RANDOM WALKS WITH RANDOM INDICES AND NEGATIVE DRIFT CONDITIONED TO STAY POSITIVE

BY

A. SZUBARGA and D. SZYNAL (Lublin)

Abstract. Let $\left\{X_{k}, k \geqslant 1\right\}$ be a sequence of independent, identically distributed random variables with $E\left|X_{1}\right|=\mu<0$, and let $\left\{N_{n}, n \geqslant 0\right\}, N_{0}=0$ a.s., be a sequence of positive integer-valued random variables. Form the random walk $\left\{S_{N_{n}}, n \geqslant 0\right\}$ by setting S_{0} $=0, S_{N_{n}}=X_{1}+\ldots+X_{N_{n}}, n \geqslant 1$.

The main result in this paper shows (under appropriate conditions on $\left\{N_{n}, n \geqslant 0\right\}$ and $\left\{X_{k}, k \geqslant 1\right\}$) that $S_{N_{n}}$ conditioned on [$S_{1}>0, \ldots, S_{N_{n}}>0$] converges weakly to a random variable S^{*} considered by Iglehart [4].

1. Introduction. We assume that $\left\{X_{k}, k \geqslant 1\right\}$ are the coordinate functions defined on the product space

$$
(\Omega, \mathscr{A}, P)={\underset{K}{X}}_{\infty}^{\infty}(\boldsymbol{R}, \mathscr{B}, \pi)
$$

where $R=(-\infty, \infty), \mathscr{B}$ is the σ-field of Borel sets of R, and π is the common probability measure of the $X_{k}{ }^{\prime}$ s. If $\Lambda_{n}=\left[S_{1}>0, \ldots, S_{n}>0\right]$, then we let $\left(\Lambda_{n}, \Lambda_{n} \cap \mathscr{A}, P_{n}\right)$ be the trace of (Ω, \mathscr{A}, P) on Λ_{n}, where $\Lambda_{n} \cap \mathscr{A}$ $=\left\{\Lambda_{n} \cap A, A \in \mathscr{A}\right\} \quad$ and $\quad P_{n}[A]=P[A] / P\left[\Lambda_{n}\right]$ for $A \in \Lambda_{n} \cap \mathscr{A}$. The expectation with respect to P_{n} is denoted by $E_{n}\{\cdot\}$. Let S_{n}^{*} denote the restriction of S_{n} to Λ_{n}, let

$$
r_{n}=P\left[S_{1}>0, \ldots, S_{n}>0\right]
$$

and, for $u \geqslant 0$, set

$$
f_{n}(u)=E_{n}\left\{\exp \left(-u S_{n}^{*}\right)\right\}=E\left\{\exp \left(-u S_{n}\right) \mid I\left[S_{1}>0, \ldots, S_{n}>0\right]\right\},
$$

where $I[\cdot]$ denotes the indicator function; in the same way, for $\left\{N_{n}, n \geqslant 0\right\}$, define

$$
\hat{r}_{n}=P\left[S_{1}>0, \ldots, S_{N_{n}}>0\right]
$$

and, for $u \geqslant 0$,

$$
\hat{f}_{n}(u)=E\left\{\exp \left(-u S_{N_{n}}\right) \mid I\left[S_{1}>0, \ldots, S_{N_{n}}>0\right]\right\}
$$

where $\left\{N_{n}, n \geqslant 0\right\}, N_{0}=0$ a.s., is a sequence of positive integer-valued random variables.

We suppose that $\left\{X_{k}, k \geqslant 1\right\}$ is a sequence of independent, identically distibuted random variables and that the distribution of X_{1} satisfies the following conditions:
(1) $-\infty \leqslant E\left\{X_{1}\right\}=\mu<0$;
(2) $\Theta(s)=E\left\{\exp \left(s X_{1}\right)\right\}$ converges for real $s \in[0, a)$ for some $a>0$;
(3) $\Theta(s)$ attains its infimum at a point $\tau, 0<\tau<a$, where $\Theta(\tau)=\gamma<1$ and $\Theta^{\prime}(\tau)=0$;
(4) if X_{1} is a lattice, then $P\left[X_{1}=0\right]>0$.

It has been proved by Bahadur and Rao [1] Theorem 1 that conditions (1) -(4) imply

$$
\begin{equation*}
P\left[S_{n}>0\right] \sim(2 \pi n)^{-1 / 2} \gamma^{n}(\alpha \tau)^{-1}, \quad n \rightarrow \infty \tag{5}
\end{equation*}
$$

where $\alpha=\Theta^{\prime \prime}(\tau) / \gamma, 0<\alpha<\infty$.
In the same way we have

$$
\begin{equation*}
E\left\{\exp \left(-u S_{n}\right): S_{n}>0\right\} \sim(2 \pi \alpha)^{-1 / 2} \gamma^{n}(\alpha(\tau+u))^{-1}, \quad n \rightarrow \infty \tag{6}
\end{equation*}
$$

Put now

$$
M=\left[(2 \pi)^{1 / 2} \alpha \tau\right]^{-1} \exp \left\{\sum_{n=1}^{\infty}\left(\gamma^{-n / n^{3 / 2}}\right) P\left[S_{n}>0\right]\right\}
$$

which is finite by (5). Under assumptions (1) -(4) Iglehart [4] has proved that

$$
\begin{equation*}
r_{n} \sim\left(\gamma^{n} / n^{3 / 2}\right) M \tag{7}
\end{equation*}
$$

and, for $u \geqslant 0$
(8) $\lim _{n \rightarrow \infty} f_{n}(u)=[\tau /(\tau+u)] \exp \left\{\sum_{n=1}^{\infty}\left[\gamma^{-n} / n^{3 / 2}\right]\left[E\left\{\exp \left(-u S_{n}^{+}\right)\right\}-1\right]\right\} \equiv f(u)$.
2. Results. Proofs of theorems 1-3 are given in Section 3.

Theorem 1. Suppose that conditions (1)-(4) are satisfied. If $\left\{N_{n}, n \geqslant 0\right\}$, $N_{0}=0$ a.s., is a sequence of positive integer-valued random variables independent of $\left\{X_{k}, k \geqslant 1\right\}$ and $\left\{\alpha_{n}, n \geqslant 1\right\}$ is a sequence of positive real numbers such that for any given $\varepsilon>0$

$$
\begin{equation*}
P\left[\left|N_{n} / \alpha_{n}-\lambda\right| \geqslant \varepsilon\right]=\mathrm{o}\left(E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right)\right) \tag{9}
\end{equation*}
$$

with $\alpha_{n} \rightarrow \infty, n \rightarrow \infty$, and λ is a random variable such that

$$
\begin{equation*}
P[\lambda \geqslant a]=1 \quad \text { for a constant } a>0 \tag{10}
\end{equation*}
$$

then for $u \geqslant 0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \hat{f_{n}}(u)=f(u) \tag{11}
\end{equation*}
$$

Remarks. Note that if λ is a degenerate random variable at $a>0$, then (10) is trivially satisfied. Moreover, we note that in general (9) cannot be replaced by the weaker condition $N_{n} / \alpha_{n} \xrightarrow{\text { P. }} a, n \rightarrow \infty$ (P. - in probability) which is used in the random central limit theorem. This fact is established by the following

Example 1. Let $\left\{X_{k}, k \geqslant 1\right\}$ be a sequence of random variables which satisfies (1)-(4) with $\gamma=1 / 2$ and independent of $\left\{N_{n}, n \geqslant 1\right\}$, where N_{n} is as follows:

$$
P\left[N_{n}=1\right]=1 / 2^{n} n^{3 / 2}, \quad P\left[N_{n}=n\right]=1-1 / 2^{n} n^{3 / 2}
$$

Then for any given $\varepsilon>0$

$$
P\left[\left|N_{n} / n-1\right| \geqslant \varepsilon\right]=1 / 2^{n} n^{3 / 2} \rightarrow 0, \quad n \rightarrow \infty
$$

i.e. $N_{n} / n \xrightarrow{\mathrm{P}} 1, n \rightarrow \infty$.

In this case we have

$$
\begin{aligned}
& \hat{r}_{n}=r_{1} P\left[N_{n}=1\right]+r_{n} P\left[N_{n}=n\right] \\
& \sim P\left[X_{1}>0\right] / 2^{n 3 / 2}+M\left(1-1 / 2^{n} n^{3 / 2}\right) / 2^{n} n^{3 / 2}, \quad n \rightarrow \infty
\end{aligned}
$$

Hence, for $u \geqslant 0$ we have

$$
\begin{aligned}
& \hat{f}_{n}(u)=\frac{f_{1}(u) r_{1} / 2^{n} n^{3 / 2}+f_{n}(u) M\left(1-1 / 2^{n} n^{3 / 2}\right) / 2^{n} n^{3 / 2}}{r_{1} / 2^{n} n^{3 / 2}+M\left(1-1 / 2^{n} n^{3 / 2}\right) / 2^{n} n^{3 / 2}} \\
& \rightarrow \frac{f_{1}(u) r_{1}+M f(u)}{r_{1}+M} \neq f(u), \quad n \rightarrow \infty
\end{aligned}
$$

Furthermore, we shall see that, in case where λ is nondegenerated random variable, condition (10) cannot be replaced by $P[\lambda>0]=1$ without changing (9).

Example 2. Let $(\langle 0,1\rangle, \mathscr{B}(\langle 0,1\rangle), P)$ be a probability space, where P is the Lebesgue measure and $\mathscr{B}(\langle 0,1\rangle)$ is the σ-field of Borel subsets of $\langle 0,1\rangle$. Assume that $\left\{X_{k}, k \geqslant 1\right\}$ is a sequence of random variables defined on ($\langle 0,1\rangle, \mathscr{B}(\langle 0,1\rangle)$) and satisfying (1)-(4). Let $\left\{N_{n}, n \geqslant 1\right\}$ be a sequence of random variables independent of $X_{k}, k \geqslant 1$, defined as follows:

$$
N_{n}(\omega)= \begin{cases}1, & \omega \in\langle 0,1 / n\rangle \\ k, & \omega \in\left\langle(k-1) / n^{4}, k / n^{4}\right\rangle, k=n^{3}+1, \ldots, n^{4}\end{cases}
$$

We see that, for any given $\varepsilon>0$,

$$
P\left[\left|N_{n} / n^{4}-\lambda\right| \geqslant \varepsilon\right]=0
$$

for n sufficiently large, where λ is the random variable, uniformly distributed on $\langle 0,1\rangle$.

Iglehart [4] has proved that, for $u \geqslant 0$,

$$
r_{n} f_{n}(u) \sim\left(\gamma^{n} / n^{3 / 2}\right) M_{1}(u)
$$

where

$$
M_{1}(u)=\left[(2 \pi)^{1 / 2} \alpha(\tau+u)\right]^{-1} \exp \left\{\sum_{n=1}^{\infty}\left(\gamma^{-n} / n\right) E\left\{\exp \left(-u S_{n}\right): S_{n}>0\right\}\right\}<\infty
$$

In this case we have, for $u \geqslant 0$,

$$
\begin{aligned}
\hat{f}_{n}(u)=\left(f_{1}(u) r_{1} / n\right. & \left.+\sum_{k=n^{3}+1}^{n^{4}} f_{k}(u) r_{k} / n^{4}\right) / \hat{r}_{n} \\
& =\frac{f_{1}(u) r_{1}+\sum_{k=n^{3}+1}^{n^{4}} f_{k}(u) r_{k} / n^{3}}{r_{1}+\sum_{k=n^{3}+1}^{n^{4}} r_{k} / n^{3}} \rightarrow f_{1}(u) \neq f(u), \quad n \rightarrow \infty,
\end{aligned}
$$

since

$$
\sum_{k=n^{3}+1}^{n^{4}} r_{k} f_{k}(u) / n^{3} \sim\left(1 / n^{3}\right) \sum_{k=n^{3}+1}^{n^{4}}\left(\gamma^{k} / k^{3 / 2}\right) M_{1}(u) \rightarrow 0
$$

and

$$
\sum_{k=n^{3}+1}^{n^{4}}\left(r_{k} / n^{3}\right) \sim\left(1 / n^{3}\right) \sum_{k=n^{3}+1}^{n^{4}}\left(\gamma^{k} / k^{3 / 2}\right) M \rightarrow 0, n \rightarrow \infty
$$

In the case where λ is a nondegenerated random variable which satisfies only $P[\lambda>0]=1$, we have

Theorem 2. Suppose that conditions (1)-(4) are satisfied. If $\left\{N_{n}, n \geqslant 0\right\}$, $N_{0}=0$ a.s., is a sequence of positive integer-valued random variables independent of $\left\{X_{k}, k \geqslant 1\right\}$ and $\left\{\alpha_{n}, n \geqslant 1\right\}$ is a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} \alpha_{n}=\infty$, and

$$
\begin{gather*}
P\left[\left|N_{n} / \alpha_{n}-\lambda\right| \geqslant \varepsilon_{n}\right]=o\left(E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right)\right), \tag{12}\\
P\left[\lambda<2 \varepsilon_{n}\right]=o\left(E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right)\right), \tag{13}
\end{gather*}
$$

then (11) holds, where λ is a positive random variable and $\left\{\varepsilon_{n}, n \geqslant 1\right\}$ is a sequence of positive numbers such that $0<\varepsilon_{n} \rightarrow 0, \alpha_{n} \varepsilon_{n} \rightarrow \infty, n \rightarrow \infty$.

We now establish (11) without the assumption of independence $\left\{X_{k}, k\right.$ $\geqslant 1\}$ and $\left\{N_{n}, n \geqslant 0\right\}$. First we shall give an example which shows that in this case assumptions of type (9) and (12) are not sufficient for (11).

Example 3. Let $\left\{X_{k}, k \geqslant 1\right\}$ be a sequence of independent, identically distributed random variables such that X_{1} is uniformly distributed on $\langle-2,1\rangle$. It can be verified that X_{1} satisfies conditions (1)-(4). Assume that
$\left\{N_{n}, n \geqslant 1\right\}$ is a sequence of positive integer-valued random variables such that

$$
\left[N_{n}=n\right]=\left[X_{n+1} \in\langle-2,0)\right], \quad\left[N_{n}=n+1\right]=\left[X_{n+1} \in\langle 0,1\rangle\right] .
$$

Note that for any given $\varepsilon>0$

$$
P\left[\left|N_{n} / n-1\right| \geqslant \varepsilon\right]=0,
$$

whenever $n>n_{0}=[1 / \varepsilon]$.
Moreover, we see that, for $u \geqslant 0$,

$$
\begin{aligned}
\hat{f}_{n}(u)= & \left\{E \exp \left(-u S_{n}\right) I\left[S_{1}>0, \ldots, S_{n}>0\right] I\left[X_{n+1} \in\langle-2,0)\right]+\right. \\
& +E \exp \left(-u S_{n}\right) I\left[S_{1}>0, \ldots, S_{n}>0\right] \exp \left(-u X_{n+1}\right) \times \\
& \left.\times I\left[X_{n+1} \in\langle 0,1\rangle\right]\right\} /\left\{P\left[S_{1}>0, \ldots, S_{n}>0, X_{n+1} \in\langle-2,0)\right]+\right. \\
& \left.+P\left[S_{1}>0, \ldots, S_{n+1}>0, X_{n+1} \in\langle 0,1\rangle\right]\right\} \\
= & E\left(\exp \left(-u S_{n}\right) I\left[\left[S_{1}>0, \ldots, S_{n}>0\right]\right)\left(2 / 3+\left(1-e^{-u}\right) /(3 u)\right)\right. \\
= & f_{n}(u)\left(2 / 3+\left(1-e^{-u}\right) /(3 u)\right) \rightarrow\left(2 / 3+\left(1-e^{-u}\right) /(3 u)\right) f(u), \quad n \rightarrow \infty, .
\end{aligned}
$$

which proves that assumptions of type (9) and (10) are not sufficient for (11).
When λ is a degenerated random variable, we can prove in the considerated case the following theorem which is in some sense the strongest:

Theorem 3. Suppose that conditions (1)-(4) hold and that $\left\{N_{n}, n \geqslant 0\right\}$, $N_{0}=0$ a.s., is a sequence of positive integer-valued random variables and $\left\{\alpha_{n}, n \geqslant 1\right\}$ is a sequence of positive integer numbers such that $\lim _{n \rightarrow \infty} \alpha_{n}=\infty$. If

$$
\begin{equation*}
P\left[N_{n} \neq \alpha_{n}\right]=\mathrm{o}\left(\gamma^{\gamma n} / \alpha_{n}^{3 / 2}\right), \tag{14}
\end{equation*}
$$

then (11) holds.

3. Proofs of the results.

Proof of Theorem 1. Let $\varepsilon, 0<\varepsilon<a$, be fixed and put $a_{n}=$ $\left[(a-\varepsilon) \alpha_{n}\right]$. By (9), (10) and the assumption $\alpha_{n} \rightarrow \infty, n \rightarrow \infty$, we can choose n sufficiently large such that

$$
\begin{aligned}
0 & \leqslant \sum_{k=1}^{a_{n}} P\left[S_{1}>0, \ldots, S_{k}>0\right] P\left[N_{n}=k\right] \leqslant \sum_{k=1}^{a_{n}} P\left[N_{n}=k\right] \\
& \leqslant P\left[\left|N_{n} / \alpha_{n}-\lambda\right| \geqslant \varepsilon\right]=\mathrm{o}\left(E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right)\right),
\end{aligned}
$$

and at the same time, by (7),

$$
\begin{aligned}
& \sum_{k=a_{n}+1}^{\infty} P\left[S_{1}>0, \ldots, S_{k}>0\right] P\left[N_{n}=k\right] \approx \sum_{k=a_{n}+1}^{\infty}\left(M \gamma^{k} / k^{3 / 2}\right) P\left[N_{n}=k\right] \\
&=M \cdot E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right)-M \sum_{k=1}^{a_{n}} P\left[N_{n}=k\right]
\end{aligned}
$$

But

$$
0 \leqslant M \sum_{k=1}^{a_{n}}\left(\gamma^{k} / k^{3 / 2}\right) P\left[N_{n}=k\right] \leqslant M \sum_{k=1}^{a_{n}} P\left[N_{n}=k\right]=o\left(E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right)\right)
$$

Hence

$$
\begin{equation*}
\hat{r}_{n} \sim M \cdot E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right), \quad n \rightarrow \infty \tag{15}
\end{equation*}
$$

Put now

$$
\begin{equation*}
C_{n, k}=r_{k} P\left[N_{n}=k\right] / \hat{r}_{n}, \quad k \geqslant 1, n \geqslant 1 . \tag{16}
\end{equation*}
$$

We see that $\sum_{k=1}^{\infty} C_{n, k}=1$ and, for fixed k, by (9) and (15)

$$
0 \leqslant C_{n, k} \leqslant \frac{\sum_{k=1}^{a_{n}} P\left[N_{n}=k\right]}{\hat{r}_{n}}=\frac{o\left(E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right)\right)}{M \cdot E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right)} \rightarrow 0, \quad n \rightarrow \infty
$$

which proves that $\left[C_{n, k}\right]_{k=1, \ldots ; n=1, \ldots}$ is a Toeplitz matrix. Therefore, by [5], p. 472 , for $u \geqslant 0$ we have

$$
\hat{f}_{n}(u)=\sum_{k=1}^{\infty} f_{k}(u) C_{n, k} \rightarrow f(u), \quad n \rightarrow \infty
$$

which completes the proof of Theorem 1.
Proof of Theorem 2. By (12) and (13) we have, for sufficiently large n,

$$
\begin{align*}
\hat{r}_{n}=P & {\left[S_{1}>0, \ldots, S_{N_{n}}>0\right] } \tag{17}\\
& =\sum_{k=1}^{\left[\alpha_{n} \varepsilon_{n}\right]} r_{k} P\left[N_{n}=k\right]+\sum_{k=\left[\alpha_{n} \varepsilon_{n}\right]}^{\infty} r_{k} P\left[N_{n}=k\right] \sim M \cdot E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right) .
\end{align*}
$$

One can see that

$$
C_{n, j}=P\left[S_{1}>0, \ldots, S_{j}>0\right] P\left[N_{n}=j\right] / \hat{r}_{n}, \quad n \geqslant 1, j \geqslant 1
$$

is a Toeplitz matrix. Indeed, we have $C_{n, j} \geqslant 0, \sum_{j=1}^{\infty} C_{n, j}=1$, and, by (18), (19) and (17), we get

$$
0 \leqslant C_{n, j} \leqslant \frac{\sum_{k=n}^{\left[\alpha_{n} \varepsilon_{n}\right]} P\left[N_{n}=k\right]}{M \cdot E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right.} \sim \frac{P\left[\left|N_{n} / \alpha_{n}-\lambda\right| \geqslant \varepsilon_{n}\right]+P\left[\lambda \leqslant 2 \varepsilon_{n}\right]}{M \cdot E\left(\gamma^{N_{n}} / N_{n}^{3 / 2}\right)} \rightarrow 0
$$

$n \rightarrow \infty$, as $j \leqslant\left[\varepsilon_{n} \alpha_{n}\right]$ for sufficiently large n. Following the considerations of the proof of Theorem 1 we obtain (11).

Proof of Theorem 3. From (14) we have

$$
\begin{aligned}
& \hat{r}_{n}=P\left[S_{1}>0, \ldots, S_{N_{n}}>0\right]=\sum_{k=1}^{\infty} P\left[S_{1}>0, \ldots, S_{k}>0, N_{n}=k\right] \\
& \quad=P\left[S_{1}>0, \ldots, S_{\alpha_{n}}>0, N_{n}=\alpha_{n}\right]+P\left[S_{1}>0, \ldots, S_{N_{n}}>0, N_{n} \neq \alpha_{n}\right]
\end{aligned}
$$

Hence, by (7), we get

$$
\begin{equation*}
M\left(\gamma^{\alpha_{n}} / \alpha_{n}^{3 / 2}\right)-o\left(\gamma^{\alpha_{n}} / \alpha_{n}^{3 / 2}\right) \leqslant \hat{r}_{n} \leqslant M\left(\gamma^{\alpha_{n}} / \alpha_{n}^{3 / 2}\right)+o\left(\gamma^{\alpha_{n}} / \alpha_{n}^{3 / 2}\right) . \tag{18}
\end{equation*}
$$

Taking into account that, for $u \geqslant 0$,

$$
\begin{aligned}
\hat{r}_{n} \hat{f}_{n}(u)= & E\left\{\exp \left(-u S_{\alpha_{n}}\right) I\left[S_{1}>0, \ldots, S_{\alpha_{n}}>0\right] I\left[N_{n}=\alpha_{n}\right]\right\}+ \\
& +E\left\{\exp \left(-u S_{N_{n}}\right) I\left[S_{1}>0, \ldots, S_{N_{n}}>0\right] I\left[N_{n} \neq \alpha_{n}\right]\right\} \\
= & E\left\{\exp \left(-u S_{\alpha_{n}}\right) I\left[S_{1}>0, \ldots, S_{\alpha_{n}}>0\right]\right\}- \\
& -E\left\{\exp \left(-u S_{\alpha_{n}}\right) I\left[S_{1}>0, \ldots, S_{\alpha_{n}}>0\right] I\left[N_{n} \neq \alpha_{n}\right]\right\}+ \\
& +E\left\{\exp \left(-u S_{N_{n}}\right) I\left[S_{1}>0, \ldots, S_{N_{n}}>0\right] I\left[N_{n} \neq \alpha_{n}\right]\right\},
\end{aligned}
$$

and (14), we have

$$
r_{\alpha_{n}} f_{\alpha_{n}}(u)-\dot{o}\left(\gamma^{\alpha_{n}} / \alpha_{n}^{3 / 2}\right) \leqslant \hat{r}_{n} \hat{f}_{n}(u) \leqslant r_{\alpha_{n}} f_{\alpha_{n}}(u)+o\left(\gamma^{\alpha_{n}} / \alpha_{n}^{3 / 2}\right) .
$$

Therefore, by (18), we get (11).
Note. The problem here considered, in the case where $E\left\{X_{1}\right\}=\mu=0$, was treated in [7].

REFERENCES

[1] R. Bahadur and R. Rao, On deviations of the sample mean, Ann. Math. Statist. 31 (1980), p. 1015-1027.
[2] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
[3] D. L. Iglehart, Functional central limit theorem for random walks conditioned to stay positive, Ann. Prob. 2 (1974), p. 608-619.
[4] - Random walks with negative drift conditioned to stay positive, J. Appl. Prob. 11 (1974), p. 742-751.
[5] A. Renyi, Probability Theory, North Holland, Amsterdam - London 1970.
[6] F. Spitzer, A Tauberian theorem and its probability interpretation, Trans. Amer. Soc. 94 (1960), p. 150-169.
[7] A. Szubarga and D. Szynal, Random limit theorems for random walks conditioned to stay positive, Probab. Math. Statistics 5.1 (1985), p. 83-87.

Mathematical Institute

Maria Curie-Skłodowska University
ul. Nowotki 10
20-031 Lublin, Poland
Received on 12. 2. 1984

