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EFFICIENT SEQklENTPAQ PLANS 
FOR NONHOMOGENEOUS POISON PROCESS 

Abstrart. Consider a nonhomogenmus Poisson procass with 
I 

1 
unknown intensity function A(s), s 2 0, The work answers the 
question: what are efficient sequential plans for this process? The 
efficiency is understanding in the sense of Cramer-Rao-Wolfowitz 
inequality. 

Results obtained in this paper generalize theorems proved by 
Trybda 171 for Poisson process with constant intensity. 

I I. CBAlkiER-UO-WQWOWITZ INEQUALITY AND WALD'S IDENTITIES 
I 
I FOR N(PNHOIC.POGENEBUS FOBSON PROCEW 
I 
I Let X,, s 3 0, be nonhomogeneous Poisson process with intensity 

function 1: [0, GO)+ [0, a), [2]. By fi? we denote the space of functions 
x: [0, GO) 4 N; Jlr - the set of nonnegative, integer numbers; constant in 
intervals and for which x(0) = 0, x (s) = x (s -) + 0 v 1. 

a is the smallest a-algebra of subsets of %, containing the sets 
I 

{XE %: X(S) = k, s 2 0, k E .N), gt - the smallest a-algebra containing the 
sets 

I Process X, generates a measure pi in the space (gd B), [3]. An 
I unknown intensity function il belongs to some function space A. 

A Markov stopping time is a random variable T: %-+ LO, oo] which 
, satisfies the following conditions: 

A Markov stopping time T generates a a-algebra aZ. 
By pi we denote the measure pA restricted to the a-algebra gt. 
We can formulate the following proposition, which is a consequence of 

theorem 19.7, [4]. 



PRowsr~ro~ 1 .  We assume that 

Let pi denote a measure generated by Poisson process with intensity equal 
to 1 .  If a MarkDv stopping time z satisjies the coditton 

then the measure pi is absolutely continuous with respect to the measure pi 
and 

N,(x) denotes a number of jumps of a realization x in the interual [O, z], 
t , ,  t , ,  ..#., t,, 1 the times qf jumps of' n realization x in observed interval 
CO, TI. 

Proof.  For any stopping time z let us introduce stopped Poisson - 
process X ,  = X,,,. This process generates a measure fi, in the space (T, a), 
where is the.lr-algebra, generated by the sets 

By theorem 6 16) we have = W, and pl= ii,. The compensator A, of 
the process X, has the form 

t 

j A(s)ds. 
0 

So, from lemma 18.9 [4] we infer that the compensator 4 of the process 
zt has the form 4 = A, ,,. 

Theorem 19.7 [4] allows us to conclude that pi = f iL i, = pi and 
taking t = co we obtain formula (1). 

Def in i t ion  1. A sequential plan is a pair ( r ,  f ( r ,  t i ,  t,, . . ., t,;, N,)) 
where z is a Markov stopping time and f ( r ,  t,, t , ,  . .., t,, IV,) IS an 
estimator of the parameter h(A) h: A + R. 

In the sequel, by V,g(A) we denote a directional derivative at the point 
A in the direction I of the mapping g. 
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Now we can formulate the theorem about inequality,of Cramer-Rao- 
Wolfowitz type. 

THEOREM 1. Let (z, f (7,  t , ,  t , ,  . .., tN,,  N,)) be a sequential plan for 
nonhomogeneous Poisson process with unknown intensity firnetion, where . 

f (z, t , ,  t 2 ,  . .. , tNr ,  N,) is unbiased estimator for the functional h(li), that means 

and 

Var,,j(z, t l ,  12, . . . , t ~ , ,  N,) < m. 

We also assume that the junction dp'Jdp1 satisfies some regularity 
conditions, which guarante the following equations: 

Then 

where 

The equality in (4) M d s  at some A if a d  only if 

v* w.1 r 
- - 

'I (NT (4 - J 1 (v) dv)+ h ( 4  
[ fNt(x) - J A(v)  dv12  PA (4 0 

3 0 

p,-almost surely. 

The proof of this theorem is analogous to that in [lj  and [4]. 
D e f i ni ti o n 2. A sequential plan (r , f (z, t ,  , t , ,  . . . , tNr , N,)) is called an 

eficient plan if in formula (4) the equality holds for each REA. 
Let q ( z ,  t l ,  t 2 ,  . . ., tNT,  N,, A) be a function pi-integrable. Moreover we 



suppose that 

So we can write: 

=VaEP,9(~ ,  f2,  -.., t~~~ NI, J ) - E p , V z ~ ( x ,  t l ,  t z ,  ..., tN,, N,, A). 

If we put p(r ,  t , ,  t2, .. ., tNT, N,, A) = 1 in formula (8), we obtain the 
first Wald identity: 

(91 

If we put 

then from (8) we obtain the second Wald identity: 

Putting q ( z ,  t , ,  t,, ..., tNT, N,, A) = NT we obtain:, 
I I 

(1 1) E,, [N,-{A(v)dv] N, = V n  E,, SA(v)dv. 
0 0 

Now let 

Then we have 

We can write 
Z T I 7  

(13) Var,, N, = Var,, [[A (v)  dv] + 2VA E,, JIZ(v) dv-E,, JJ (v) dv. 
0 0 0 
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2. EFFICIENCY OF A FIXED-TIME PLAN. 

Defin i t ion  3. A sequental plan (T ,  f), where .c is equal, with probability 1, 
to a constant t > 0, is called a fixed-time plan. 

THEOREM 2. If SOW regularity conditions, which guarantee equalities (21, 
(3), and (7), are satisfied, then a fixed-time plan is ef$cient. 

Proof.  Let 

, So, a fixed-time plan is efficient sequential plan and 

t 

Var,, f ( t ,  N,) = a' J A (v) dv . 
0 

The lower bound in the Cramer-Rao-Wolfowitz inequality takes the 
following form: 

I 

is efficiently estimable functional of A for this plan. 
The estimator f ( t ,  N f )  = aN,+b  is efficient estimator for a fixed-time 

plan. 
Remark. If intensity function 1~ C [0, t ] ,  then, from theorem XI1 20' 

[ 5 ] ,  equalities (2), (3), (8)-(13) hold for a fixed-time plan. 

3. EFFICIENCY OF AN OBLIQUE PLAN 

Defin i t ion  4. A sequential plan (z,, f ) ,  where 

with probability 1 ,  is called an oblique plan. 
In the sequel we assume that A is continuous, periodic function with the 

period equal to r. 
4 



3.1. Existing sad finitems sf the finst two moments of an oblique plan. 
Let pi(s) denote a probability of the first attaining of the line k = (t -s)/r at 
the point i, by the process N,. 

We can write the following equality: 

where 

denotes the probability of the first attaining of the line (t -(s+ ~ s ) ) / r  at the 
point i after first attaining of the line ( t-s)/r  at the point 0. If As + 0 we 
obtain: 

p o ( 0 ) = l ,  p i ( 0 ) = O  for i # 0 .  
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We have 
s 

po(s1 = exp(-JA(v)dv). 
0 

We seek solution of the form 

Then we obtain the following system of qualities: 

q;@,  4 = A(s)g;- 1(s+r), 

q a ( 0 ) = l ,  .q i (0)=O for i # 0 .  

This system of equations has the following solution: 

I So the solution of (14) has the form 

r 

THEOREM 3. If jIZ(v)dv < I, then z p i ( s ,  1) = 1. 
0 i 

Proof. We have 
1 

pA(i.  2 t )  < , u L ( k - j l ( v ) d v l  b - ( t - s ) - j A ( v ) d v  
I 

0 r o 

for sufficiently large t under the assumption that 
r 

j R (v)  d v <  1 .  
0 
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But 

THEROREM 4. I f  the intensity function A is a continuous periodic function 
with the period equal to r and 

r 

J R ( v ) d v  < 1,  
0 

then 
3 

J W d v  
(17) 

0 
E,,Nzu=M(4= 

1-SA(v)dv 
0 

Proof.  We have C p i ( s ,  A) = 1 .  
i 

Theorem XI1 20' [ 5 ]  allows us to go with directional derivative, with 
respect to 1, under the sum sign. We obtain 

So we obtain formula (17). 
THEOREM 5. If the intensity function A is a continuous periodic function 

with the period r and 

then 

( j  n (V) dVl2 - ( j  i (v) ~ V ) Z  (j A (v) dv) + A (v) dv 
0 0 0 0 

(18) E,, N,, = K (s) = r > 

( 1  - J A (v)  dv)3 
0 
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I 
P r o  of, Let us consider previously proved equality : 

Under the assumptions about the intensity function A, we can use 
theorem XI1 20' [ 5 ]  and go with the directional derivative, with respect to 1, 
under the sum sign. We obtain: 

r s 

K(s)(l - j A ( ~ ) d v ) ~  - ( S ~ ( v ) d v )  ~ ( s )  - 
0 0 

$ I Using formula (17) for M(s)  we can obtain formulas (18) and (19). 
I 3.2. Efficiency of an oblique plan. 

THEOREM 6. If the intensity function 1 is a continuous periodic function 
with the period r and 

then the oblique plan is an efficient sequential plan. 
t 

Proof. By theorem XI1 20' [5]  we infer that for an oblique plan the 
regularity conditions, guaranteeing equalities (2), (3), (9) -(13), hold. For an 
oblique plan we can write 

I 

Let 



E,, [N," - j i (v) dv] "1 - J A (v) dv13 
0 ' 0 .  

So an oblique plan is efficient plan, 

4. EFFICIENCY OF AN INVERSE PLAN 

Defini t ion 5. A sequential plan (z,, f), where 

with probability 1, is called an inverse plan. 
We can write the following formula for the density function g,,(t) of the 

stopping time TO: 

Let us consider the estimator 

The lower bound in the Cramer-Rao-Wolfowitz inequality takes the 
following form: 

Taking lo = 1 we can check that an inverse plan is not efficient one. 
We can conclude that an inverse plan is not efficient one for each 1, and 

possibly wide class of intensity functions containing constant functions. But, 
as is proved in [7], an inverse plan is a complete plan. 
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