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Abstrmt. This is a discussion of probability measures in a 
noncommutative setting as required by quantum mechanical 
probability theory. The concepts of a facial, orthostable and 
orthofacial subset of probability measures on an orthomodular poset 
are introduced. They provide a link between the poset and the 
boundary structure of convex sets of such measures. 

An orthomodular poset admitting a Facial subset A has 
interesting properties: e.g. it is a complete lattice and every element 
in A is a completely additive measure. We investigate the connection 

1 between orthostability and the Jordan-Hahn decomposition of 
measures. It is shown that the set of completely additive probability 
measures on the projection lattice of a von Neumann algebra is 
orthofacial. Finally we use the notion of orthofaciality of a subset A 
of probability measures on an orthomodular poset to give a 
necessary and sufficient condition for each bounded affine functional 
on A to be the expectation functional of some observable having 
finite spectrum. 

1. PRELIMINARIES 

A poset (L, G ) ,  # L  > 1, with smallest (0) and largest element (1) and 
with a ,map p~ L + p ' ~  L satisfying (i) if p 6 q, then q' Q p', (ii) (p')' = p and 
(iii) p v p' = 1 is called orthocomplemented poset; the map p -+ p' is referred 
to as an orthocomp~ement~tiorz on (L, 6). A pair p, q ~ , ! +  (L, <, ') an 
orthocomplemented poset, is said to be orthogonal, denoted by p l q ,  
provided p 6 4'. A subset C E L is said to be orthogonal if p # q, p, q E C, 
implies that p I. q. Clearly, every orthogonal set in L- {o) is contained in a 
maximal such set. With 6(L) denote the collection of all maximal orthogonal 
sets in L- {o)  and with Oo(L) those members of O(L) which have countably 
many elements, e.g. (1) E 8,(L). 

An orthocomplemented poset (E, 6, ') is called an orthomodular poset 
provided (i) p l q implies that p v q exists and (ii) if p l q and p .J q = 1, 
then p = 4'. Notice that in presence of ti), condition (ii) is equivalent to (ii') if 
p 6 4, then q = p v (p' A q) (cf. [6]) .  Let (3, <) be a Boolean lattice and for 
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~ E B  denote with p' the unique element in B such that p v p' = 1, p A p' = o. 
Then (B, <, ') is an orthomodular poset. 

For an orthomodular poset (L, <, ') we consider WL in the product 
topology r (the topology of pointwise convergence, a locally convex 
Hausdorff topology). An element p~ is called a measure provided 

P ( P  v q)  = P ( P ) + P ( ~ )  if P 1 9 ,  P?  EL. 
With W(L)  we denote the subspace of measures. A measure p~ W(LJ is 

called positive if pfp) 2 0 for all p~ L; K(L)  denotes the set of positive 
measures on L. 

Clearly, p(o) = 0 for all p E W(L) .  If , u ~  K (L) and p g q, then ,u (q)  - p ip )  
= p(pf A q) 2 0; hence positive measures are isotone maps from Lto R Also 
K (L) is a cone in W(L) (i.e. (i) K (L) +K (L) z KCL), (ii) tK (L) c K (L) for 
t 2 0 and K(L) n -K(L) = (0)). 

A mzasure p is called normalized if p (I) = 1. By a probability measure we 
mean a positive normalized measure; O(L) G W ( L )  denotes the convex set of 
probability measures. One verifies that Q(L) is a base for the cone K ( L )  (i.e. 
fi (L) is a convex subset of the cone K (L) and every element p~ K (L) - (0) 
admits a unique representation as p = tv, where v E O (L) and t 2 0) using the 
fact that p (1) > 0, y E K (L) - (01. Also, O (L) is z-closed and being a subset of 
the z-compact Tychonoff cube [O, llL, by isotonicity of a probability 
measure, 52 (L) is clearly r-compact. 

Quite often we do not consider all the probability measures on an 
orthomodular poset but rather a subset of 52(L), e.g. the a-additive measures 
etc. In order to have the frame to tackle problems in this context, we are 
now going to develop the theory in the appropriate generality. We shall 
assume throughout this paper that (L, 6 ,  ') is such that Q(L) # a. , 

Let d be a non-empty and convex subset of Q(L), V(A) : = lin A c W(L) 
and K (A): = {tpl p~ A, t B 0). Then clearly K (A) is a generating cone for 
V (A), i.e. V (A) = K (A) - K (A), and A is a base for K (A); also con (A u - A)  
is convex, circled and absorbing in V(d). 

Let V'(A) be the algebraic dual ~f V(A). With every p~ L we associate a 
map e,(p):  V(d)+ R by setting e ) ) :  = ( p .  Clearly, P(A): = 

i eA(p ) /p~  L) G V'(A) and P (A) is a total set of linear functionals on V(d), 
i.e. if e ,  (p)(p) = 0 for all p~ L, then p = 0. The topology ~ ( V ( A ) ,  P(A))  on 
V(A) coincides with the topology T I  V(A). Also, a subset A c Q(L) is z-closed 
iff it is zl V(Q(~))closed iff, of course, it is z-compact. Also note that 
K (Q (L)) = K (L) and we set V (L): = V (a (L)). 

THEOREM 1.1. Let A G B(L) be non-empty and convex. Then (v(A), A )  is 
a base normed space (i.e. V(d) is a real vector space, A is a base of a 
generating cone and the Minkowski functional over con(A u -A)  is a norm). 

Moreover, if A , ,  A, G Q(L) are convex, non-empty and A ,  G A,, then the 
corresponding norms satisfy IlpllA, < llpll,,, p~ V(Al). 
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Proof .  It remains to prove that 11p114 = 0, p~ V(A), implies that p = 0, 
where now 

1lp1lA = inf It > O l p ~  tcon(A u - A ) ) .  

Suppose that Ilpll, = 0 ;  then 0 = tllpllA = Iltplf,; p -t llplld being a 
seminorm. The set con (A u - A) is circled, hence t p s  1 . con (A u -A). Since 

we conclude that la, (p).(tp)l < 1, i.e. le, (p)(p)l)J < I / t  far p~ L and t > 0. The 
totality of the set P(d) G Vr(A) now implies that p = 0. 

The second assertion follows from the fact that A ,  E A ,  implies 

Again let A r SZ (L) be non-empty and convex. Then int B (A) c con (A u 
-A)"& B (A), where now B(A) is the n(d)-closed (norm-closed) unit ball. With 
V*(A) we denote the subspace of n(d)-continuous members of V1(A) .  
Obviously, f E Vf[A) is n(A)-continuous iff f is bounded on the base A ;  
therefore P ( A )  c V* (A).  

We now follow the general theory of base norrned and order unit 
normed spaces [I, 10, 13, 151: if we order V* (A) by j, g E V* (A) ,  
f d g :e f (p) < g (p) for all p~ A, then (V* (A), 6 ,  e ,  (1)) is an order unit 
normed space, i.e. an Archimedian ordered vector space with order unit 
e,(l). Also 

I l f i l A :  = S U P { ~  ( P ) I P E ~ ( ~ ) )  

Note that -llfllA-eA(l) < J  < llfllA.eA(l), thus [-eA(l), +e,(l)] is the 
norm-closed unit ball in V*(A). 

For f ~ V * ( d )  define ff :=ed(l)-J :  One verifies that f " =  f and 
f < 4 * g r  d f '; also, if f E LO, eA(l)], then f 'E [O, e,(l)]. 

For convenience, we consider e, as a map from L to P ( d ) ;  it satisfies 
(i) e,(o) = 0, 

(ii) P q = e, (PI G e, (91, 
(iii) eA(pf) = (e,(p))' and 
(iv) P 1 q 3 e,(p) + e, (q) G e, (1). 
Also, P(A) E [0, e,(l)] and, since P(A) is a total set, we conclude that 

V* (A) = CT (V* (A), V (A))-cl lin P (A). ' 

In the sequel, we are going to discuss the boundary structure of certain 
convex subsets of Q(L);'hence, let us introduce the appropriate notions. 

Let V be a real vector space and let C be a convex subset of V with 
V = linC. A subset F of C is calIed a face of C provided, for t ~ ( 0 ,  I), 
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A point Y E  C is said to be an extreme point of C if [v] is a face of C; 
ext C denotes the set of extreme points of C. Note that C and the empty 
subset of C are faces of C; also the intersection of a family of faces of C is 
again a face of C. This shows that the collection .F(C) of faces of C, ordered 
by set-inclusion, is a complete lattice. 

Let Q be a loc, c. Hausdorff topology on V. A subset F of C is called a 
p-exposedface of C if there exists a g-continuous linear functional f on V and 
~ E R  such that C c  f- ' ( -co, t ]  and F =  f - ' ( t )nC .  With @-b(C) we 
denote the collection of g-exposed faces of C; note that CEQ-b(C). A point 
v E C is called a Q-exposed point of C' provided {v) E g-C(C); pexp C denotes 
the set of g-exposed points of C.  Clearly, Q-b(C) G F(c). A subset F of C is 
said to be a g-semi-exposed face of C if it is the intersection of @-exposed 
faces; Q-Y(C)  denotes the collection of @-semi-exposed faces of C. Clearly, by 
the very definition, (p-Y(C), G) is a complete lattice and Q-b(C) G 

@-Y(c) E .F(C). 
One can show that F ( C )  = e-&(C) = Q-.$(c) provided C is a polytope 

151, i.e. C is Q-compact and ext C is finite; then V is finite-dimensional and Q 
equals the Euclidean topology on V .  

A pair of faces F, G is said to be Q-parallel, denoted by FII,G, provided 
there exists a @-continuous linear functional f and s, t~ R, s < t, such that 
C E f - [s, t] and G E f - (t), F G f (s). Clearly, F 11, G * GI( ,F; F II,G - F n  G = 0; Fll ,a for all F E  P(C);  F &G, H E G, HE F ( C ) +  FI(,H. 

Let A cSZ(L) be non-empty and convex. Then n(A)-&"(A) 
= a(V(A), V*(A))-&(A) since f E V ' ( A )  is o(V(A), V*(A))-continuous if and 
only if it is n(A)-continuous. Iff E [0, eA (1)], then f - '(1) n A and f (0) n A 
= (f ')- ' (1) n A are rz(A)-exposed faces of A. Note that 0 E A is an n(A)- 
exposed face. If FE n(A)- &(A), then there exists an f E 10, eA(l)] such that F 
= f , ' ( l ) n  A .  

Let us prove that if F = A, then F = eA(l)-'(1) n A. If F # A, then there 
exists a QEV*(A), g # 0, such that F =gP ' ( t )nA and A c g - ' ( - a ,  t] for 
some t~ R. If t = 0, then g 6 0, thus -g/Jlg(l,~ [0, e,(l)] and one verifies 
that (-g/lJglJA)-'(0) n A = I;. If t # 0, then for h : = g- te,(l) we have F 
=h-'(0)nA and A s h - I ( - C O , ~ ] .  Since F # d ,  we conclude that h # O  - 

and we proceed as above. 
Also, if F jl ,,(A) G, F, G E 9(A), then there exists an  f E [O,,e, (I)] such that 

G G f - ' (1) and R c f - '(0). To see this, suppose that A s g-I [s, t], 
G c g-'(t), F E g-'(s) for some g~ V*(A) and s < t. Then 
s.e,(l) d q 6 t .e,(l). Therefore h : = (g -se,(l))/(t -S)E [0, e,(l)] and one 
immediately verifies that G s h- ' (1), F s h- (0); this proves the claim. Since 
we have 0 6 f (p) < 1 for all ,UE A provided f E LO, eA(l)], we get 
f -"( l )n All,{A,f -l(O)n A .  

Let (L, 6 ,  ') be an orthomodular poset and A E SZ(L) non-empty and 
convex. We associate with every element in L an n(A)exposed face of d as 
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follows: for PE L we set a, (p): = { p ~  A 1 p(p) = 1). Clearly, a, (p) 
= e ~ ( p ) - l ( l ) n A ~ n ( A ) - b ( d ) .  The map p~L+a, (p)~n(A)-&(A) has the 
following properties: 

0) a,(o) =@, a,Il) = A ,  

(ii) P G q = a ~ ( ~ )  r a ~ ( q ) ,  
1 

(iii) P ~ ~ - ~ A ( P ) I I ~ ( A I ~ A ( ~ ) -  

Assertions (i) and (ii) are obvious, (iii) is proved as follows. Let p l q ;  
then p ,< q', hence a, ( p )  c e, (q)-' (0) and a, (q) c eA(q)-I (1). 

With $(L) we denote the collection of all orthogonal sets in L - {o) and 
with ao(L) those members of 8 ( ~ )  which have countably many elements. 
ClearIy, O (L) L) 8 ~ ( )  and 6,(L) r f i , ( ~ ) .  Now let DE 8 (L) and order the 
collection Df of finite subsets of D by set-inclusion. Then (Df, G )  is a 
directed set (i.e. any two elements of d have an upper bound in D 3  and, for 
any p~ W(L), (p(V C))c,D~ is a net in R. If y € K ( L ) ,  then the corresponding 
net is isotone and bounded by ~ ( 1 ) ;  therefore it converges in R. This, 
however, proves that for any p~ V (L) the net (p (V C)b,,s converges, since 
K(L) is a generating cone for V(L).  

A measure ,u is said to be completely additive, resp. o-additiue, if for every 
DE &(L), resp. every DE fi,,(~), for which V D exists, the net (p(V C)),-,& 
converges in R and converges to ,u(V D). 

The subspace in W(L) of completely additive, resp. o-additive, measures 
is denoted by W, (L), resp. W, (L); clearly, W, (L) G W, (L) G W (L). We write 
Q(L):= W,(L)nlCZ(L) and Q,(L) = W,(L)nQ(L). 

LEMMA 2.1. Let ~ C L E  W (L). Then ~ C L E  W, (L), resp. p E W, (L), if and only if 
for each D E 0 (L), resp. D E 0, (L), 

hm(p(V C))Csd 
exists and equals p(1). 

Proof. First note that DE B(L) belongs to 6(L) if and only if V D  
exists and equals 1. 

The condition holds true if PE W,(L) or p~ W,(L). Conversely, suppose 
that DE B,(L) and that V D  exists. If V D  = 1, we are done. If V D  # 1, 
then ( V  D)' # o and (D, (V D)') E 0, (L). Now 

the latter net being a subnet of the first. Therefore, 

The proof for DE 6 ( ~ )  is similar. 
/ 
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Let A c Q(L) be non-empty and convex. By the theorem of Bourbaki- 
Alaoglu, the unit ball in V* ( A )  is a (V* (A), V(A))compact. Since [O, aA(l)] is 
the a (v* (A), v(A))-homeomorphic image of the unit ball under the affine 
map g + (g + e ,  (1))/2, we conclude that [O, e, (I)] is a (V* (A), V(d))compact 
too. 

Let D G ~ ~ ( L ) ;  then (e,(V~)k,,f is an isotone net in [0, an(l)]. 
Therefore, there is a a ( V* (L),  V(L))-convergent subnet (e,(V Cf)L. which 
converges to, say, f EEO, ep(l)]. For any p~i2(L),  the real net 
(e, (V C)  (p)kEDs is isotone, bounded and therefore converges. Since 
Iim(e,(V C')(p))c. = f (p), we conclude that 

f i m ( e ~ ( V c ) ( ~ ) ) c ~ ~ . f = f l ~ )  for all P E ~ ( L ) ,  

hence for a11 p~ V(L) = linQ(L). Therefore, the net (e,(VC)L,,s converges 
to f in the a(V*(L), V(L))-topology. 

For D E 0 (L) define 

the limit being taken in the a(V*(L), V(L))-topology. Note that 
I d ( D ) e [ O ,  e,(l)] for all DE OCL); d ( D )  is called the deficiency functional 
I of c41. 
I 
I THEOREM 2.2 (Fischer-Riittimann [4]). Let (L, <, ') be an orthomodular 

. poset with Q ( L ) # o .  Then 

4 (L) = n ker d (D) n 8 (1) 
DeO(L) 

and 
W,(L)= 0 kerd(D)nQ(L). 

DE~JL) 

Moreover, Q,(L) land Q,(L) are ~ ( v ( L ) ,  v*(L))-semi-exposed faces of 
i-2 (LID 

Proof. With J we denote the canonical isometry from V(L) to V** (L), 
i.e. J(p)(f) = f (p), ~EV(L) ,  f E V*(L). Let ~ E Q ~ ( L )  and DEO,(L). Since 
J (p) E V** (L) is a(V* (L), V(L))-continuous and V D = 1, we get 

= p(l)--lim(p(VC)~,,s = 0. 
Therefore, 

Q,(L) G n kerd(D)nB(L). 
DE~,,(L) 

Conversely, let p be a probability measure such that d(D)(p) = 0 for all 
D E  &,(L). Then 

0 = J (p) (d (D)) = p (1) - lim (p (V C)L,,r for a11 D E 0, (L). 
Thus ~EB,(L), by lemma 2.1. 
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So far we have shown that 

Since d (D) E 10, e,(l)], we conclude that 

thus O, (L) E a (V(L) ,  V*(L))- Y (62 (L)). 
The proof of the remaining assertion is similar. 
A subset A c Q(Lj is said to be separating, if p(p) = p(q) for all p~ A 

implies that p = q; A is said to be full if y (p) < p ( q )  for all P E A  implies that 
p ,< q; A is called strong if y(p) = 1 p(q) L 1, p~ A, implies that p < q ;  A is 
said to be unital provided for every PEL-{o) there exists a P E A  such that 
p(p) = l.'We have the following implications: A is strong = A is full * A  is 
separating, A js strong =-A is unital. 

LEMMA 2.3. Let (L, 6 ,  ') be an orthnwduIar poset and A E n(L)  be non- 
empty and convex. 

(i) IS A is unital, then ((e, lp)(l, = 1 for all p~ L, p # o. If A is t-closed 
and I[eA(p)II, = 1 for ail p~ L, p # o, then A is unital. 

(ii) The subset A is separating if and only if e,: L P(d) i s  an injection. 
(iii) The subset A is full $ and only if e,  is an order isomorphism from 

(L ,  <) onto (P(A), G ) .  If either is the case, than eA is an ortho-order - 
isomorphism @om (L, <, ') onto (P(A), <, ') and the latter becomes an 
orthomodular poset. 

(iv) The subset A is strong if and only if a,: L -t n(A) - &(A) is an order 
isomorphism from (L,  <) into (n(A) - &(A), 5). 

Proof. For (i) simply note that 

I I ~ A  (PII A = sup e~ (PI (PI 
PEA 

and that z-closedness of A implies a(V(Aj, P(A))-compactness of A. 
Statements (ii), (iii) and (iv) are straightforwar,d. 

For p~ V(L) we define the functionals p', p-, (p)  ERL as follows: 

they are referred to as the upper variation, lower variation and the total 
variation of p, respectively. One easily verifies that p' = (- p)' and that p * 
are bounded and positive. Note that these functionals are not measures in 
general. 

If 1pI (1) = 0, then ~ ' ( 1 )  = 0, hence p = 0. Clearly, if t E R, then Itpt(1) 
= Itl l~l(1). Also, I C L I  + PZI  (1) < Ipl 1 (I)+ lp2t (11, since (p, + clz) ' (1) < P: (1) 
+p;(l). Therefore, the functional p + tp/(l) is a norm, called the variation 
norm on V(L). 



LEMMA 2.4. (i) Ilul(1) = S~P(P(P) - P  (pf)), P E V(L).  
PEL 

(ii) Let A G G(L)  be laon-empty and convex. Then JpJ (1) < (JpJJA for 
P E  V(4.  

Proof. (i) We have 

Now just note that e,(p) = (e,(p) - e,(pf) + e,(1))/2. 
(ii) Since eA(p)- eA(pf) E [- e,(l), eA(l)], we get 

A non-empty, convex subset A of O(L) is said to have the Jordan-Hahn 
property [2, 111 provided for every p~ V(A) there exists a triple (p, v ,  x ) ~  L 
xK(A)xK(A) such that p = v - x  and v ( p 3  = x ( p )  = 0. 

LEMMA 2.5. If A c O(L)  has the Jordan-Hahn property, then Jpl(1) = llplla 
for p~ V(d) and B(A) = con(d u -A). 

Proof. By the previous lemma, we already have ( ~ ( ( 1 )  d ((pI(,. Let 
PE V(A)- {O]. For p/jIp(IA -there exist p~ L, v, x~ A, s ,  d 3 0 such that pjJ(plJA 
= sv - t x  and sv (p') = t x  (p )  = 0. Then 

= sv(p)- tx(p)-sv(pf)+tx(p')  2 s + t .  

This now shows that Ipl(1) = llplld and also that p/tId1,~ con (A u -A). 
It also follows that B (A) = con(A u -A). 

The next two results are concerned with the relationship between the 
Jordan-Hahn property of A, P(A), the extreme points and the 
u (V* (A), V (A))-exposed points of the order interval [0, eA(l)]. 

Note that under the map f -P f - f '  the extreme points, resp. the 
o(V* (d), V(A))-exposed points, of [O ,  eA(l)] are injectively sent onto the 
extreme points, resp. the a(V* (A), v(A))-exposed points, of [ - e, (1), eA(l)]. 

LEMMA 2.6. Let (L, <, ') be an orthomodular poset and A a nonempty, 
convex subset of SZtL). If A has the Jordan-Hahn property, then 
a(V* (4, V(A))-exp COY e,(1)1 P(A).  

P r o  of. Let f E o(V* (A), V ( A ) ) -  exp [O, eA(l)]. Then there exists a 
PE V(A) with I ( , U / / ~  = 1 such that 

Now there exist v, X E  A, S, t 2 0 and p~ L such that p = s v - t x  and 
(sv)(p') = (tx)(p) = 0. Using the same arguments as in the proof of lemma 2.5, 
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we get 

(ed(~)-eA(~?)(~) = s f  t = 1. 

Since cA(p) - e , ( p ? ~  [- eA(l), e,  ( A ) ] ,  we conclude that f = eAlp). 
THEOREM 2.7. Let (L, <, ') be an orthomodular poset and A a convex and 

strong subset of Q(L).  
If A has Jordan-Hahn property and 

ext CO, e,C1)1 = c(V* (4, V(A))-~XP LO, ed(l)l, 

then 

P(d) = ext [O, eA(l)]. 

Proof. In view of lemma 2.6, it suffices to show that 

P (A) 0 (V* (A), V(d))- exp [Q,  e, (l)] . 
So, let p~ L; then 

is a nonempty, a ( V* (A), V (d))cIosed face of the s (v* ( A ) ,  V (d))compact 
set [-e,(l), e,(l)J. By the theorem of Krein-Milman, F has an extreme 
point. However, 

and 

Therefore there exists a q E L with 

e~(q)-e~(q ' )~a(V*(A) ,  V(A))-exp[-e,(l), eA(l)] nF. 

One immediately verifies that aA(p) c a,(q) and a,($) zaA(q'). 
Strongness of A now implies that p = q, thus 

~A(P)E~(V*(A), V(A))-expCO, eA(l)l. 

We now focus our attention on the relationship between an 
orthomodular poset (L, <., ') and the boundary structure of non-empty 
convex subsets A of fl(L). Recall from section 1 that the map a,: L+ n(A) 
-&(A) preserves order while orthogonality goes into parallelity. 

A subset A z !J (L) is said to be facial provided (i) A is convex, (ii) a, is 
surjective and (iii) a,(p) s a,(q) implies that p ,< q. Clearly, a facial subset is 
strong and therefore non-empty. 



The subset A is called orthostable, if (i) A is convex and (ii) 
a ~ ( ~ ) l l  "(A) (q) that p l q .  

An orthostable subset A is strong. TO see this, suppose that a,lp) G aA(q). 
Since a,(q) l l  M A ,  a,(q1)3 we get ~ A ( P ) I  t ,(A, a,(q'), hence P 1 9'- 

An orthostable and facial subset A E Q(L) is called orthofacial. Clearly, 
A G a(L) is orthofacial if and only if A is orthostable and a, is surjective. 
In other words, with the obvious choice of the morphism, a convex subset 
A is orthofacial if and only if a, is an isomorphism from (L, ,<, I) onto 
( n ( A ) -  s, 1 1  "[A)) .  

THEOREM 3.1. Let (L, < , I )  be an orthomodular poset and A G D(L). If A 
is facial, then A G 52,(L). 

P r o  a f. Since d (D) E [O,  en(1)], D E O (L), we conclude that 
d(D)I V P )  E e,(lII, hence 

ker(d(D)(V(d))nA~n(A)-&(A) for a l l D ~ 8 ( L ) .  

Therefore, for each D E  O(L), there exists a p~ L with 

For  ED and for any p ~ a , ( q )  we now have 

This shows that a,(q) c a,(p); thus, since A is also strong, p is an upper 
bound for D. However, D is. a maximal orthogonal set in L- to) and, 
therefore, p = 1. Then 

thus A z ker d (D) n D (L)  for all D E O(L). This shows that A E B, (L), by 
theorem 2.2. 

THEOREM 3.2. An orthomodular poset (L, <, I )  which admits a facial 
subset A of probability measures is a complete orthomodular lattice. 
Furthermore, if p ( p )  = 1 for all pc A, A 5 L, p~ A, then p (I\ A) = 1. 

Proof. First, we prove that ( L ,  <) is a lattice. To see this, let p, q~ L; 
then 

Therefore, there exists an rE L with a,@) = a,(p) naA(q) .  Suppose now 
that u 4 p, q. Then a,@) 5 a,(r), hence u < r. This shows that p A q exists 
and that a,(p A q) = a,(p) n a, (q). 

For any subset A of L, (e(I\B)),,,f is an antitone net in LO, eA(l)] .  By 
arguments similar to those used in connection with deficiency functionals, 
one shows that this net converges to an element ~ E [ O ,  eA( l ) ]  in the 
o (V* (A), V(A))-topology and, furthermore, that g g e, ( p )  for all p~ A. Now, 
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g- ' ( l )nA~n(A)-&(A) and, therefore, there exists a  EL with a,(q) 
= g - (1) n A. We show that q is the infimum of A. Certainly, q is a lower 
bound for A, by virtue of A being strong. Suppose that r < A. Then 
eA(r) < e, (A B) for all BE AS ; thus, eA(r) G g. Then a,(r) c g -  l(1) n A ;  thus 
a, ( r )  G aA(q) and finally r < q. 

Clearly, 
a,(q) G n ad(p). 

PEA 

If 

then also, for BE A f ,  

and, therefore, we have a,(/\ B) (p) = 1. Then g (p) = 1, hence p E a, (q). 
COROLLARY 3.3. Let (L, <, ') be an orthmodular poset. If A c Q(L) is 

facial, then ( n ( ~ ) -  & ( A ) ,  s) is a complete lattice. The in$mum of a family of 
n(A)-exposed faces coincides with its set-intersection. Moreover, n(A)- ,SP(A) 
= n(A)- &(A). 

Next, we give two sufficient conditions, in terms of the Jordan-Hahn 
property, for a subset of Q(L) to be orthostable. 

THEOREM 3.4. Let (L, <, ') be an atomic orthomodular lattice and A a 
convex subset of P(L). Suppose that for every atom p in (L, <) there exists a 
p , , ~  A with the properties: (i) p,(p) = 1 and (ii) $ y ( r )  = y (q) = 1, then 
pp(r A q) = 1. 

If A has the Jordan-Hahn property, then A is orthostable. 
Proof.  Let p, q be atoms. Since A has the Jordan-Hahn property, there 

exist rE L, v, ~ E A  and s, t 2 0 such that (sv)(rl) = (tx)(r) = 0 and p: =Q(pp 
-pg) = sv-tx. Then, p(1) - 0 = s-t. 

Suppose now that a,(p)l[,(,,a,(q). There exists an f ECO, e,(l)f with 
aA(p)c  f-'(1) and a,(q)s f-'(0). Then f - f '~[ -eA( l f ,eA( l ) ]  and 
(f - f f ) ( p )  = 1. Since +pq- iq~l3(d) ,  we get IIpII, = 1, hence 1 < 2s, by the 
triangle inequality. On the other hand, 1 2 (e,  (r) - eA(rf))(sv - slc) = 2s and, 
therefore, 1 = (eA(r)-e,(r'))(ji) = yp(r)- y (r). This shows that p,(r) = y ( r f )  
= 1. Then ( p  A r) = 1 = ( q  A r ) .  Since p, q are atoms and 

p A r, q A r' # 0, we conclude that p < r and q < r', thus p i q. 
Clearly, if p, q~ L- {o )  and aA(p)((M,aA(q), then for all pairs of atoms 

u, v with u < p, v < q we get aA(u)l(,(,, aA(v). Therefore, by the preceding 
result, u I v. Using (ii') of the definition of an orthomodular poset one can 
show that (L, 6 )  is also atomistic. Thus 

p = V (ulu < p, u an atom) I V { v l v  < q, v an atom) = q.  



THEOREM 3.5. LRt (L, <, ') be an  orthanujdular poset with a strong 
convex subset A of probability measures. 

If A hs the Jordan-Hahn property and if 

then A is orthostable. 
Proof.  Let' a,(p)llnlb aA(q), p, q~ L. Then 

F : =  ( g ~ [ o ,  eA(l)](aA(p) ~ g - ' ( 1 )  and a,(q) ~ g - l ( O ) )  

is a nonempty, a(V*(A), V(A))-compact face of [0, e,(l)]. Thus ext F # 0 
and, therefore, by theorem 2.7, there exists an r E I ,  with e , ( r ) ~  F. Then 
QA ( P I  E eA(r)- ' (1) n A = a, (r] and a, (q) c_ e, (r)-  ' (0) n A = a, (r'). Since A is 
strong, we conclude that p < r and q < r', thus p I g ,  

THEOREM 3.6. k t  (L, 6 ,  ') be an orthomodular poset. If A s Q(L) is 
orthojucial and con(A LI - A )  is n(A)-closed, then A has the Jordan-Hahn 
property. 

Proof.  Let ,UE V(d) with ((pH, = 1 .  We may and do assume that 
p $  A u - A .  Since B(A) = con(d u -A), there exist v, x~ A and t ~ ( 0 ,  1) such 
that p = tv -(1 - t) x. Note that J ( ~ ) E  V** (A)  is a(V* (A),  V(d))-continuous 
and as such it attains its norm on the a(V* (A), V(A))-compact unit baIl 
of V*(d), say at f~ [-eA(l), ed(l)]. Then 1 = J(p)(f) = f (p) = tf(v)- 
(1-t) f (x); thus f (v) = f ( - x )  = 1, since -1 < f (v), f (x) < 1. 

Now (f + e, ( l ) ) /2~  [0, ed (I)], hence there exist p, q E L with a, (p) 
= (( f + e, (1))/2)- ' (I) n A and a, (q) = (( f + e. (l))/2)- ' (0) n A. Then we have 

(~)lln(A) (41, thus PL q or q < p'. 
Next, observe that (( f + eA(1))/2)(v) = 1, ((f + e, (1))/2) (x) = 0 and, 

therefore, v E a, (p), x E a, (g),  showing that (tv) (pf) = 0 = ((1 - t) x) (p). 

4. r-CLOSED SETS OF PROBABBLlTY MEASURES 

, The following two results generalize [4], thm. 3 and thm. 7. They will be 
used in the sequel. 

THEOREM 4.1. Let (L, <, ') be an orthomodulm poset and A a convex 
subset of 52 (L). 

If A is z-closed and has the Jordan-Hahn property, then (V(A), 11 11,) is  a 
rejexive Banach space. 

Proof. Since A is z-closed, it also is z-compact and, therefore, 

! is zcompact; so, in particular, B(A) = con(A u - A ) .  By the theorem of 
I Dixmier-Ng (e.g. [7], p. 211), 

V, ( A )  : = { f E V' (A)  1 f J B(A) is z] V(d)continuous) 
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is a norm-closed subspace of Va(A), and (V(A) ,  11 11,) is isometric to the 
Banach dual of (V, (A), 1) /],I V, (A)). Note that P(A) c V* (A) and that 2P(A) 
-e,(l) is a subset of the unit ball of V*(d). 

Let p~ V(A) .  Then there exist v, K E d, S, t 2 0 and p E Lsuch that sv (p') 
= tx (p)  = 0 and p = sv-tx. Now 

This shows that every element of (v*(A))* w V(A) attains its supremum 
(= norm) on the closed unit ball of V* (A). By the theorem of James [8] (also 
see e.g. [7]), the closed unit ball of V,(A) is (V,(A), V(A))-compact, showing 
that V*(d) and finally V(d) are reflexive normed linear spaces in their 
respective norms. 

THEOREM 4.2. Let (L, <, ') be an orthumodular poset with a t-cIosed, 
unital set A of probability measures. 

Zzen A G 9,(L) and only if every countable maximal orthogonal subset 
of L is fmite, 

Proof. Clearly, if 'D < KO for all D E On (L), then d (D) = 0, hence, by 
theorem 2.2, 

Suppose now that there ekists a D E  O,(L) with ' D  = KO. Let i~ N 
+ pi€D be a distinct enumeration of D. Then 

thus 
n 

/ \ p f # o  for all  EN. 
i =  1 

n 

The subset A is unital and rl V(1)-closed, also, e,(/\ pi) is zl l/(L)- 
i= 1 

continuous and therefore 

is a decreasing sequence of non-empty, z-closed subsets of the z-compact set 
52(L). Consequently, the intersection of all the members of this sequence is 
not empty, i.e. there exists P E A  with 

n n 

l u ( / \ p a =  1 or p(Vpi) = O  for all  EN. 
i =  1 i =  1 
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Then 

Hence, 

i.e. A $ O, (L). 
We now combine several of the previous results in the following 
THEOREM 4.3. If an orthomodular poset (L,  ,<, ') admits a z-closed 

orthfaciul subset A of probability measures, then 
(i) (L,  <) is a lattice; 

(ii) every orthogonal subset in L is finite; 
(iii) if p(p) = p(4) = I, then p(p A q)  = I for all PEA; 
(iv) A has the Jordan-Hahn property; 
(v) / l ~ l l A  = IlpllQ(L) for v(A); 

(vi) (VlA), I (  ( 1 , )  is a reflexiue Banach space. 
Proof. (i) and (iii) follow from theorem 3.2. 
(iif Let CE 6 ( ~ )  and suppose that C is not finite. Then C contains a 

countahly infinite subset D. If D $  &=(L), then, since (L, G) is a complete 
lattice, by theorem 3.2, { D ,  ( ~ D ) ' ) E  fie(L). In this case and also when 
D E fi0 (L) it follows that A $ Qn(L), by theorem 4.2. This contradicts the 
assertion in theorem 3.1. 

~(iv)  Since A is zcompact, we conclude that con (A u - A )  is h (A)-closed. 
The assertion now follows by virtue of theorem 3.6. 

(v) follows from (iv), lemma 2.5, lemma 2.4 (ii) and theorem 1.1. 
(vi) is a consequence of (iv) and theorem 4.1. 
Let us now discuss faciality in the context of Boolean lattices. First 

notice that if (L, i, ') is an orthomodular lattice and if A is a convex, unital 
subset of Q(L), then a,(p)llM4aA(q) =. aA(p) n aA(q) = 0 * p A q = o. 
Therefore, if (L, <, ') is a Boolean lattice together with its unique 
orthocomplementation and A a convex unital subset of B(L), then A is 
orthostable. 

THEOREM 4.4. Let (L, 6 ,  ') be an orthomodular poset. Any two of the 
foliowing three conditions imply the third: 

(i) L is Jinite; 
(ii) ( L ,  <) is a Boolean lattice; 

(iii) (L, <, ') admits a z-closed facial subset d of probability measures. 
Proof. (i); (iii) (ii). Since L is finite, we conclude that 

V* ( A )  = a (v*(A), V(d))- cl lin P(d) = lin P(d). 
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Hence V*(d) and, finally, V(A) are finite dimensional; also z lV(A)  
= n(A) and, therefore, A is n(A)-compact. By 191, theorem 2.1, 

Since A is also facial we get "n (A)-exp A < #n(A) - & ( A )  < KO and, 
therefore, A = con(n(d)-exp A), showing that A is a polytope [5] .  Hence 
n ( A )  - b (A)  = F(A). Since the map a, : L + @(A) is an order-isomorphism, 
the map F E $ ( A )  -, F' : = a, (a, (F))'E P ( A )  is an orthocomplementation 
that makes (.F(d), z, ') into an orthomodular lattice. This in turn proves 
that A is a simplex, by a theorem of the author ([12], theorem 3.5). Therefore 
(L, ,<) is a Boolean lattice. 

(i); (ii) 3 (iii). Again, since L is finite, V(L)  is finite-dimensional. 
Moreover, 

hence the n(i2)-bounded.set O(L) is the intersection of finitely many n(i2)- 
closed half-spaces, i.e. Q(L) is a polytope. Again, ~ ( G ! ( L ) )  = n (Q) - B(Q(L)). 
Now let G be a proper face of Q(L) and F,, F1, . . ., F ,  the facets containing 
G. Since Q(L)  is a polytope, we have 

n 

G =  n F i .  
i =  1 

By [12], theorem 4.2, there exist p,, p,, . . . , pn€ L such that Fi 
= aaL) (pi), i = 1, 2, . . . , n. It is easily verified that a probability measure on 
a Boolean lattice satisfies p ( p )  = p(q) = 1 + p(p A q) = I. Therefore 

This shows that the map aaL, is surjective. I t  is a basic fact that for such 
an orthomoduIar poset a (L)  is strong. Also, as remarked earlier, O(L) is z- 
closed. Thus Q(L) is the desired set. 

(ii);(iii) +(i). By theorem 4.3 (ii), every orthogonal set in L is finite. 
Therefore, using orthomodularity, every nonzero element in Lcovers an atom 
of L. Also, every non-zero element is the supremum of the atoms it covers. 
Since (L ,  6 )  is a Boolean lattice, it follows that the collection of atoms is an 
orthogonal set. This proves the claim. 

5. EXAMPLIES 

51. Let d be a von Neumann algebra [3, 141. The real vector space ds, 
= ( a ~ d l a  =a*)  of self-adjoint elements, ordered by the positive cone 
( a ~ d l a  = bb* for some b~ d }  and with the identity 1 ~d as order unit is a 

8 - Prob. Math. Statist. 6 (21 
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complete order unit normed space. The (unique) pre-dual Banach space of d 
is denoted by .d,. We consider d, to be canonically embedded into d*; i.e. 
d, consists of the normal linear functionals on .a?. A linear functional cp on 

- 
.d is said to be selfad.int provided q (a*) = cp (a) for all aE d. Let 
(~4*),~, (d+),, be the real vector spaces of self-adjoint elements of d*, xi*, 

I respectively. Notice that these are closed subspaces of d*. The convex set S 
of positive linear functionals on d' which map the identity to 1~ R is a 
subset of (at*),, and the pairs ((d*),,, S), ((d,),,, S,), where S ,  = d, n 5, 
are base normed spaces. Then con($ u - S), con (S ,  u - S,) are the base 
norm unit balls, respectively. Moreover, llqlls = IIcpII for v E (d*)sa and llq1I9 
= 11 q/lS for cp ~(d,),, . The order unit norrned space (dsa, < , 1) is norm and 
order isomorphic to the order unit normed space ((d,);, < , e), where 
e ~ ( d , ) , * ,  is such that e(S,)  = 1,. This isomorphism is established through the 
map Y :  d s a  defined by y (a) (v) = v la), ~p (&,)m - 

In the order inherited from ds, the set of self-adjoint idempotents 
(projections), P ( d )  = { p ~  dl p = pp* = p*) forms a complete lattice with o 
as the smallest and 1 as the largest element. The map p- ,  p': = 1 -p is an 
orthocomplementation which makes (9(d), <, ') into an orthomodular 
poset. One can show that to each projection p # o there exists an element 
~ E S ,  with cp(p) = 1. 

Let cp be a positive normal linear functional on d. There is a largest 
projection p such that q(p) = 0. The projection s(cp):= 1-p is called 
support of cp. Notice that for a €  sf, cp (a* a) = 0 if and only if a = b (1 - s (cp)) 
for some b ~ . d .  We claim that for any non-zero projection p, q :=  
V (s(rp)Jq(p) = 1, rp E S,) = p holds true. Suppose q < p. Then there exists a 
I(I E S* such that $ (p-q) = 1, thus $ (p) = I. Therefore sf$) < q, but also 
s ($) < p - q. This shows that s(+) = o, hence y5 (1 - s (+)) = 1, a contradiction. 

For any a E d the set (pe P(&l pa = a], resp. (p5 P ( d ) l  ap = a}, has a 
smallest element denoted by l(a), resp. r (a). Notice, if a ~ d , ,  then s(a): = 

r(a) = /(a); s (a) is called the support of a E d,,. 
For o < a, cp (a) = 0 if and only if cp (s(a)) = 0. To see this let cp (a) 

= cp (p&) = 0: thus we get f i  = b (1 - s (q)) for some b e sl, hence Q = 

(b(1- s Then clearly a (1 - s (q)) = a, thus o d s (a) < 1 - s(q). Since 
0 < cp and q (1 - s (q)) = 0, we conclude that (s (a)) = 0. Conversely, suppose 
that cp(s(a)) = 0; then o < s(a) < 1-s(cp). Now a(1-s(q)) = as(a)(l-stcp)) 
=as(a)=a=(l-s(cp))a  and O=rp{(Jo(l-s(cp)))*(&(l-s(cp)))}= 
~ ( ( 1  -s(rp))a) = cp(a). 

Let c p ~  S, and a E [o, 11. Then q(a) = 1 implies that cp (s(a)) = 1. The 
proof goes as follows: if cp(a) = 1, then cp (1 -a) = 0, thus cp (s (1 -a)) = 0. 
From this we get s (1 - a) < 1 - s (cp). Then (1 - a) (1 - s (q)) = 1 -a, thus as (cp) 
= s (9) and, therefore, s (a) s (9) = s (a) as (cp) = as (cp) = s (q), hence 
s (q) < s(a) < 1. The assertion now follows siqce cp (s (9)) = 1. 
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We define a map a: (at*),,+ R*(& through a f q )  = cp lP (d ) .  Notice 
that for p, q~ .P(d) with p I q we have p v q = p + q .  For cp~ (d * ) , ,  we then 
get a (cp) ( p  v q)  = a (cp) (PI + a (rp) (q), thus a (VIE W(9Y.4). ' This map a is 
clearly linear and, by the spectral theorem, a is also injective. Moreover, 
for cp E (d*),,, q E S if and only if a (cp) E Q(P(&'j). Hence ol ((d*),,) 
= lin a(S) s T/(Q ( ~ ( . d ) ) ) .  Since ci (S), resp. a (S,), is convex, the pair 
(or(d*),,, u(S)), resp. (u(.d,),,, a(S,)), is a base normed space and for the 
corresponding base norm we have jla(cp)llrrlrwd1, d Ilu(q)llzcs, for all cp~(.d*),,, 
resp. J J ~ ( F ) J J , ( ~ ~  < Jja(q)~J,(s3 for all ( P E ( ~ * ) , , .  Obvjously, the maps ol and 
ul(.d,),, are norm and order isomorphisms between the corresponding base 
normed spaces. The adjoint map of a1 (d,),, defined by (a l(d*),,)* (f) lq) 
= f (a (cp)), cp E (d*),,, f E (a (sf8',),,)*, is a norm and order isomorphsm 
between the order unit normed spaces ( a  ) ) *  , e 1 )  and 
((&',)g, <, e). Notice that y ( p )  = ( c r J ( ~ 2 , ) ~ ) * ( e ~ ~ ( p ) )  for all projections p. 

We are going to show that a(S,) G Q (,PIL&)) is orthofacial. Let 
F E  n(ol(S,))- & (a  (S,)). Then there exists an a~ [0, 11 such that 

Thus 

as previously remarked. Therefore F = a,,,,(s(a)'), showing that the map 
c a , ( ~ ~  is surjective. If ~ , ( s J  ( P I  G (q), then 

{ c p € S * J d ~ )  = 1 )  ( ~ ~ S * l c p ( q )  = 11, 

hence p Q q, by a remark made above, and faciality of a(S,) follows. 
Next suppose that for F, G E n (u (S,)) - 8 (a (S,)), f'JJ,(,(sJ, G holds true. 

Then there exists an a E [o, l] such that a-I (F) G y (a)- ' (1) n S, and 
or- (G) G y (0)- (0) n S, . However, 

and 

~ ( a ) - l ( O ) n S ,  = I c p ~ S * I c p ( ~ ( a ) )  = 0). 
Thus 

and 

G c e,(,*,(s(a)')-l(l) n u ( S * ) .  

Let p,  q  E Y(d) be such that a,(,3 ( p )  = F and (q) = C. Then 
p < s(a), q 6 s(a)', hence p  l q. This proves orthofaciality of a(&). 

One final remark. Since con (u{S,) u -a(&)) equals the unit ball in 



v(ol(S,)), it follows from theorem 3.6 that a(S,) has the Jordan-Hahn 
property. Hence, by lemma 2.4(ii) and lemma 2.5, it follows that llcpll 

I = II.(V)II,~SJ = IIz(~)I)l(s~s~ = I l ~ ( ~ ) I l ~ a ~ ~ ,  for all V E  (d*),, . 
5.2. We give an example of an orthomodular poset with an orthofacial 

subset which does not have the Jordan-Hahn .property. Let (L, <, ') be 
given through the Hasse-diagram in Fig. 1. 

Fig. 1 

~ e i  f i ,  resp. vi, be the unique probability measures such that pi(pi) = 1 -. 
and pi (pi) = 1/2 (i # j), resp. vi (pi) = 0 and vi (p j )  = 1/2 (i # I], for i = 1, 2. 
Then 

I 
i 

is a convex subset of Q(L), 

I 
~ ~ ( p ~ )  = (fi), aA(p:) = {vi) for i = 1, 2 

and clearly a,(l) = A, a,(o) = 0. It follows that the map a, is surjective. 
As for parallelity, we only have {pi}-l(,{,, (vi), i = 1, 2, and (3 is n(d)- 

parallel to all the elements of n ( A )  - &(A). Therefore, A is orthostable. 
Let now Q: = i (pl  + p a )  -;(vI + v2) E V ( A )  and suppose that there exist 

r E L, x, w E A,  s, t 2 0 such that Q = sx - t o  and (sx) (r') = (to)(r) = 0. Then, 
clearly, s, t > 0, hence x ( r )  = 1 and ~ ( r )  = 0, also r # o, 1. If r = p,, then 
x = p1 and w = v, . Furthermore, s = t since pi (1) = vi(l) = x(1) = w (1) = 1, 
i = 1, 2. Hence, Q = s (p, - vl). Since 3p1 - i v l  E con(A u - A), we have 
IjpI -v,lld d 2; on the other hand 

Consequently, Ilpl -vl l lA = 2. Next, we are going to show that I l ~ l l ~  = 1. 
One verifies that for 0 < t < i, 3 (pl + pZ) + FQ and 5(v, + v,) - FQ belong to A. 
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Therefore 

111 t 2 ( p 1 + , u 2 ) + ? ~ ) - $ ~ i ( ~ 1  + ~ 2 ) - % )  = ~ ( + + ? ) ~ c o n ( d  u - A ) .  

I This proves that d 1. However, ( e A ( p l )  - e ,  (pi))(@) = 1. I 
NOW, 1 = HQI/, = sllp1-v1lln = 2s.' Substituting 4 for s above, yields I 

p, - v, = 0, a contradiction. The remaining possibilities for r are treated in a I 

similar manner. 

53. Let (L, <, ') be as above. Denote with p,, resg. p,, v , ,  v,, the 
i 
I 

1 unique probability measure with p, ( p l )  = 1 and p, (p,)  = ,, resp. y2 (p , )  = $ 
and p2 ( p 2 )  = 1, v I  ( p i )  = 2 and v1 (p,)  = 0, v2 ( p r )  = 0 and v, ( p Z )  = 4. Define 

A ;= { F Q ( L ) I O  < P ( P * ) ,  P(P,'  < 1 and - + P ( P , ) + +  < p ( p , )  < - + c . I ( P ~ ) + : )  
u { y l  , pz, v, , v 2 ]  ; clearly, A is a convex subset of fi (L). Also 

and a , ( l )  = A ,  aA(o )  = 8. Therefore A is facial. Now, A is 2-dimensional, 
thus V ( A )  is a 3-dimensional vector space. One verifies that {vl, v2, p l )  is a 
linear basis for V ( A )  and that aff A = aff ( v , ,  v, ,  p,). We define a linear 
functional J' on V ( A )  as follows : f (v , )  = 4, f ( v , )  = 0, f (p,) = Q. A simple but 
lengthy computation shows that O < f (p) < 1 for all p~ A, hence 
f~ [o, e,(l)]. Since p2 = - 2v1 + v 2  +2p1, we get f (p , )  = 1 .  Then 
a ~ ( ~ z )  s f -  ' ( 1 )  and aA(p ; )  sf - l (01, hence ~ , ( p ~ ) l l ~ ~ ,  aA(p; )  but p2 non I pi. 

Therefore A is facial but not orthostable. 
5.4 Let (L, 6 ,  ') be as above. By similar methods one shows that Q(L) 

is orthostable but not facial (see thm. 4.4). 

6. A SPECTRAL THEOREM 

Let (L, <, ') be an orthomodular poset. With g ( R )  we denote the class 
of Bore1 sets of R. By a Viadarajan observable 1161 we mean a map 
x: 9 ( R )  -* L satisfying: 

(i) x(@) = 0, x(R)  = 1; 

(ii) if u, n u 2  = 0, u, ,  u 2 € B ( R ) ,  then x (u l )  i x ( u , ) ;  
(iii) for every sequence ( u i ) g ,  of pairwise disjoint elements in $9 (It}, 

m 

X( U ui) is the supremum d {x(u,)li = 1, 2, .. .} in (L, ,<). 
i=  1 

With S(L) we denote the collection of Varadarajan observables. Notice, 
OC. 

if ( u i ) g l  is a sequence in 98 (R] ,  then for all XE S (L), x ( U ui) is the 
i =  1 
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m 

supremum, resp. x( n ui) is the infimum, of {x(u,)l i  = 1, 2 ,  ...} in ( L ,  g ) .  
i= 1 

For a Borel function X :  R- t  R and a Varadarajan observable x € S ( L ) ,  
the map M E B ( R )  -r X ( ~ - ' ( U ) ) E  L, denoted by ~ ( x ) ,  is an element of S(L). By 

' the spectrum of a Varadarajan observable we mean the set 

~ ( x ) :  = n(d G RIA closed, x ( A )  = 1). 

One verfies that x ( s ( x ) )  = 1, s ( x )  f 0 and s  ( x  (x ) )  G cl ~ ( s ( x ) ) .  A Vara- 
darajan observable x is said to be bounded provided the spectrum of x is 
bounded; Sb(L) denotes the collection of bounded Vatadarajan observables. 

Let A be a non-empty convex subset of (L), X E  Sb (L) and p E A. Then 
t ~  R + p ( x ( -  m, t ] ) ~  R is a bounded and isotonic function. The map 

max s(x) 

P E A  + i d R d ~ ( x ( -  a, t ] ) ~  R, 
min slx) - e 

where the integl'al is taken in the sense of Stieltjes and E > 0, is affine and 
bounded by the interval [ m i n s ( x ) ,  m a x s ( x ) ] .  Therefore, this map admits a 
unique extension to an (n(A)-continuous) linear functional on V(A), called 
the expectation functional of x on A and denoted by E,(x) .  

Here, as it turns out, we are concerned with Varadarajan observables 
having finite spectrum. If, for X E S ( L ) ,  s ( x )  = ( t , ,  t , ,  ..., t,) .then, clearly, 
S E  Sb (L) and, as is easily shown, 

Also x ( { t i } )  # o, i = 1, 2, . . . , n. Thus, whenever A is unital, then there 
exist p, v  E A such that E ,  ( x ) ( p )  = max { t i }  and E ,  ( x )  (v)  = min (ti). 
Therefore, 

IIEA ( x ) l l ~  = SUP IEA ( x )  (P)I = max {max { t i } ,  -min { t i ) ) .  
P E A  

In particular, EA(x)  attains its norm pn B(A).  Also, x ( ( t ) )  # o implies 
t  E s (x ) .  

From 161, theorem 3.19, it follows that EA(x)  = E , Q  if and only if 
x  = provided that A  is strong and x, y have finite spectra. Using standard 
techniques one shows that an orthohodular poset, in which orthogonal 
subsets are finite, admits only Varadarajan observables with finite spectrum. 

Examples show that in general an n(A)continuous linear functional is 
not the expectation functional of some Varadarajan observable. 
Orthofaciality is now being used to give a necessary and sufficient condition 

I for this to be true for a certain class of orthomodular posets. 
I We shall make use of the following-technical lemmata. 

LEMMA 6.1. Let (L, <, ') be an orthomodular poset with a strong convex 

i 
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set A of probability measures. Furthermore, suppose that 

P (A) 2 ext [0, eA(l)]. 

r f  aA(p) ~f - l ( l ) ,  p~ L and f E [O, e,(l)l,' then eA(p) < J: 
Proof.  Consider 

I which is a non-empty a(V*[A), V(A))-compact face of LO, eA(l)]. Then 
0 # ext F c P(A). Thus for any g ~ c o n  ext F there exist q l ,  qz ,  . . ., q , , , ~  L 

m 

and tl, t,, .. ., ~,E(O, 11 with ti = 1, such that 
I 

i =  1 
m 

9 = C ti e~ (qi). 
i= 1 ~ Then 

m rn 

1 g-'(l) nA = fl eA(aJ-'(l) nA = fl ~A(qi), 
i =  1 l = i  

hence a,(p) ca,(qi) or p < qi for i = 1, 2, ..., rn. T h s  shows that 
ed (PI < (qi), hence ti e, (p) < ti eA (qi) and, finally, 

By the theorem of Krein-Milman, F = 8 (V* (A), V(A))-cl con ext F. If 
f E F, then there exists a net (g,), in con extF converging to f in the 
G (V* (A), V (A))-topology . Since e, (p) (p) < g, ( f i )  for all ,u E A, we conclude 
that eA(p) d f. 

In the sequel we assume that (L, <, ') is an orthomodular poset with a 
zclosed orthofacial set A of probability measures and that 

Then, by theorem 4.3, A has the Jordan-Hahn property, also con(A u 
-A) = B(A). Together with theorem 2.7 we then conclude that ext LO, e,(l)] 
= P(A). 

We define mappings a, 8, y from [0, e,(l)] into [0, e,(l)] as follows: for 
f E CO, eA(l)l let 

a(f)  = (0, if f = 0; fill f l l A  otherwise; 

y(f) = f -B(f) (see lemma 6.1). 

We set (ya)': = idI,,,A,l,l. Notice that B(f)-'(1)n A = f - l ( l ) n  A and 
that 8 ( f ' ) ~  P(A) .  



LEMMA 6.2. Let g€[O, eA(l)] and p~ A. Then 

0) g(p) = =;O=u(g)(A = 0; 
I Cii) S(PI = O*Y(~)(P) = 0; 

(iii) S(P) = 1 * Y (s)(P~ = 0. 
Proof .  (i) is obvious. 
($.If g(p)=O, then p ~ g - l ( 0 ) n A .  Since 

g-' (0) nAllncd,gl (1) n A ,  

we conclude, by orthostability, that 

Now p(a, '(gW1(0) n A)) = 1, thus p ( a i l  (g-' (1) n A)) = 0. Showing that 
Pis) C P )  = 0- bhw :, (g) (PI = g (PI - Pig) (PI = 00. 

(iii) If g(p)= 1, then p ~ g ' ( l ) n d ,  hence p(a, '(y- '( l)nd))= l and 
thus e ,  (u i l  (g- '(1) n A ) ) ( ~ )  = 1. Showing that b(9) (p) = 1. Now y (g)(p) 
= B 411) - P (9) (ru)  = 0: 

LEMMA 6.3. For i ,  k € N o ,  i # k, and ~ E [ O ,  ed(l)] we have 

P r o  of. It suffices to show that jar(ya)'(g) +Ba (ya)*(g) d e,(l) for i 2 1 
! and g~ [0, eA(l)]. Let p~ A and Bol(y~~)~(g)(p) = 1; then 

i.e. a (q) (p) = 1. Then ya (g) (p)  = 0, by lemma 6.2(iii), thus ayu (g) (11) = 0, by 
(i), hence yayu(g)(p) = 0, by (ii). Repeated use of (i) and (ii) yields 

+ (g) (PI = a ( ~ 4  (4) (PI = 0, hence 

Pa (7a)'(9) (PI = a (YQ)' (g) (PI - (ya)'+ (g) (PI = 0. 

To this end we have shown that Bu(ya)"(g)Q = 1 implies 
(Ba(ya)'(g))'(p) = 1 for PEA, but A being strong, we conclude that 
BE (raI0 (g) G (Pa (ya)' (g))'. 

LEMMA 6.4. Let g E [O, e,(l)]. Then 
(i) Ba(g) = 0-g = 0; 
(ii) there exists an i E NO such that pa (p)'(g) = 0. 
Proof .  (i) If g = 0, then a(q) = 0 and, therefore, u(g)- '(1) n A = 0. 

Conversely, suppose that g # 0. Then Ilu(g)llA = 1. Since u(q) is 
a(V(A), V* (A))-continuous and B (A) is a (V(A), V* (A))compact by 
reflexivity of V(A) (theorem 4.3), a (g) attains its norm at an extreme point of 
B (A). But ext B (A)  c A u -A, since B (A) = con (A u -A), and we conclude 
that a(g)-'(1)nA # 8, thus #la(g) # 0. 
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(ii) By lemma 6.3, the set 

(ed (Pa (~4~) (g ) l  i~ N O )  L 

is orthogonal and, therefore; by theorem 4.3(ii), has finitely many elements. 
Hence there exist 1 ,  k E No,  i # k, with 

Having an orthogonal pair, we now get /?or ( ~ ) ~ ( g )  = 0. 
Let g E [O, e A ( l ) ]  and define 

Note that m(g) 2 1 if and only if g E (0, e,(l)], by lemma 6.4 (i). 
I THEOREM 6.5. Let (L, <, ') be. un orthomodular posrt with a t-closed 
I 
I orthofacial set A of probability measures and suppose that 

! k = O  i = O  

holds true. 
Moreover, 

~ < l i ( y a ) ' ( ~ ) l l ~ < l  for i = 0 , 1 , 2  ,..., m(g) -1 .  

Proof. For g€[O, e A ( l ) j ,  we show by induction that 

m-1 k m- 1 

(*I = c n Il(~a)~(g)tlABa(~a)~(g)+ n I I ( ~ ~ ) ~ ( ~ ) I I ~ ~ ~ ~ ) ~ ( ~ )  
k = O  i = O  i =  0 

holds true for all  EN. 
Certainly, ya (g)  = a (g)  - p a  (g),  thus a (g) = /?a (g) + ya (g).  Then 

Suppose that (*) holds true for  EN. Also 

(ra)"+ Is) = YE (r4"llg) = a (~4"  (g)  - Ba (rff)"(g).  

Then 

and thus 



G. T. Rii t t imann 

Then 
m - l  k 

s = n ll(yor)' A pu (yujk (8) + 
k = O  i=O 

Now pa (yu)m(g)(g) = 0; we conclude, .by lemma 6.4i), that ( y ~ x ) ~ # ) ( g )  = 0. 
Choosing g # 0, we may set m = m(g) and get the desired representation 
for g. 

Clearly, if g E LO, eA(l)], then Il(yay(g)JI, $ 1 for all IE NO. If Il(ya)i(g)IJA 
= 0, then /la(ya)'(g) = 0, by lemma 6.4(i). Hencern(g) d i. 

THEOREM 6.6. Let (L,  6 ,  ') be an orthomodular poset with a t-clnsed 
orthofacial set A of probability measures and suppose that 

ext 10, e ~ ( l I l  6 (V* ( A ) ,  V (A) )  - exp LO, a, (I)]. 
Then every Voradarajan observable hm ,finite spectrum and the mapping 

X E S ( L )  + Ed(x )€  V*(d) 
is bijective. 

Proof.  Since every orthogonal subset of L is finite, by theorem 4.3 (ii), 
we conclude that every observable has finite spectrum. This implies that 
Sb(L) = S(L). 

Suppse  that f e V* (A)  and that f # te,, (1), t e R. One is easily 
convinced that g : = *(f / l l  f l J A  +ed ( 1 ) )  belongs to (0 ,  e, (l)]. By virtue of 
theorem 6.5 and lemma 6.3, there exist pairwise orthogonal elemenis 
ply  p2, ..., p,, in L-  { O )  and t , ,  t , ,  ..., t ,  > 0 such that 

We may assume that t i  < t j  for i < j and set 

Denote with x the unique Varadarajan observable such that x ( ( t i ) )  = pi 
for i = 0 ,  1 ,  2 ,  ..., n. Then clearly g = EA(x) .  Let ~ ( t )  = 211 f J J d t - ( I  f l ) , ,  t c R ;  
then 
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The case where f is a multiple of e,(l) is easily dealt with. 
This proves surjectivity of the map; injectivity follows by [6],  the- 

orem 3.19. 
The following result gives us a converse to the aforementioned theorem. 
THEOREM 6.7. k t  (L, <, ') be an orthomodulnr poset with a strong 

convex set A of probability measures. 
.Suppose that each Varadarajan observable has finite spectrum and that the 

mapping 

XES(L) + E A ( x ) €  V*(A) 
- - 

is surjective. 
Then A and 3: = z-clA G both are orthvfocial, (v(/(dc, 1 )  ] I2)  is the 

Banach space completion of (V(d), J I  11,) and 

ext [o? ed(l)]  ~ ( v *  (A), v(A))-exp LO1 eA(l)11 

ext [0, e,-(l)] G a (v* (if), v@))- exp [0, ea(l)]. 

Pro of. (i) We define a map R: V** (A) 4 R~ as follows: 

I R ( q ( p ) :  =T(e,(p)) for all p c L , Y ~ V * * ( d j .  

Since V*(A) = lin P(A), this map is injective, clearly it is linear. Recall 
from the general theory of base normed and order unit normed spaces, that 
( V** (A), d"), where 

2: = (TE V**(A)JT(f) 2 0 for all f 2 0, T(e,(l)) = I) ,  

is a base normed space with unit ball equals to con(d"u -2)). Then 
R(J)  5 cSt (L), thus R (V** (A)) G V (B (L)). Now (R (V** (A)), R(J)) is a base 
normed space and (R (V** (A)), 11 I I , (~) )  becomes a Banach space isometric to 
(V**(A), 11 under the map R. 

Denote with J the canonical embedding map from V(A) into V**(A), an 
isometry. Then for V E  V(A) we get 

R(J (v))(P)  = J ( v )  ( e A ( ~ ) )  = e A ( ~ )  (v) = (P )  for PEL, 

showing that R o  J = id,(,,, hence V(A) G R(V**(A)). Also (V(A), 1) I),) is a 
subspace of (R(V**(A)), 11 I I R ( z ) )  since, for V E  VA). 

We set P: = ~(R(A) ) -  cl V(A). Then (E 11 I I v )  is the Banach space 
completion of (V(A), 11 11,). Clearly, T: P* -+ V* (A) defined by T( f )  
= f ( V(A) is an isometry from V* onto V*(A). We set 

Then a(c  P) = z(v; also note that 7(F) = =(A). 
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Let f E P* ; then 

for some maximal orthogonal set p,, p,, . . . , p, in L- {o)  and scalars 
t l ,  t2, . . ., trr, n > 0. As is easily seen, f) attains its norm on B(A) and, 
since the unit ball B of V contains B(A) and I I  T(j']lA-=! 1 f ] I v ,  we conclude 
that f attains its norm on E. This implies that B is u(T/, V*)-compact, by the 
theorem of James. 

Notice that o(v, F*)l V I A )  = a(V(A), V* (A)).  Since V* ( A )  = lin P(A),  we 
get P* = lin p, hence a(& v*) = z 1 T? This has the following consequence: 
A E B, hence c r  * )  c A is z 1 Pcompact, thus also T-compact. 
Furthermore, G ~ ( E  v*)-cld =TIP-cld c t -CIA,  hence d=cr(E /,*) 
-GI A. 

Now 

being convex and a(K P*)-compact. Since B = 11 - cl B ( A ) ,  we get 
B = con(d u -A). 

Clearly A is a convex subset of SZ(L). It now follows that P =  V ( d )  and 
1 1  I l e  = ( 1  I la Also ITi V* (J) V* ( A )  is an order-isomorphism, since 

(ii) We show that d  and A are orthofacial. First note that now Tea(p)  
= eA(p). Again, for f E V* (d), there exists an x  E S(L) 'such that 

n 

T ( f  = EA(x) = 1 ti e ,  (x({t i))) ,  where s(x) = i t l ,  t Z ,  . . . , t,). 
i =  1 

Then 

Let x E S (L), s(x) = (t, ,  t,, . . . , t,), ti < tj for i < j, and suppose that 
Ej(x)€  [0, e,-(l)]. Then 

, O$ t ,$E , - (x ) (p )$ t ,< l  for all ~ € 3 .  

We claim that 

E ( X ) ~ ( ~ ) = ( X ( { } ) )  and ~, - (x ) - l (O)nd=a, - (x ( {O) ) ) .  

Let , u ~ d  with p(x { I ) )  = 1 ;  then x  { l }  # 0, hence l ~ s ( x )  and t ,  = 1. 
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Now 
n 

E . z ( ~ )  ( P I  = C ti P (x {ti)) = 1 . 
i= 1 

Conversely, suppose that, for p~ 2, EEa(x) (p )  = 1. Then t, = 1  and clearly 
p ( x  (11))) = 1 since s (x) c [O, 11 and 

The second claim is proved in a similar manner. 
Let F E  n(d)- &(a); then there exists an X E S ( L )  with E a ( x ) ~  [D, e j ( l ) ]  

such that F = E a ( x ) p l ( l )  n 6. Therefore F = a j ( x ( ( l j ) ) ,  showing that the 
map a j  is surjective. 

Next, let EII,(al F, E ,  F E n (A)- &(A). Then there exists an XE S (L) with 
Ed($ E [0, e i ( l ) ]  such that E  E E 2 ( x )  ( 1 )  n d = aa (x ((I})) and 
F ~ ~ ~ ( x ) - ~ ( ~ ) n d = a , ( x ( { ~ ) ) ) .  Now if E = a a ( p )  and F = a , ( q ) ,  p , q ~ L ,  
then p < ~ ( ( 1 ) )  and q 6 x({O]) ,  hence p lq since { I )  n {O) = 0. This proves 
orthostability of 6. The proof that A is orthofacial is quite analogous. 

(iii) We show that ext LO, e , ( l ) ]  G P ( A )  holds true. Let f~ LO, e ,  ( I ) ] ,  
.f $ P ( A ) .  If I I f l I d  # then also f / l l . f l l d ~ ( O ?  eA(l) ]  and f = I l f  l l d ( f / l t . f l l A ) +  

(1 - 1 1  f lld)o, thus .f $ext [O, e A ( l ) ] .  Now suppose that 1 1  fjld = 1. There 
exist pairwise orthogonal elements p, , p,, . . . , p, in L - ( o) and scalars 
O i t ,  < t  ,... c t , - ,  < t ,  = 1 such that 

A 

Notice that n > 1 .  We set 

t O : = O , p o : = ( V p j ) l  and q i : =  V p j  for i = 0 ,  1 ,  2 ,  ..., n .  
j =  1 j= 0 

Then 
n 

= 1 ( t j + l - t j ) e ~ ( q j ) .  
j= 0 

Since 
n- 1 

( t j + l - t j ) = l ,  O < t j + l - t j <  1 ,  j = 1 , 2 ,  ..., n >  1, 
j =  0  

we conclude that f 4 ext [0, e A ( l ) ] .  



(iv) We cIaim that 

First notice that every orthogonal subset in L is finite since is t-closed 
and orthofacial. Therefore the poset (L,  <) is atomistic. Suppose now that 
PEL- {O, 1) and let q, ,  q2, ..., go, resp. r , ,  r2, ..., r,, be a maximal set of 
pairwise orthogonal atoms majorized by p, resp. p'. Then 

n m 

p = ' V q i  and p t = V r j .  
i=  1 j= 1 

Select pi E a,(qi), i = 1, 2, . . . , TI, resp. vj E ad (rj), j = 1, 2, . . , m, and 
define 

One verifies that [O, e, (1)] c J (x)-' ( -  co, 1 J and that J (x) (e, (p)) = 1. 
Suppose that, for g~ LO, ed (I)], J(x)(g) = 1 holds true. Then g(pi) = 1, i 
= 1 , 2  ,..., n, and g ( v j ) = O ,  j = 1 , 2  ,..., rn. Thus p i ~ g - l ( l ) n d  and 
vj E g-'(0) n A.  By faciality of d and theorem 4.3(iii), we conclude that 
a , ( g , ) ~ g - ~ ( l ) n A ~ n ( A ) - B ( d )  and a , ( r j ) c g - l ( 0 ) n A ~ n ( d ) - b ( ~ ) .  
Hence a,(p) ~ g - ' ( l ) n d  and a,(p') c g L 1 ( 0 ) n d .  But g =E(x) for some 
XE S(L). By a previous remark in (ii), we then get a, (p) E a, ( ~ ( { l ) ) )  and 
a, (p') c a, (x ({0))), thus p Q x ((1)) and p' < x ({O)). This shows that p 
= ~ ( 1 1 ) )  and p' = x((O}), hence, since o < p, p' < 1, 0, 1 E s (x) and finaIIy 
(0, I ]  = s(x). Then 

If p = 1, select a maximal orthogonal subset of atoms p,, p,, . . . , p,, in L 
and pi E aA(pi), i = 1, 2, . . . , n. Set 

Then J(x)(e,(l)) = 1 and LO, e,(l)] E J (x)-I (- co, 11. Now proceed as 
above to show that e,(l) is an n(d)-exposed point of [0, eA(l)]. If p = 0, then 
Jt-x)(0) = 0 and [O, e,(l)] c J ( - x ) - ' ( - a ,  01. If J(-x)(g) = 0, 
g E [0, e,(l)l, then J(x)(e,(l) -g) = 1, hence e,(l)-g = e,(l), thus g = 0. 

(v) Notice that T -  ' is a norm- and order-isomorphism from V*(A) to 
V*(A). Then, with (iii) and the previous remarks, it follows that 
ext [0, ea(l)] E ~ ( 2 ) .  As a straightforward excercise one shows that if 
f E a(~*(d), V(A)) -exp [0, e ,  (l)], then T-I f is a a(v* (d), V(2))exposed 
point of [0, e,-(l)]. Therefore, using (iv), we conclude that 

ext LO, e j  (I)] G P (3) G CJ (V* (21, V(&) - exp [0, ej(I)]. 
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It can be shown that, in theorem 6.6, the condition concerning the 
exposed points is not redundant for the assertion to hold true. 
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