ON SOME CRITERION OF CONVERGENCE IN PROBABILITY

BY
WIESLAW ZIE®B (Lublin)

4
Abstract. Let (Ω, \mathscr{A}, P) be a probability space. (S, ϱ) denotes a metric space, and \mathscr{B} stands for the σ-field generated by open sets of S. The set S is assumed to be a separable and complete space. A sequence $\left\{X_{n}, n \geqslant 1\right\}$ of random elements, defined on a probability space (Ω, \mathscr{A}, P) taking values in S, is called stable if for every $B \in \mathscr{A}$, with $P(B)>0$, there exists a probability measure μ_{B} such that

$$
\lim _{n \rightarrow \infty} P\left(\left[X_{n} \in A\right] \mid B\right)=\mu_{B}(A)
$$

There are given conditions concerning the set $\mathscr{P}_{\mathscr{A}}(S)$ $=\left\{\mu_{B}, B \in \mathscr{A}\right\}$ of probability measures, under which there exists a random element X such that the sequence $\left\{X_{n}, n \geqslant 1\right\}$ of random elements converges in probability to X.

Let \mathscr{X} be the set of all random elements (r.e.):

$$
\mathscr{X}=\left\{X: \Omega \rightarrow S ; X^{-1}(A) \in \mathscr{A}, A \in \mathscr{B}\right\} .
$$

By $P_{X}(A)=P([X \in A]), A \in \mathscr{B}$, we denote the distribution function of r.e. X. Let $\mathscr{A}_{+}=\{B \in \mathscr{A}: P(B)>0\}$ and

$$
A^{\delta}=\left\{x: d(x, A)=\inf _{y \in A} \varrho(x, y)<\delta\right\}
$$

On the set $\mathscr{P}(S)$ of probability measures, defined on (S, \mathscr{B}),
(1) $L(\tau, v)=\inf \left\{\varepsilon>0: v(A) \leqslant \tau\left(A^{\varepsilon}\right)+\varepsilon\right.$ and $\left.\tau(A) \leqslant v\left(A^{\varepsilon}\right)+\varepsilon, A \in \mathscr{B}\right\}$
denotes the Lévy-Prohorov metric, where $\tau, v \in \mathscr{P}(S)$. Convergence in this metric and weak convergence coincide.

Let

$$
\begin{equation*}
r(X, Y)=\inf \{\varepsilon>0: P[\varrho(X, Y)>\varepsilon]<\varepsilon\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{1}(X, Y)=E \frac{\varrho(X, Y)}{1+\varrho(X, Y)} \tag{3}
\end{equation*}
$$

where $E(\cdot)$ denotes the mean value, be two metrics introduced in the space \mathscr{X}. Convergences with respect to r and $r_{P_{1}}$ are equivalent to each other and to the convergence in probability ($X_{n} \xrightarrow{P} X, n \rightarrow \infty$) [3]. It is known [2] that $L\left(P_{X}, P_{Y}\right) \leqslant r(X, Y)$. Hence the convergence in probability implies the weak convergence.

Definition 1 . A sequence $\left\{X_{n}, n \geqslant 1\right\}$ of r.e. is called stable if, for every $B \in \mathscr{A}_{+}$, there exists a probability measure μ_{B} such that

$$
\lim _{n \rightarrow \infty} P\left(\left[X_{n} \in A\right] \mid B\right)=\mu_{B}(A) \quad \text { for every } A \in \mathscr{C}_{\mu_{B}}=\left\{A \in \mathscr{B}: \mu_{B}(\partial A)=0\right\}
$$

where ∂A denotes the boundary of A and $P(D \mid B)=P(D \cap B) / P(B)$. In what follows we suppose that $P(A \mid B) \equiv 0$ and $\mu_{B}(A) \equiv 0$, whenever $P(B)=0$, $B \in \mathscr{A}$.

In the special case, where $\mu_{B}(A)=\mu(A)$ for every $B \in \mathscr{A}_{+}$, the sequence $\left\{X_{n}, n \geqslant 1\right\}$ of r.e. is called mixing with density μ. A survey of stable and mixing sequences of r.e. can be found in [1] and [6].

It is well known [2] that $X_{n} \xrightarrow{P} X, n \rightarrow \infty$, iff

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left[X_{n} \in A\right]-[X \in A]\right)=0 \quad \text { for every } A \in \mathscr{\mathscr { C }}_{P_{X}} \tag{4}
\end{equation*}
$$

where $A-B$ denotes the symmetric difference of A and B.
On can prove (cf. [4], [8]) that

$$
\begin{equation*}
X_{n} \xrightarrow{P} X, n \rightarrow \infty, \text { iff } L\left(Q_{x_{n}}, Q_{X}\right) \rightarrow 0, n \rightarrow \infty \tag{5}
\end{equation*}
$$

for every probability measure Q defined on (Ω, \mathscr{A}) by

$$
Q(D)=(P(D \mid B)+P(D)) / 2, \quad B \in \mathscr{A}_{+}
$$

Lemma 1. If a sequence $\left\{X_{n}, n \geqslant 1\right\}$ of r.e. converges in probability to an r.e. X, then $\left\{X_{n}, n \geqslant 1\right\}$ is stable.

Proof. If $X_{n} \xrightarrow{P} X, n \rightarrow \infty$, then, for every $B \in \mathscr{A}_{+}$,

$$
X_{n} \xrightarrow{P_{B}} X, n \rightarrow \infty, \quad \text { where } P_{B}(\cdot)=P(\cdot \mid B)
$$

Hence

$$
P\left(\left[X_{n} \in A\right] \mid B\right) \rightarrow P([X \in A] \mid B), \quad n \rightarrow \infty
$$

for every $A \in \mathscr{C}_{P_{X \mid B}}$, which implies the stability of the sequence $\left\{X_{n}, n \geqslant 1\right\}$ of r.e.

Now we give conditions concerning the set $\mathscr{P}_{\mathscr{A}}(S)=\left\{\mu_{B}, B \in \mathscr{A}\right\}$ of probability measures under which there exists a random element X such that the sequence $\left\{X_{n}, n \geqslant 1\right\}$ of r.e. converges in probability to X.

Lemma. Let X and Y be r.e. such that, for all B,

$$
P([X \in A] \mid B)=P([Y \in A] \mid B) \quad \text { for every } A \in \mathscr{B}
$$

Then $X=Y$ almost surely (a.s.).

Proof. If $P([Y \in A])>0$, then, by

$$
P([X \in A] \mid[Y \in A])=P([Y \in A] \mid[Y \in A])=1,
$$

we have

$$
P([X \in A] \cap[Y \in A])=P([X \in A])=P([Y \in A])
$$

Hence $P([X \in A]-[Y \in A])=0$, which implies that $X=Y$ a.s. as S is a separable space.

For every $X \in \mathscr{X}$ take the set $\mathscr{P}_{\mathscr{A}_{+}}(S)=\left\{\mu_{B}, B \in \mathscr{A}_{+}\right\}$of probability measures defined on (S, \mathscr{B}) by

$$
\mu_{B}(A)=P([X \in A] \mid B), \quad B \in \mathscr{A}_{+} .
$$

It is easy to see that probability measures belonging to $\mathscr{P}_{\mathscr{A}_{+}}(S)$ satisfy the following conditions:
(I) $P\left(\bigcup_{k=1}^{n} B_{k}\right) \underset{\bigcup_{=1}^{n} B_{k}}{ }(A)=\sum_{k=1}^{n} \mu_{B_{k}}(A) P\left(B_{k}\right)$ for any $B_{1}, B_{2}, \ldots, B_{n} \in \mathscr{A}$ such that $B_{i} \cap B_{j}=\emptyset, i \neq j, A \in \mathscr{B}$.
(II) If $\mu_{B}(A)>0$, then there exists a set $B^{\prime} \subset B, B^{\prime} \in \mathscr{A}_{+}$, such that $\mu_{B^{\prime}}(A)=1$.

It is not difficult to state that probability measures belonging to $\mathscr{P}_{\mathscr{A}_{+}}(S)$, satisfying (I), have the following properties:

$$
\begin{equation*}
P\left(\bigcup_{n=1}^{\infty} B_{n}\right) \mu_{n=1}^{\infty} B_{n}^{\infty}(A)=\sum_{n=1}^{\infty} \mu_{B_{n}}(A) P\left(B_{n}\right) \tag{6}
\end{equation*}
$$

for every sequence $\left\{B_{n}, n \geqslant 1\right\}$ of sets such that $B_{n} \in \mathscr{A}, n \geqslant 1$, and $B_{i} \cap B_{j}$ $=\emptyset$ when $i \neq j$;

$$
\begin{array}{ll}
\mu_{B}(A)=0 \Rightarrow \mu_{B^{\prime}}(A)=0 & \text { for every } B^{\prime} \subset B, B^{\prime} \in \mathscr{A}_{+} \\
\mu_{B}(A)=1 \Rightarrow \mu_{B^{\prime}}(A)=1 & \text { for every } B^{\prime} \subset B, B^{\prime} \in \mathscr{A}_{+} \tag{7}
\end{array}
$$

$$
\begin{align*}
& \left(\mu_{B}(A)=1 \text { and } \mu_{B^{\prime}}(A)=1\right) \Rightarrow \mu_{B \cup B^{\prime}}(A)=1, \quad B, B^{\prime} \in \mathscr{A}_{+} ; \tag{8}\\
& \left(\mu_{B_{n}}(A)=1 \text { and } B_{n} \subset B_{n+1}\right) \Rightarrow \mu_{n=1}^{\infty}(A)=1, \quad B_{n} \in \mathscr{A}_{+}
\end{align*}
$$

Lemma 3. If $\mathscr{P}_{\mathscr{A}_{+}}(S) \doteq\left\{\mu_{B}, B \in \mathscr{A}_{+}\right\}$is a set of probability measures satysfying (I), (II) and such that, for a fixed $A \in \mathscr{B}, \mu_{B}(A)>0$ for some $B \in \mathscr{A}_{+}$, then there exists a set $D_{A}(B) \subset B, D_{A}(B) \in \mathscr{A}_{+}$, such that

$$
\begin{equation*}
\mu_{D_{A^{(B)}}}(A)=1 \tag{10}
\end{equation*}
$$

(11) $\mu_{C}(A)<1$ for every $C \subset B, C \in \mathscr{A}_{+}$, such that $P\left(C \backslash D_{A}(B)\right)>0$,
(12) $\mu_{C}(A)=0$ for every $C \subset B, C \in \mathscr{A}_{+}$, such that $P\left(C \cap D_{A}(B)\right)=0$,
and

$$
\begin{equation*}
\mu_{B}(A)=P\left(D_{A}(B)\right) \tag{13}
\end{equation*}
$$

Proof. Let

$$
\alpha_{A}=\sup \left\{P(C): C \subset B, C \in \mathscr{A}_{+} \text {and } \mu_{C}(A)=1\right\}, \quad A \in \mathscr{B} .
$$

Then there exists a sequence of sets $C_{n} \in \mathscr{A}_{+}, C_{n} \subset B, n=1,2, \ldots$, such that $\mu_{C_{n}}(A)=1$ and $P\left(C_{n}\right) \rightarrow \alpha_{A}, n \rightarrow \infty$. Write

$$
C_{n}^{\prime}=\bigcup_{k=1}^{n} C_{k} .
$$

Now, by (8), $\mu_{C_{n}^{\prime}}(A)=1$ and, by (9),

$$
\mu_{\bigcup_{n=1}^{\infty} c_{n}}(A)=\mu_{n=1}^{\infty} c_{n}^{\prime}(A)=1 .
$$

Putting $D_{A}(B)=\bigcup_{n=1}^{\infty} C_{n}$, we get (10). Moreover, we see that $P\left(D_{A}(B)\right)$ $=\alpha_{A}$.

To prove (11) assume that $\mu_{C}(A)=1$, whenever $P\left(C \backslash D_{A}(B)\right)>0, C \subset B$. Then, by assumption (I), $\mu_{C \backslash D_{A}(B)}(A)=1$. Moreover, in view of (8), we have $\mu_{C \cup D_{A}(B)}(A)=1$, which with $\left.P\left(C \backslash D_{A} B\right)\right)>0$ proves that $P\left(C \cup D_{A}(B)\right)>\alpha_{A}$ and contradicts the definition of α_{A}.

To prove (12) assume that $\mu_{C}(A)>0$, whenever $P\left(C \cap D_{A}(B)\right)=0$, $C \subset B, C \in \mathscr{A}_{+}$. By (II) there exists a set $C^{\prime} \subset C, C^{\prime} \in \mathscr{A}_{+}$, such that $\mu_{C^{\prime}}(A)$ $=1$ and, moreover, $P\left(C^{\prime} \cap D_{A}(B)\right)=0$. Hence, by (8) and (10), $\mu_{C \cup D_{A}(B)}(A)$ $=1$ and $P\left(C \cup D_{A}(B)\right)>\alpha_{A}$ as $P\left(D_{A}(B)\right)=\alpha_{A}$ and $P\left(C \backslash D_{A}(B)\right)>0$, which contradicts the definition of α_{A}.
(13) follows from (6), (10) and (12):

$$
\begin{gathered}
\mu_{B}(A)=\mu_{D_{A}(B)}(A) P\left(D_{A}(B)\right)+\mu_{B \backslash D_{A}(B)}(A) P\left(B \backslash D_{A}(B)\right) \\
=\mu_{D_{A}(B)}(A) P(D(B))=P\left(D_{A}(B)\right),
\end{gathered}
$$

which completes the proof.
In what follows D_{A} stands for $D_{A}(\Omega)$.
Lemma 4. Let $\mathscr{P}_{\mathscr{A}_{+}}(S)$ be a set of probability measures of Lemma 3. Suppose that $\left\{A_{i}, i \geqslant 1\right\}$ is a sequence of sets such that $A_{i} \in \mathscr{B}$, and $\mu_{\Omega}\left(A_{i}\right)>0$, $i \geqslant 1$. Then there exists a sequence $\left\{D_{A_{i}}, i \geqslant 1\right\}$ such that $D_{A_{i}} \in \mathscr{A}_{+}, i \geqslant 1$, and the following conditions hold:
(a)

$$
\begin{aligned}
\mu_{\Omega}\left(A_{i} \cap A_{j}\right) & =0 \Rightarrow P\left(D_{A_{i}} \cap D_{A_{j}}\right)=0 \\
\mu_{\Omega}\left(A_{i} \backslash A_{j}\right) & =0 \Rightarrow P\left(D_{A_{i}} \backslash D_{A_{j}}\right)=0
\end{aligned}
$$

(b)
(c) if $\mu_{\Omega}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=1$ for $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$, then $P\left(\bigcup_{i=1}^{\infty} D_{A_{i}}\right)=1$.

Proof. (a) From Lemma 3 we conclude that there exist $D_{A_{i}}$ and $D_{A_{j}}$ such that $\mu_{D_{A_{i}}}\left(A_{i}\right)=1$ and $\mu_{D_{A_{j}}}\left(A_{j}\right)=1$. By the assumption $\mu_{\Omega}\left(A_{i} \cap A_{j}\right)=0$ and (7) we have $\mu_{D_{A_{j}}}\left(A_{i} \cap A_{j}\right)=0$, whence $\mu_{D_{A_{j}}}\left(A_{i}\right)=0$. Using once more (7) we conclude that $\mu_{\boldsymbol{D}_{A_{i}} \cap D_{A_{j}}}\left(A_{i}\right)=1$ and $\mu_{\boldsymbol{D}_{A_{i} \cap D_{A_{j}}}}\left(A_{i}\right)=0$. Therefore $D_{A_{i}} \cap D_{A_{j}} \notin \mathscr{A}_{+}$, which proves that $P\left(D_{A_{i}} \cap D_{A_{j}}\right)=0$.
(b) follows from (a).
(c) By (13) and (a) we have

$$
1=\mu_{\Omega}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu_{\Omega}\left(A_{i}\right)=\sum_{i=1}^{\infty} P\left(D_{A_{i}}\right)=P\left(\bigcup_{i=1}^{\infty} D_{A_{i}}\right) .
$$

Theorem 1. Let $\mathscr{P}_{\mathscr{A}_{+}}(S)=\left\{\mu_{B}, B \in \mathscr{A}_{+}\right\}$be a set of probability measures. If (I) and (II) are fulfield, then there exists an r.e. X such that

$$
\mu_{B}(A)=P([X \in A] \mid B) .
$$

Proof. Let $\left\{A_{i_{1}, i_{2}, \ldots, i_{k}} ; i_{s} \in N, s=1,2, \ldots, k\right\}$ be the class of Borel subsets of S satisfying the following conditions:

$$
\begin{equation*}
A_{i_{1}, i_{2}, \ldots, i_{k}} \cap A_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{k}}=\emptyset \quad \text { for } i_{k} \neq i_{k}^{\prime} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\bigcup_{i_{k}=1}^{\infty} A_{i_{1}, i_{2}, \ldots, i_{k}}=A_{i_{1}, i_{2}, \ldots, i_{k-1}}, \quad \bigcup_{i_{1}=1}^{\infty} A_{i_{1}}=S ; \tag{2}
\end{equation*}
$$

$\left(\mathrm{W}_{3}\right) \quad d\left(A_{i_{1}, i_{2}, \ldots, i_{k}}\right) \leqslant 1 / 2^{k}, \quad$ where $\quad d(A)=\sup \{\varrho(x, y): x, y \in A\} ;$

$$
\begin{equation*}
\left.\mu_{\Omega}\left(\partial A_{i_{1}, i_{2}}, \ldots, i_{k}\right)=0 \quad \text { (cf. } 7\right) \tag{4}
\end{equation*}
$$

From every set $A_{i_{1}, i_{2}, \ldots, i_{k}}$ we can choose an element $x_{i_{1}, i_{2}, \ldots, i_{k}}$ and define r.e. X_{k} by the formula

$$
\begin{equation*}
X_{k}(\omega)=x_{i_{1}, i_{2}, \ldots, i_{k}} \quad \text { for } \omega \in D_{A_{i_{1}}, i_{2}, \ldots, i_{k}}:=D_{i_{1}, i_{2}, \ldots, i_{k}} \tag{14}
\end{equation*}
$$

The definition of X_{k} is correct on the basis of Lemmas 3 and 4.
Using the assumptions we see that

$$
\varrho\left(X_{k}, X_{m}\right) \leqslant 1 / 2^{k} \quad \text { a.s. for } m \geqslant k .
$$

Because the metric space is complete, there exists an r.e. X such that

$$
X_{k} \rightarrow X \text { a.s., } \quad k \rightarrow \infty .
$$

We now prove that

$$
\begin{equation*}
\mu_{B}(A)=P([X \in A] \mid B) \quad \text { for } B \in \mathscr{A}_{+} \text {and } A \in \mathscr{B} . \tag{15}
\end{equation*}
$$

First we show that (15) holds for $A=A_{i_{1}, i_{2}, \ldots, i_{k}}$ and $B=D_{i_{1}, i_{2}}, \ldots, i_{s} \in \mathscr{A}+$. The sets $A_{i_{1}, i_{2}, \ldots, i_{k}}$ are continuity sets of the measure μ_{Ω}, i.e. $A_{i_{1}, i_{2}, \ldots,,_{k}} \in \mathscr{C}_{\mu_{\Omega}}$. If $A \in \mathscr{C}_{\mu_{\Omega}}$, then for every $\varepsilon>0$ there exists an n_{0} such that

$$
\mu_{\Omega}\left((\partial A)^{1 / 2^{n} 0}\right)<\varepsilon .
$$

Let $K=\left\{i_{1}, i_{2}, \ldots, i_{n_{0}+2} ; A_{i_{1}, i_{2}, \ldots, i_{n_{0}+2}} \dot{\cap}(\partial A)^{1 / 2^{n_{0}+2}} \neq \varnothing\right\}$.
Then

$$
\begin{gathered}
\partial A \subset \bigcup_{i_{1}, i_{2}, \ldots, i_{n_{0}+2} \in K} A_{i_{1}, i_{2}, \ldots, i_{n_{0}+2}} \subset(\partial A)^{1 / 2^{n_{0}}}, \\
{\left[X_{n_{0}+2} \in \bigcup_{i_{1}, i_{2}, \ldots, i_{n_{0}+2} \in K} A_{i_{1}, i_{2}, \ldots, i_{n_{0}+2}}\right]=\underset{i_{1}, i_{2}, \ldots, i_{n_{0}+2} \in K}{\bigcup} D_{i_{1}, i_{2}, \ldots, i_{n_{0}+2}}}
\end{gathered}
$$

and

$$
P\left([X \in \partial A] \cap\left[X_{n_{0}+2} \in \bigcup_{i_{1}, i_{2}, \ldots, i_{n_{0}+2} \in K} A_{i_{1}, i_{2}, \ldots, i_{n_{0}+2}}\right]\right)=P([X \in \partial A])
$$

Hence

$$
\begin{aligned}
& P([X \in \partial A]) \leqslant P\left(\bigcup_{i_{1}, i_{2}, \ldots, i_{n_{0}}+2 \in K} D_{i_{1}, i_{2}, \ldots, i_{i_{0}}+2}\right) \\
&=\mu_{\Omega}\left(\bigcup_{i_{1}, i_{2}, \ldots, i_{n_{0}}+2 \in K} A_{i_{1}, i_{2}, \ldots, i_{n_{0}+2}}\right) \leqslant \mu_{\Omega}\left((\partial A)^{1 / 2^{n_{0}}}\right),
\end{aligned}
$$

which proves that $A \in \mathscr{C}_{P_{X}}$. Therefore, we have $A_{i_{1}, i_{2}, \ldots, i_{k}} \in \mathscr{C}_{P_{X}}$.
Using properties of measure μ_{B} we see that, for $s \geqslant k$ and any $B \in \mathscr{A}_{+}$,

$$
\begin{aligned}
& \mu_{D_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{s}^{\prime} \cap B}}\left(A_{i_{1}, i_{2}, \ldots, i_{k}}\right) \\
& \quad=\left\{\begin{array}{l}
1 \text { if } i_{l}^{\prime}=i_{l}(l=1,2, \ldots, k) \text { and } D_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{s}^{\prime}} \cap B \in \mathscr{A}_{+} ; \\
0 \text { if, for some } 0 \leqslant l \leqslant k, i_{l}^{\prime} \neq i_{l} \text { or } D_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{s}^{\prime}} \cap B \notin \mathscr{A}_{+}
\end{array}\right.
\end{aligned}
$$

and

$$
\left.\left.\begin{array}{rl}
P\left(\left[X \in A_{i_{1}, i_{2}}, \ldots, i_{k}\right.\right.
\end{array}\right] \mid D_{i_{1}^{\prime}, i_{2}, \ldots, i_{s}^{\prime}} \cap B\right)=\lim _{n \rightarrow \infty} P\left(\left[X_{n} \in A_{i_{1}, i_{2}, \ldots, i_{k}}\right] \mid D_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{s}^{\prime}} \cap B\right) \quad \begin{aligned}
& =P\left(D_{i_{1}, i_{2}, \ldots, i_{k}} \mid D_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{s}^{\prime}} \cap B\right) \\
& =\mu_{D_{i_{1}^{\prime}, i_{2}}, \ldots, i_{s}^{\prime} \cap B}\left(A_{i_{1}, i_{2}, \ldots, i_{k}}\right)
\end{aligned}
$$

Now, by (6), for any $B \in \mathscr{A}_{+}$we have

$$
\begin{align*}
& P(B) \mu_{B}\left(A_{i_{1}, i_{2}, \ldots, i_{k}}\right) \tag{16}\\
& \quad=P(B) \mu_{B \cap_{i_{1}, i_{2}^{\prime}}, \ldots, i_{k}} D_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{k}}\left(A_{i_{1}, i_{2}, \ldots, i_{k}}\right) \\
& \quad=\sum_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{k}^{\prime}} P\left(\left[X \in A_{i_{1}, i_{2}, \ldots, i_{k}}\right] \mid B \cap D_{i_{1}^{\prime}, i_{2}, \ldots, i_{k}}\right) P\left(B \cap D_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{k}}\right) \\
& \quad=P\left(\left[X \in A_{i_{1}, i_{2}, \ldots, i_{k}}\right] \mid B\right) P(B) .
\end{align*}
$$

Let F be. a closed subset of S and

$$
A_{n}=\bigcup_{\left\{i_{1}, i_{2}, \ldots, i_{n}: A_{\left.i_{1}, i_{2}, \ldots, i_{n} \cap F \neq \varnothing\right\}}\right.}^{U} A_{i_{1}, i_{2}, \ldots, i_{n}} .
$$

It is obvious that $A_{n} \supset A_{n+1} \supset F$ for $n=1,2, \ldots$ and $\bigcap_{n=1}^{\infty} A_{n}=F$. Hence by the continuity axiom and (15)

$$
\mu_{B}(F)=\lim _{n \rightarrow \infty} \mu_{B}\left(A_{n}\right)=\lim _{n \rightarrow \infty} P\left(\left[X \in A_{n}\right] \mid B\right)=P([X \in F] \mid B)
$$

and, by well known property of measure,

$$
\mu_{B}(A)=P([X \in A] \mid B) \quad \text { for every } A \in \mathscr{B}
$$

Theorem 2. Let $\left\{X_{n} ; n \geqslant 1\right\}$ be a stable sequence of r.e. and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left[X_{n} \in A\right] \mid B\right)=\mu_{B}(A) \quad \text { for } B \in \mathscr{A}_{+} \text {and } A \in \mathscr{C}_{\mu_{B}} \tag{17}
\end{equation*}
$$

If the measures $\mu_{B}, B \in \mathscr{A}_{+}$, satisfy condition (II), then there exists an r.e. X such that $X_{n} \xrightarrow{P} X, n \rightarrow \infty$.

Proof. It is easy to see that the measure $\mu_{B}, B \in \mathscr{A}_{+}$, satisfy condition (I). By Theorem 1 and (17) there exists an r.e. X such that

$$
\lim _{n \rightarrow \infty} P\left(\left[X_{n} \in A\right] \mid B\right)=P([X \in A] \mid B), \quad B \in \mathscr{A}_{+}, A \in \mathscr{C}_{P_{X}}
$$

Hence $\lim _{n \rightarrow \infty} L\left(Q_{x_{n}}, Q_{x}\right)=0$ for every measure Q defined by

$$
Q(D)=[P(D B)+P(D)] / 2, \quad B \in \mathscr{A}_{+}
$$

By (5), $X_{n} \xrightarrow{P} X, n \rightarrow \infty$, which completes the proof of Theorem 2.
Let $Q_{A}(B)=\mu_{B}(A) P(B)$. It is well known that $Q_{A}(\cdot)$ is absolutely continuous measure with respect to P and

$$
Q_{A}(B)=\int_{B} \alpha_{A} d P
$$

where α_{A} denotes density of sequence $\left\{X_{n}, n \geqslant 1\right\}$.
As a consequence of Theorem 2 we have
Theorem 3. A stable sequence $\left\{X_{n}, n \geqslant 1\right\}$ of r.e. converges in probability to an r.e. X iff

$$
\alpha_{A}(\omega)= \begin{cases}1 & \text { for } \omega \in D_{A} \\ 0 & \text { for } \omega \notin D_{A}\end{cases}
$$

for every $A \in \mathscr{B}$.
Proof. Let, for every $A \in \mathscr{B}$,

$$
\alpha_{A}(\omega)= \begin{cases}1 & \text { for } \omega \in D_{A} \\ 0 & \text { for } \omega \notin D_{A}\end{cases}
$$

Then

$$
Q_{A}(B)=\int_{B} \alpha_{A} d P=P\left(D_{A} \cap B\right)=P\left(D_{A} \mid B\right) P(B):=\mu_{B}(A) P(B)
$$

μ_{B} satisfies (II). Indeed, if $0<\mu_{B}(A)=P\left(D_{A} \mid B\right)$, then there exists a subset $B^{\prime}=D_{A} \cap B$ of B such that

$$
\mu_{B^{\prime}}(A)=P\left(D_{A} \mid B^{\prime}\right)=1
$$

Moreover, we know that (\mathbb{I}) is satisfied if $\left\{X_{n}, n \geqslant 1\right\}$ is stable. Therefore, by Theorem $2, X_{n} \xrightarrow{P} X, n \rightarrow \infty$.

Assume now that, for some $A \in \mathscr{B}, B_{0}=\left\{\omega: 0<\alpha_{A}(\omega)<1\right\}$ and $P\left(B_{0}\right)>0$. Then, for every $B \subset B_{0}, B \in \mathscr{A}_{+}$, we have

$$
0<Q_{A}\left(B_{0}\right)=\int_{B_{0}} \alpha_{A} d P<P\left(B_{0}\right)
$$

and

$$
0<Q_{A}(B)=\mu_{B}(A) P(B)=\int_{B} \alpha_{A} d P<P(B)
$$

-which proves that $\mu_{B}(A)<1$. Now the assumption that $X_{n} \xrightarrow{p} X, n \rightarrow \infty$, leads to the contradiction condition (II). This completes the proof of Theorem 3.

Acknowledgement. The autor wishes to express his gratitude to the referee for valuable remarks and comments improving the previous version of this paper.

REFERENCES

[1] D. J. Aldous and G. K. Eagleson, On mixing and stability of limit theorems, Ann. Probability 6 (1978), p. 325-331.
[2] P. Billingsley, Convergence of probability measures, New York 1968.
[3] D. Dugue, Statistique théorique et appliguée, Masson et C^{ie}, Paris 1958.
[4] P. Fernandeż, A note on convergence in probability, Boletim Soc. Bras. Mat. 3 (1972), p. 13-16.
[5] R. Fischler, Stable sequences of random variables and the weak convergence of the associated empirical measures, Sankhya, A 33 (1971), p. 67-72.
[6] A. Renyi, On stable sequences of events, Sankhya, A 25 (1963), p. 293-302.
[7] A. V. Skorohod, Limit theorems for stochastic processes, Theor. Probability Appl. 1 (1956), p. 289-319.
[8] D. Szynal and W. Zięba, On some type of convergence in law, Bull. Acad. Polon. Sci. (1974), p. 1143-1149.

Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
20-031 Lublin, Poland
Received on 2. 12. 1983

