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STATISTICAL CHARACTERIZANS OF GAUSSIAN M&i!3UWES 
ON A HHLBERT SPACE 

Abstmct. Let XI, . .., X, be i.i.d. random vectors with values in 
a real separable Hilbert space. We consider the problem of 
estimating the mean of XI under quadratic loss and discuss 
analogues of characteristic properties of normally distributed real 
random variables. It is shown that there exists an equivariant 
sufficient linear statistic iff X, is Gaussian. Further the optirnality of 
the sample mean R in the class of all quivariant or unbiased 
estimators is a characteristic property of Gaussian random vectors. 

1. Eqaivsrinrrat adiiciennt statisaics and Pitman estimators. Let H be a real 
separable infinite-dimensional Hilbert space. Denote by (., * )  the scalar 
product and by 1 . 1  the norm in H. For fixed n E  N let 

8 = ( (Ha,  B (H")), { P, : SE H)) 

be the translation experiment uniquely defined by a probability measure Po 
on b ( H n ) ,  the Borel a-algebra on H: where P, = P o ( .  - 9), $E H, and x  + y 
= ( x ,  + y ,  . . . , xn + y), XE Hn, y~ H .  We consider the problem of estimating 9 
under the loss function 

An estimator is a Borel measurable statistic S: Hn-r  H; Eg IS- $1' is 
called the risk of the estimator S when the true value of the parameter is 8, 
where E, stands for the expectation with respect to P,. Let L%(Pg) denote 
the space of all estimators S such that E, ISI2 < m. An estimator S satisfying 
the condition S(x  + y )  = S (x )  + y for all x E Hn, y E H ,  is called equivariant. 
For such estimators the risk E, IS - 91' = Eo ISI2 does not depend on $E H. 
We say that an equivariant estimator S is a Pitman estimator, if 
E, IS[' < Eo IS1j2 for all equivariant estimators S,.  A statistic S: HR -+ Y for 
some set Y is called. invariant, if S (x + y) = S ( x )  for all x  E H", y E H .  Let 

N(Hq = ( A  E b ( H ' 9 :  lA is invariant). 



152 H. Luschgy 

In this section we observe that the Pitman estimator may be 
characterized analogously to the case H = R. We need the following 
information. The fist lemma will also be useful for a characterization of 
Gaussian measures by sufficiency. 

LEMMA 1.1. If S: Hn 4 H is an equivariant Borel measurable statistic, 
then the following statements are equivalent: 

(i) S is sufficient for 8. 
(ii) S- l (B(W)) a d  %(H")are independent under Po, where b(H) denotes 

the Borel a-algebra on H .  
Proof. (i)*(ii). Let A E  %(W3, BE B ( H )  and Iet f: H +  R be a Borel 

measurable function with f o S = ES(lAIS) Pa-a.s. for all 9 E H. Since, for any 
B'E%(N), ~ E H ,  

1 f o S d P o =  j f ( S + y ) d P , ,  . 
s - l(3') s - 1(37 

we obtain by Fubini's theorem 

Po(Ans- l (@)=  j j f ( ~ ( x ) + ~ i z ) ) d ~ o ~ d ~ o ( x )  
s- '(81 H" 

= J J f (s (El) dPo dPo (4 = Po (A1 Po (S - (B) ) .  
S- ~ ( B J  R* 

(ii) =+ (i). We define T :  Hn -+ Hn by T(x) = x - S (x) .  Then T is a maximal 
invariant, Borel measurable statistic with T-' (B(Hn)) = %(Hn). Hence, S 
and T are independent under Po. Then it is easily seen tha't S and T are 
independent under Pg, 8 E H. Furthermore, T is an ancillary statistic for 8. 
For any A E  23 (H"), 3 E B (H) and 9 E H this yields 

thus E, (1, IS) = P,T (A -S) P,-a.s. This proves the assertion. 
 ema ark. The proof of Lemma 1.1 shows that a Borel measurable, 

equivariant statistic S: Hn 4 H is sufficient for d if and only if for every 
A E  %(H") there exists a version of E,(l,IS) independent of 9~ H. 

LEMMA 1.2. Let S E  LH(Po) be equivariant. T h n  S is a Pitman estimator if , 

and only if E ,  ( S ,  g )  = 0 for all invariant estimators g E LR (Po). 
Proof. The "$" part. Let S1 E I& (P,) be another equivariant estimator. 
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Then g = S ,  - S E  LL(Po) is an invariant estimator and we have 

since, by assumption, Eo { S ,  g) = 0. 
The "only i f" part. Let ~ E L $ ( P , )  be an invariant estimator. For any 

A E $ S 1  = S + Lg is an equivariant estimator. Further 

which implies E ,  ( S ,  g )  = 0. 
Given a Pa-Bochner integrable statistic S: H" + H and a (B(H") B(Y))- 

measurable statistic 2': Hn + Y for some measurable space (Y, 8 ( Y ) ) ,  then 
the Tconditional expectation E,(SI 7'): H" + H of S is the P,-a.e. unique, 
P,-Bochner integrable, (T-'(%(Y)), ?B(H))-measurable statistic such that 

jE,(SlT)dP, = S S d P ,  for all A E  T - l ( B ( ~ ) ) ;  
A A 

integration and expectation will always be considered in the sense of 
Bochner. Since H has the Radon-Nikodyrn property, the usual proof of the 
existence of the conditional expectation works with H replacing R. We have 

G, E, ( S  I T ) )  = E, ((y, S )  I T )  Pa-as. for all y E H ,  

E , E , ( S I T ) = E , S  P,-as., 

IES(SI T)IZ d E, (IS1 2 1  T )  P,-as. for S E  LH(P8) 

(cf. [ 5 ] ,  Chap. V-2). 
THEOREM 1.3. If S E cH (Po) is equivariant, then 

is the (up to Po-equivalence uniqueiy determined) Pitman estimator, whme T(x)  
= x-S(x), XEH".  

Proof.  Note first that a Bore1 measurable statistic g: Hn -+ H is 
('iU(H3, ?B(H))-measurable if and only if g is invariant. Therefore, E,(SI T )  is 
invariant, so So E I?H (Po) is an equivariant estimator. Let g E L$(P,) be an 
invariant estimator. Then 

To see this let Q : Hn x 93 (H) -+ LO, 11 be the regular Tconditional 
distribution of S under Po. For any Z E H  we have 

( 2 ,  Eo(SI TI) = Eo((z, S ) I  T )  = 1 ( 2 ,  Y )  Q ( T ( - 1 ,  dy)  
H 

5 - Prob. Math. Statist. 6 (2) 
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which implies 

I Therefore, for any A E  21(Hn) we obtain 
I 

which proves the statement. 
We conclude that 

i hence, by Lemma 1.2, So is a Pitman estimator. 
To prove the uniqueness of the Pitman estimator assume that 

S ,  E L; (Po) is another Pitman estimator. Then g = S ,  - S o  E (Po) is an 
I invariant estimator and we have by Lemma 1.2 

which implies S ,  = So Po-a.s. 
COROLLARY 1.4. (a) If S E L', (Po) is equivariant and seaficient for &? then 

So = S - Eo S is the Pitman estimator. 
(b) I f  S, , S ,  E L$(Po) are equivariant and sufficient for 8, then S1 = S ,  + y 

Po-a.s. for some y E H .  
Proof. The assertions follow immediately from Lemma 1.1. and 

Theorem 1.3. 

2. Characterizations of Gaussian measures. In the sequel Xi:  Hn -+ H 
denotes the i-th projection. We assume that XI, ..., X,, are i.i.d. under Po.  
A probability measure p on B(H) is Gaussian if the continuous linear 
functionals ( y ,  .), Y E  H, are normally distributed (possibly degenerate) when 
considered as random variables on the probability space (H, B(H), p). The 
H-valued random vector Xi is Gaussian under Po if P:' is a Gaussian 
measure, i.e. (y, Xi), ~ E H ,  are normally distributed under Po. Let 

The following theorems extend well known characterizations of the 
normality of real random variables. 

THEOREM 2.1. Assume n 2 2. The following statements are equivalent: 
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(i) There exists a suficient statistic 

n 

for d with ci # 0. 
i= 1 

(ii) X, is Gaussian under Po .  
If(i) and thergore (ii) me valid, then R is the essentially unique (up to Po- 

equivalence and up to an additive constant) equivariant sufficient slatistic for R 
in &(Po) .  

Proof.  (i) * (ii). We may assume 
n 

z c i = l  and c l # O .  
i= 1 

Then S is equivariant and, by Lemma 1.1, S and 'Ii = XI - X2 are 

i independent under P,, thus for y e H  

are independent under Po.  Therefore, it follows by the Skitovich-Darmois 
Theorem that ( y ,  X I )  is normally distributed under Po (cf. [Z], Theorem 
3.1.1). 

I (ii)+(i). We may assume that E o X ,  = 0 and the support of P:' is all 
I H. Let C: H + H denote the covariance operator of XI under Po which is 

determined by the relation 

Then C is a linear compact injective operator which is positive, 
symmetric and trace class. 

If 9 E C l t 2  ( H ) .  Then P:' is P:' -continuous and 

(cf. [6], p. 83, Theorem 2): where L, is defined as follows. Let {e i :  i f  N) .  be 
an orthonormal basis of H consisting of eigenvectors-of C. Then ei E C1I2 (H) 
for all i € N  and the random variables Zi = (C-'I2 ei, .) are i.i.d. N(0,  1 )  

X 
under Po1. Hence, the sequence (L,,,),,, of continuous linear functionals 
defined by 
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is a martingale under P:' and 

The martingale cqnvergence theorem implies that La,, converges to a 

limit L, pti-a.s. 
Observe that there is a Bore1 measurable subspace DS of H such that 

pi1 (D,) = I and L,I D, is linear. This yields 

"P = exp ( ~ L , O R - - ( C - ~ ~ ~ ~ ] ~  n 
df'o 2 

thus X is sufficient for the subexperiment (P , :  ~ E C ~ ~ ~ ( H ) )  of $+ 

8 is Gaussian with Eo R = 0 and covariance operator C, = ( l /n)  C 
under Po.  Since C:I2 ( H )  = C'I2 (H) and P:(.  - 3) = P;, the linear hull of 

is norm dense in L? (P:) (cf. [4], Theorem 4.1), thus X is a bounded complete 
statistic for {P,: 9~ C112(H)). Hence, by a well known result of Easy X and 
T are independent under Po .  Since T -  (B ( H q  = CL[(Hn), B is sufficient for 
d by Lemma 1.1. 

The assertion concerning the uniqueness of S follows from Corollary 
1.4 (b). 

THEOREM 2.2. Assume EoX, = 0, E,1X112 < ao and n > 3. Then the 
following statements are equivalent: 

(i) W is the Pitman estimator. 
(ii) XI is Gaussian under Po. 
Proof.  (i) *(ii). Let ~ E H .  According to Theorem 1.3 we have Eo(81 T )  

= 0, thus Eo({y, X)l T )  = 0 Po-a.s. If we define yn: H" -+ R" by yn(x)  
= ( ( Y ,  XI), - -  - 9  0, ~ n ) ) ,  then 

Therefore, it follows from a theorem of Kagan-Linnik-Rao that (y, XI) 
is normally distributed under Po (cf. [2], p. 155). 

(ii) *(i). By Theorem 2.1, X is sufficient for 8. Hence, the assertion 
follows from Corollary 1.4. 

Theorem 2.2 may also be formulated as follows: 
COROLLARY 2.3. In the situation of Theorem 2.2 

holds if and only if XI is ~aussian. 
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THEOREM 2.4. Assume EoXl = 0, EolX112 < co and n 3 3. Then the 
following statements are equivalent: 

(i) X is admissible in the class of all unbiased estimators of 9. 
(ii) X1 is Gaussian under Po. 
If (i) upad, thergore, (ii) are valid, then X is &the (up to Pa-equivalence 

uniquely determined, ~ E H )  optiml unbiased estimator of 9. 
P r  o o f. (i) * (ii). According to Theorem 1.3, S = - Eo (Ti T )  is the 

Pitman estimator. Since R is equivariant, we obtain E ,  IS12 6 Eo [TI2. 
Further we have 

= 9 - E o 8 = 9  for a l l 9 ~ H .  

The admissibility of 8 yields E,ISI2 = Eo[x12. Hence, the assertion 
follows from Theorem 2.2. 

(ii) - (i). We shall show that B is optimal in the class of all unbiased 
estimators for every nE IV. According to Theorem 2.1 and Theorem .4.4 of 
Kozek and Wertz 131 it suffices to prove this claim far n = 1. We may 
assume that the support of Po is all H. Let C denote the (injective) 
covariance operator of Po. Further let {e,:  EN) be an orthonormal basis of 
H consisting of eigenvectors of C and let A, 2 A2 2 ... > 0 be the 
corresponding eigenvalues of C (each written as many times as is its' 
multiplicity). Then 

CO 

m 

Let c = C Ai. 
i =  l 

Now suppose that X, is not optimal in the class of all unbiased 
estimators. Then there exist 9,fH and an unbiased estimator So such that 

for some E > 0. Choose m such that 

For 

and the unbiased estimator S ,  = So ( a  + So - 9,) - 9, + 9, we obtain 
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.The following part of the proof is similar to the proof of the minimax 
character of XI given by Berger and Wolpert in [I]. Define a: H + W" by 

and B: R" + H by 

Then 

q i y )  = w- - Y )  = N r y i  

where C is an m x m diagonal matrix with Zii = li and y E P. We proceed by 
constructing an unbiased estimator U: Rm-+ Rm of y in the translation 
experiment ((r, %(R")), ( N ( * J ,  E): y  E IF)) with 

I 
I where V =  IdRrn and y ,  = u(3,), contradicting the optimality of the estimator 
! V in the class of aII unbiased estimators of F. 

a is sufficient for the subexperiment {PB(,,,: Y E  P) of 8, because 
B ( Y )  C1l2 (WY 

m m A 

LB(y) = yi Lei = x yi?,; <ei, a )  Po-as. 
i =  1 i =  1 

\ 

for all y E R"; see the proof of Theorem 2.1. Let f :  R" 4 H be a Borel 
measurable statistic with f o o! = EbiYI (S, (a)  Pb(,,-a.s. for all y E R" (cf. [3], 
Lemma 4.2) and define the unbiased estimator U of y by U = a o f  Then we 
obtain for any y e R m  
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Since /?(y,) = 9,, this yields for I), 

The assertion concerning the uniqueness of X is an immediate 
consequence of the following extension of the covariance method of 
Lehmann-Scheffi and Rao. Let 

be an unbiased estimator of 9. Then S is an optimal unbiased estimator if 
and only if E, ( S ,  g) = 0 for all 9gH and 

with E,g  = 0, QEH.  
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