
PROBABILITY 
AND 

MATHEMATICAL STATISTICS 

ON SOME CRITERION OF CONVERGENCE IN PROBABILITY 

Abstract. Let (a, d ,  P) be a probability space. (S, Q) denotes a 
metric space, and I stands for the a-field generated by open sets of 
S. The set S is assumed to be a separable and complete space. 
A sequence {X,, na 1) of random element4 defined on a 
probability space (Q, I, q) taking values in S, is called stable if for 
every  BE^, with P(B) > 0, there exists a probability measure pB 
such that 

em P([X,EA]IB) = pB(A).  
n-m 

There are given conditions concerning the set .Pd(S) 
= {pB,  B e d ]  of probability measures, under which there exists a 
random element X such that the sequence {X,, n 2 I] of random 
elements converges in probability to X. 

Let X be the set of all random elements (r.e.): 

3 = { X :  D + S ;  X - l ( A ) € d ,  A E ~ ) .  

By P,(A) = P ( [ X E  A]) ,  A E ~ ,  we denote the distribution function of 
r.e. X. Let d+  = { B E & :  P ( B ) >  0) and 

Ad = (x: d ( x ,  A)  = inf ~ ( x ,  y) < 6.). 
YEA 

On the set 9 ( S )  of probability measures, defined on (S, B), 

denotes the Zvy-Prohorov metric, where z, v € S ( S ) .  Convergence in this 
metric and weak convergence coincide. ' 

, Let 

and 

r, ( X ,  Y )  = E e(xl Y) 
l+e(x, u)' 



where E ( - )  denotes the mean value, be two metrics introduced in the 
space 3. Convergences with respect to r and r ,  are equivalent to each other 
and to the convergence in probability (x,< X, n+ co) [3]. It is known 
[2] that L(P,,  P,) < r ( X ,  Y).  Hence the convergence in probability implies 
the weak convergence. 

Def in i t ion  1. A sequence {X, ,  n 2 1 )  of r.e. is called stable if, for every 
3s-d , ,  there exists a probability measure such that 

l i m P ( [ X n ~ A ] ) B ) = p B L , ( A )  for every A E ( & ~ ~ = { A E B :  p ~ ( a A ) = 0 ) ,  
n-rm 

where 8A denotes the boundary of A and P(DI3) = P ( D  nB) /P(B) .  In what 
follows we suppose that P(A1B) = 0 and pB(A) = 0, whenever P ( B )  = 0, 
BE .d. 

In the special case, where pB (A) = p (A) for every 3 E d+ , the sequence 
(X,, n 3 1) of r.e. is called mixing with density p. A survey o f  stable and 
mixing sequences of r.e. can be found in [I] and 161. 

It is well known [2] that X ,  5 X, n 4 co, iff 
I 

I (4) lim P ([X, E A3 - [XE A ] )  = 0 for every A E gPx, 
n+m 

where A - B denotes the symmetric difference of A and B. 
On can prove {cf. [4] ,  [8]) that I (5) x n ' x ,  n + m ,  iff 4QG, Qx1-0,  n + m ,  

i 
; for every probability measure Q defined on (a, d) by 

LEMMA 1. If a sequence {X,, n 2 1 )  of r.e. conoerges in probability to an 
r. e. X, then {X,, n 2 1) is stable. 

Proof.  If ~ , z ~ , n - t o o ,  then, for every BE&+, 
*B 

X,- ,  X ,  n - t  oo, where P,(.) = P ( j B ) .  
Hence 

i ' 
I P([Xn~AllB)-,P([X~AIIB), n - + c o ,  

for every A E  K P X l p  which implies the stability of the sequence (Xn ,  n 2 1 )  
of r.e. 

Now we give conditions concerning the set Yd(S) = ( p B ,  BE dj of 
probability measures under which there exists a random element X such that 
the sequence ( X , ,  n 2 1) of r.e. converges in probability to X. 

LEMMA. Let X and Y be r.e. such that, for all B, 

P ( [ X E A ] ] B ) = P ( [ Y E A ] ) B )  for every A E ~ .  

Then X = Y almost surely (as.). 
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Proof. If P([Y E A])  > 0, then, by 

we have 
P ( [ X E  A] ~ [ Y E A J )  = P([XEA]) =  YEA]). 

Hence P[CXE A] 2 [YE A])  = 0, which implies that X = Pas .  as S is a 
separable space. 

For every X E  3 take the set P,+ (S) = (pB ,  B E  d+) of probability 
measures defined on (S, 3) by 

It is easy to see that probability measures belonging to P,, (S )  satisfy 
the following conditions: 

n n 

(I) P ( U  &)p . ( A ) =  &(;4)P(Bk) for any B , , B ,  ,..., B , , E ~  
k= 1 u Bk k =  1 

k =  1 

such that B i n B j = @ ,  ifj, A E B .  
( I I )  If pB(A) > 0, then there exists a set B' c B, B ' E ~ , ,  such that 

p ~ l ( A )  = 1 .  
It is not difficult to state that probability measures belonging to 

Pd+ (S), satisfying ( I ) ,  have the fallowing prdperties: 

for every sequence {B,, n 2 1 )  of sets such that B,E d, n 2 1, and B, n Bj 
= @  when i # j ;  

/ . tB(A)=O*~Br(A)=O for every B ' c B , B ' € d + ,  
(7) 

~ l g ( A ) = l j p ~ , ( A ) = l  for every B r c B , B ' ~ d + ;  

(8) ( ,uB(A)=l  and ~ l ( A ) = l ) * p B U B r ( A ) = l ,  B , B 1 € d + ;  

(9) ( p B n ( A ) = l  and ~ , c B , + , ) = > p  V)=1, B n ~ d + -  
. . U B, 

n= 1 

LEMMA 3. If Pd+(S)  = { p B y  B E & + )  is a set of probability measures 
satysfying ( I ) ,  (11) and such that, for a fixed A E  $3, pB(A) > 0 fir some B E  d+, 
then there exists a set DA(B) c B, DA(B)€ d+ , such that 

(10) P D ~ ( B )  (A)  = f 3 

(1 1) (A)  < 1 fur every C c B, C E d+ , such that P (C\D, (B)) > 0, 

(12) k ( A )  = 0 for every C c B, CE d+ , such that P(C n DA (B)) = 0 ,  



and 

(13) 

Proof. Let 

a, = sup (P(C) :  C c B,  C € d +  and k ( A )  = 13, As&@. 

Then there exists a sequence of sets C,E at+, C ,  c B, n = 1, 2, ..., such 
that k , ( A )  = 1 and P(Cn) + a,, n + oo. Write 

P ( A ) = P m  ( A ) = l .  
u C" 

n= 1 
u C k  

n= 1 
m 

Putting DA(B) = U C,, we get (10). Moreover, we see that P(D,(B)) 
n= 1 

To prove (1 1 )  assume that I*, ( A )  = 1, whenever P (c\D, (B)) > 0, C c 3. 
Then, by assumption (I), ~ I C ~ ) ~ ( B , ( A )  = 1. Moreover, in view of (81, we have 
kunA,  (A)  = I, which with P(C\D, B)) 0 proves that P(C u DA (B))  >'CIA 
and contradicts the definition of a,. 

To prove (12) assume that (A)  > 0, whenever P(C n DA (B)) = 0, 
C c B, C E  d+ . By (11) there exists a set C' c C, C'E d+, such that k . ( A )  
= 1 and, moreover, P(C' n DA (B)) = 0. Hence, by (8) and ( lo) ,  p,-uoA(m (A)  
= 1 and P(C u DA (B)) > a, as P (D,(B)) = rr, and P(C\D, (3)) > 0, which 
contradicts the definition of U A .  . 

(13) follows from (6), (10) and (12): 

which completes the proof. 
In what follows DA stands for DA (a). 
LEMMA 4. Let 9,, (S )  be a set of probability measures of Lemma 3. 

Suppose that {A, ,  i 2 I ]  is a sequence of sets such that A, E 9, and h ( A i )  > 0, 
i 2 1. Then there exists a sequence {DAi, i 2 1) such that DAie d,,  i b 1,  and 
the foEZowing conditions hold: 

m m 

(c) i f p , ( U  A i ) = l  for A ~ ~ A ~ = @  for i#j, then P ( U  D A , ) = l .  
i =  1 i =  1 
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Proof.  (a) From Lemma 43 we conclude that there exist DA, and D,. 
such that p, , (Ai)  = 1 and pD ( A j )  = 1. By the assumption pQ(Ai n Aj) = d 

A, dj 

and (7) we have p~ (Ai n Aj) = 0, whence pD (Ai) = 0. Using once more (7) 
A j  A.i 

we conclude that pD A )  = 1 and p~~~~~~ (Ai) = 0. Trherefore 
Ai  J 

DAi n DA. $ d+, which proves that P(DAi n DAj) = 0. 
(b) fo~ows from (a). 
(c) By (13) and (a) we have 

THEOREM 1. Let Pd+ (Sj  = { p B ,   BE^+) be a set of probability measures. 
If (I) and (11) are fuGeld, then there exists an r.s. X such that 

P B ( ~ )  = P ( [ X ~  B)m 

Proof .  Let {Ailai ,,..., i k ; i s ~ N , s = l , 2  ,..., kj be the class of Bore1 
subsets of S satisfying the following conditions: 

(Wl) Ail,i2 ,..., ik Aii,ii ,..., ih = Q) ik # iL; 
m 4, 

(W2) U Ail,i2 ,.... ik = Atlri2,.-.,it-l, U Ail = S; 
ik= 1 i l= l  

From every set AiIbi  ,,.,., i, we can choose an element x ~ ~ , ~ ~  ,..., ik and define 
r.e. X, by the formula 

(14) Xk(m)  = Xil,i2 ,..., ik  for u ~ D A ~ ~ , ~  2,,.., ik : = Di1.i Z,...,ik 

The definition of X ,  is correct on the basis of Lemmas 3 and 4. 
Using the assumptions we see that 

e ( X k ,  X,) < 1/2k a.s. for m 2 k. 

Because the metric space is complete, there exists an r.e. X such that 

We now prove that 

(15) ~ ( A ) = P ( [ X E A ] J B )  for B E & +  and A E ~ .  

First we show that (15) holds for A = AilSi2 ,..,, ik and B = Dil,i ,,..., E d+ . 
The sets Ail,i ,,..., i, are continuity sets of the measure p,, i.e. Ailgi 2,...,k E XFO. 

I f  A E % ~ , ,  then for every E > 0 there exists an no such that 

p n ( ( d ~ ) l i z n o )  < E. 



and 

P(IXf aAI 1-7 CXn0+2~ U Ail,i2,.,.ino+21) = P(CXc aAD. 

1 
~ ~ , i ~ , . - - , i . ~ + .  ~ E K  

, .. .. 
I Hence 

which proves that A E  gpx. Therefore, we have Ail.2 ,,,., i k ~  6,. 

i Using properties of measure pB we see that, for s 3 k and any  BE.^, , 

P D ~ ~ , ~ ~  ,..,, ;'snB(Ail,i 2 2 2 2 2 2 i k 1  

1 if ii = i, ( 1  = 1, 2, ..., k) and Dii,ii ,..., ibn B E & + ;  

O if, for some 0 < 1 < k, ii # i l  or Dii,ii ..... i; B4 d + 

and 

- p ~ i i . i 1 2  ,..., i;nB tA i l . i 2  ...., ik)' 

Now, by (6), for any BE d+ we have 

(I6) p(B) PB (Ai1, i2 , . . . , ik)  

= P(CX~Ail , i2. . . . , ikl lB) P ( B ) .  

Let F be. a closed subset of S and 



Conuergence in probability 23 1 

m 

It is obvious that A, 3 A,,, 3 F for n = 1, 2,  . . . and n A, = F .  Hence 
n= 1 

by the .continuity axiom and (15) 

pB (F) = lim pB (A3 = lim P ([AT E A,] I B) = P ( [ X  E FI I B) 
n-w n+m 

and, by well known property of measure, 

pB(A)=P([X~A]lB) for every A E ~  

THEOREM 2. Lee {X,; n 3 1) be a stable sequence of' r.e. and 

(17) lim P([X,E AIIB) = pB(A) for B E  d+ and A€%. 
n+m 

If the measures ~lg, B E  d+,  sntisjy condition (II), then there exists an r.e. 

X such that x,Z X ,  n- t  a. 
Proof.  It is easy to see that the measure pB, BE dl+, satisfy condition 

(I). By Theorem 1 and (17) there exists an r.e. X such that 

Hence Iim L(Qx,, Q3 = 0 for every measure Q defined by 
n + a  

Q(D)=[P(DB)+P(D)]/2, B E & + .  

By (5), X, 5 X, n -+ co, which completes the proof of Theorem 2. 
Let QA(B) = p,(A) P(B). It is well known that QA(.) is absolutely 

continuous measure with respect to P and 

where OIA denotes density of sequence (X,, n 2 1). 
As a consequence of Theorem 2 we have 
THEOREM 3. A stable sequence (X,, n 2 1) of r.e. converges in probability 

to an r.e. X iff 
< 

1 for u~ DA, 

for every A E 98. 
Pro  of. Let, for every A E  23, 

1 for O E D ~ ,  
QA (4 = 0 form$DA. 

Then 
QA(B) = l a A d P  = P(DA n B) = P(DAIB)P(Bf:= pB(A)P(B). 

B 



pB satisfies (TI). Indeed, if 0 < pB(A) = P(DAJB), then there exists a 
subset B' = DA n 3 of B such that 

/lB'(A) = P(DAIB') = 1. 

Moreover, we know that (I) is satisfied if (X, ,n  3 1) is stable. Therefore, 
by Theorem 2, X, 5 X, n -t m. 

Assume now that, for some A E  9?, B, = (w:  0 < a,(w) < 1) and 
P(B,) > 0. Then, for every 3 c B,, B E  d+ ,  we have 

0 < Q A  (Bo) = j' dP < P(Bo) 
50 

and 
Q < Q A ( B ) = f i ( A ) P ( B ) = J ~ d P < P ( B ) ,  

B 

P 
*which proves that ,uB(A) < 1.  Now the assumption that X, -+ X, n + Q, 

Ieads to the contradiction condition (11). This completes the proof of 
Theorem 3. 
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