PROBABILITY AND MATHEMATICAL STATISTICS Vol. 6, Fasc. 2 (1985), pp. 225–232

ON SOME CRITERION OF CONVERGENCE IN PROBABILITY

Wiesław Zięba

Abstract: Let (Ω, \mathcal{A}, P) be a probability space. (S, ϱ) denotes a metric space, and \mathcal{B} stands for the σ -field generated by open sets of S. The set S is assumed to be a separable and complete space. A sequence $\{X_n, n \ge 1\}$ of random elements, defined on a probability space (Ω, \mathcal{A}, P) taking values in S, is called *stable* if for every $B \in \mathcal{A}$, with P(B) > 0, there exists a probability measure μ_B such that

$$\lim_{n \to \infty} P([X_n \in A] | B) = \mu_B(A).$$

There are given conditions concerning the set $\mathcal{P}_{\mathcal{A}}(S) = \{\mu_B, B \in \mathcal{A}\}$ of probability measures, under which there exists a random element X such that the sequence $\{X_n, n \geq 1\}$ of random elements converges in probability to X.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; Key words and phrases: -

THE FULL TEXT IS AVAILABLE HERE