$, then $F_{j}\left(B_{n}^{3}, B_{n}^{4}\right) \uparrow F_{\infty}\left(B_{n}^{3}, B_{n}^{4}\right)$ and, therefore,

$$
P_{h}\left(F_{\infty}\left(B_{n}^{3}, B_{n}^{4}\right)\right) \leqslant e_{n} \cdot c_{0} \cdot c_{2}^{2}
$$

By symmetry $P_{h}\left(F_{\infty}\left(B_{n}^{4}, B_{n}^{3}\right)\right) \leqslant e_{n} \cdot c_{0} \cdot c_{2}^{2}$. Thus

$$
\sum_{n=1}^{\infty} P_{h}\left(F_{\infty}\left(B_{n}^{3}, B_{n}^{4}\right) \cup F_{\infty}\left(B_{n}^{4}, B_{n}^{3}\right)\right) \leqslant 2 \cdot c_{0} \cdot c_{2}^{2} \sum_{n=1}^{\infty} e_{n}<\infty
$$

It follows that P_{h}-a.s. only finitely many events $F_{\infty}\left(B_{n}^{3}, B_{n}^{4}\right) \cup F_{\infty}\left(B_{n}^{4}, B_{n}^{3}\right)$ happen and this implies that P_{h}-a.s.
$\underset{t \rightarrow R}{\limsup } \operatorname{Re} X(t)<\frac{2}{5} b+\frac{3}{5}(1-b) \quad$ or $\quad \liminf _{t \rightarrow R} \operatorname{Re} X(t)>\frac{3}{5} b+\frac{2}{5}(1-b)$.
By symmetry the P_{h}-probability of each of these events is $1 / 2$. Since these events are in the tail σ-field, it follows from [2], p. 730, that h is not minimal.
3. Estimates of the Naim kernel. By Theorem 2.1 there exist at least two minimal Martin boundary points x_{1}, x_{2}, such that if $x \rightarrow x_{1}$ or $x \rightarrow x_{2}$, then $\operatorname{Im} x \rightarrow 1$. The points x_{1} and x_{2} are attainable by results of Cranston and McConnell [1]. Salisbury [5] (Corollary 3.5) has shown under some
assumptions that there does not exist an h-process which starts at x_{1} and terminates at x_{2}. A new proof of this result will be given below. Salisbury's basic lemma (Theorem 3.3) will be replaced by Proposition 3.1.
$K\left(x_{1}, x\right), x \in D$, will denote the Martin function and $G_{D}(x, y), x, y \in D$, will be the Green function. Let $z_{0}=1 / 2+i a_{1} / 2$. Fix a_{n} 's for the rest of this section.

Proposition 3.1. If $b_{n} \rightarrow 0$ sufficiently fast as $n \rightarrow \infty$, then

$$
\limsup _{t \rightarrow 1-} K\left(x_{1}, \Gamma(t)\right) / G_{D}\left(z_{o}, \Gamma(t)\right)=\infty
$$

for every continuous path $\Gamma=\{\Gamma(t), 0<t<1\} \subset D$ such that

$$
\lim _{t \rightarrow 1^{-}} \operatorname{Im} \Gamma(t)=1
$$

Proof. The functions $K\left(x_{1}, \cdot\right)$ and $G_{D}\left(z_{o}, \cdot\right)$ have limits 0 at the parts of the boundary $\partial D \cap\left\{\operatorname{Im} z<a_{n}\right\}$ for every $1 \leqslant n<\infty$. The set $D_{n}=D \cap\left\{a_{n}\right.$ $\left.<\operatorname{Im} z<a_{n+1}\right\}$ is a Lipschitz domain. An easy variation of Theorem 1 of Wu [6] applied to the subset D_{n}^{1} of D_{n},

$$
D_{n}^{1}=D \cap\left\{\frac{2}{3} a_{n}+\frac{1}{3} a_{n+1}<\operatorname{Im} z<\frac{1}{3} a_{n}+\frac{2}{3} a_{n+1}\right\}
$$

shows that if $K\left(x_{1}, x\right) / G_{D}\left(z_{0}, x\right)=d$ for some $x \in D, \operatorname{Im} x=\left(a_{n}+a_{n+1}\right) / 2$, then

$$
\begin{equation*}
\frac{K\left(x_{1}, y\right)}{G_{D}\left(z_{0}, y\right)} \geqslant d \cdot c_{n} \text { for all } y \in D, \quad \operatorname{Im} y=\left(a_{n}+a_{n+1}\right) / 2 \tag{3.1}
\end{equation*}
$$

The constants $c_{n}>0$ do not depend on d or b_{n} 's.
It is easy to see that b_{1} can be chosen so small that $G_{D}\left(z_{0}, x\right)<1$ for all $x \in D, \operatorname{Im} x \geqslant a_{1}$.

For each $n \geqslant 2$ choose b_{n} so small that if a harmonic function g in $D \cap\left\{\operatorname{Im} z<\left(a_{n}+a_{n+1}\right) / 2\right\}$ has the boundary limit 0 for each

$$
x \in \partial D \cap\left\{\operatorname{Im} z<\left(a_{n}+a_{n+1}\right) / 2\right\}
$$

and is bounded by 1 on $\left\{\operatorname{Im} z=\left(a_{n}+a_{n+1}\right) / 2\right\}$, then $g\left(z_{0}\right)<c_{n} / n$.
Normalize $K\left(x_{1}, y\right)$ so that $K\left(x_{1}, z_{0}\right)=1$. By the choice of b_{n} 's for $n \geqslant 2$ we have $K\left(x_{1}, z_{n}\right) \geqslant n / c_{n}$ for some $z_{n} \in D, \operatorname{Im} z_{n}=\left(a_{n}+a_{n+1}\right) / 2$. It follows from (3.1) that

$$
\frac{K\left(x_{1}, y\right)}{G_{D}\left(z_{0}, y\right)} \geqslant c_{n} \cdot \frac{K\left(x_{1}, z_{n}\right)}{G_{D}\left(z_{0}, z_{n}\right)} \geqslant c_{n} \cdot \frac{n / c_{n}}{1}=n
$$

for all $y \in D, \operatorname{Im} y=\left(a_{n}+a_{n+1}\right) / 2$ and this completes the proof.
Corollary 3.1 (Salisbury). If $b_{n} \rightarrow 0$ sufficiently fast as $n \rightarrow \infty$, then there does not exist an h-process in D starting from x_{1} and terminating at x_{2}.

Proof. Use Proposition 3.1 and Theorem 2.3 (c) of Salisbury [5].
Remark 3.1 How fast is "fast" in the last corollary? The above method of proof does not provide an answer, see however Salisbury [5].

REFERENCES

[1] M. Cranston and T. R. McConnell, The lifetime of conditioned Brownian motion, Z. Wahrscheinlichkeitstheorie 65 (1983), p. 1-11.
[2] J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, New York 1984.
[3] S. C. Port and C. J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, New York 1978.
[4] T. Salisbury, Construction of strong Markov processes through excursions, and a related Martin boundary, Ph. D. thesis, University of British Columbia, 1983.
[5] - A Martin boundary in the plane, to appear in Transactions AMS.
[6] J.-M. G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains, Ann. Inst. Fourier (Grenoble) 28 (1978), p. 147-167.

Instytut Matematyczny PAN
ul. Kopernika 18
51-617 Wroclaw, Poland

Received on 5. 3. 1985

