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Abstract. We consider the kinetic energy of the taut strings accompanying
trajectories of a Wiener process and a random walk. Under certain assump-
tions on the band width, it is shown that the energy of a taut string accom-
panying a random walk within a band satisfies the same strong law of large
numbers as proved earlier for a Wiener process and a fixed band width. New
results for Wiener processes are also obtained.
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1. INTRODUCTION

Consider a time interval [0, T ] and some continuous functional boundaries g1(t) ¬
g2(t), 0 ¬ t ¬ T . A taut string is a function h∗ that has the remarkable property of
universal optimization: for every convex function ϕ(·) it minimizes the functional

T∫
0

ϕ(h′(s)) ds

over all absolutely continuous functions h having the same values at 0 and T and
satisfying g1(t) ¬ h(t) ¬ g2(t), 0 ¬ t ¬ T . In particular, such functionals as the
kinetic energy

∫ T

0
h′(t)2 dt and the graph length

∫ T

0

√
1 + h′(t)2 dt are minimized

by taut strings [10, Theorem 5.2, Remark 5.2], [9, Theorems 4.1, 5.1, 5.2], [19,
Theorem 4.35, p. 141].

If the values at 0 and/or T are not fixed, the universality is maintained for the
smaller set of even convex functions.

Recall that for every function ϕ a solution of this problem exists, while for
strictly convex functions ϕ the solution is unique; however, if ϕ is not strictly
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convex, the uniqueness may break down. For example, for ϕ(x) = |x| there exist
curious alternative solutions called “lazy functions” [13]. In this article we deal
only with the kinetic energy, therefore uniqueness is not a problem.

Taut strings appeared in the literature for the first time in G. Dantzig’s article
[1] in connection with some problems of optimal control. For further developments
and applications of taut strings in optimal planning, discrete optimization, statis-
tics, image processing, and information transmission, we refer to [2], [3], [9], [15],
[16], [19], [20].

In [12], M. Lifshits and E. Setterqvist studied taut strings accompanying
a Wiener process. This work opened the way to further studies of taut strings
related to other random processes, other types of energy, and to other distances
between the string and the approximated process [4], [5], [6], [18].

In this work, we will consider taut strings accompanying a random walk and
extend to this case the results of [12], which we briefly recall now. Let us consider
taut strings running through a band of constant width around a sample path of a
Wiener process W , i.e. for some r > 0 we define the functional boundaries as
follows: g1(t) := W (t) − r, g2(t) := W (t) + r (see Fig. 1). The results of [12]
show that, as T →∞, the string expends an asymptotically constant amount of the
kinetic energy r−2C2 per unit of time. More precise statements are cited below in
Theorems 2.1 and 2.2.

In this article we establish an analogous result for the energy of taut strings
going through bands of different widths, i.e., we consider a system of problems
with boundaries g1(t) := W (t)−rT , g2(t) := W (t)+rT , 0 ¬ t ¬ T . The precise
statement is given in Theorem 2.3.

Then the result obtained is transferred to the case of random walk. Notice that
the assumptions imposed on the function T 7→ rT depend on the moment proper-
ties of the walk’s step. The precise statement is given in Theorem 2.4.

All proofs are collected in Section 4.

Figure 1. The taut string accompanying a Wiener process
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2. ENERGY OF ACCOMPANYING TAUT STRINGS

2.1. Wiener process. Throughout the article we consider the uniform norms

‖h‖T := sup
0¬t¬T

|h(t)|, h ∈ C[0, T ],

and the Sobolev norms

|h|2T :=
T∫
0

h′(t)2 dt, h ∈ AC[0, T ],

where AC[0, T ] denotes the space of absolutely continuous functions defined on
the time interval [0, T ]. We call |h|2T the kinetic energy or simply the energy of the
function h.

Let W be a Wiener process. We are interested in the following approximation
characteristics:

IW (T, r) := inf{|h|T : h∈AC[0, T ], ‖h−W‖T ¬ r, h(0) = 0},
I0W (T, r) := inf{|h|T : h∈AC[0, T ], ‖h−W‖T ¬ r, h(0) = 0, h(T ) =W (T )}.

The unique functions at which these infima are attained are called the taut string
and the taut string with fixed end, respectively.

The main results obtained in [12] are as follows.

THEOREM 2.1. There exists a constant C ∈ (0,∞) such that, as rT /T 1/2 → 0,
we have

rT

T 1/2
IW (T, rT )

Lq−→ C, rT
T 1/2

I0W (T, rT )
Lq−→ C

for every q > 0.

THEOREM 2.2. For every fixed r > 0, as T →∞, we have

r

T 1/2
IW (T, r) −→ C a.s.,

r

T 1/2
I0W (T, r) −→ C a.s.

The constant C2 is the energy per unit time that must be expended by an ab-
solutely continuous trajectory if it is bound to stay within unit distance of a non-
differentiable sample path of the Wiener processW . The precise value of C remains
unknown, while computer simulation yields the approximate value C ≈ 0.63;
moreover, in [12] the following theoretical bounds for C are obtained: 0.381 ¬
C ¬ π/2. An alternative theoretical approach to C is given in [18].

In the present work we need an intermediate result between Theorems 2.1 and
2.2: the band width will be varying as in Theorem 2.1 but the convergence with
probability one will be obtained, as in Theorem 2.2. The range of admissible vari-
ation of the band width turns out to be slightly more narrow than in Theorem 2.1.
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THEOREM 2.3. Let W be a Wiener process. Assume that a band width rT is
non-decreasing but

(2.1)
rT (ln lnT )1/2

T 1/2
→ 0 as T →∞,

the left hand side being non-increasing. Then

lim
T→∞

rT
T 1/2

IW (T, rT ) = C a.s.,(2.2)

lim
T→∞

rT
T 1/2

I0W (T, rT ) = C a.s.(2.3)

where C ∈ (0,∞) is the constant appearing in Theorem 2.1.

REMARK 2.1. The claim of the theorem obviously remains true if we replace
the band width rT by ρT = rT (1 + o(1)). This observation essentially enables one
to drop the monotonicity assumptions.

REMARK 2.2. It follows from the proof of the theorem that the claim (2.3)
remains valid if the condition of arriving at the end point W (T ) is replaced by
arrival at some given point W (T ) + xT with xT = o(rT ).

REMARK 2.3. In Theorem 2.3 a system of bands of constant widths is consid-
ered. However, one can derive from it information about the energy of taut strings
running through a band of varying width. Namely, suppose T 7→ rT satisfies the
assumptions of Theorem 2.3. Let

IW (T, r·) := inf{|h|T : h ∈ AC[0, T ], h(0) = 0, |h(t)−W (t)| ¬ rt, 0¬ t¬ T}.

Then, as T →∞,

IW (T, r·)
2 ∼ C2

T∫
0

dt

r2t
a.s.

The proof requires a considerable amount of computation and will be provided in
a subsequent publication.

Assumption (2.1) may look strange at first glance but the following proposition
shows that the iterated logarithm is essential.

PROPOSITION 2.1. Let M > 0 and rT = M(T/ln lnT )1/2. Then

lim sup
T→∞

rT
T 1/2

IW (T, rT ) ­
√

2M a.s.

2.2. Random walk. Let X1, X2, . . . be a sequence of i.i.d. real random variables.
Define their partial sums by S0 := 0 and

Sk :=
k∑

j=1

Xj , k ­ 1.
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Define on [0,∞) a random broken line S(·) as

S(t) :=

{
Sk, t = k, k = 0, 1, . . . ,

(k + 1− t)Sk + (t− k)Sk+1, t ∈ (k, k + 1), k = 0, 1, . . . .

We will consider the taut strings running through the band of width r around
the broken line S. We introduce the approximation characteristics for S similar to
those introduced previously for the Wiener process:

IS(T, r) := inf{|h|T : h ∈ AC[0, T ], ‖h− S‖T ¬ r, h(0) = 0},
I0S(T, r) := inf{|h|T : h ∈ AC[0, T ], ‖h− S‖T ¬ r, h(0) = 0, h(T ) = S(T )}.

In the following, just for simplicity, we only consider T ∈ N. Then the follow-
ing result on the energy of the taut string accompanying the random broken line S
(random walk) is true.

THEOREM 2.4. Let S be the random broken line based as above on the partial
sums of i.i.d. random variablesXj having zero expectation and unit variance. Sup-
pose each Xj has finite moment of order p > 2 and rT satisfies assumption (2.1)
and T 1/p = O(rT ). Then

lim
T→∞

rT
T 1/2

IS(T, rT ) = C a.s.,

lim
T→∞

rT
T 1/2

I0S(T, rT ) = C a.s.,

where C ∈ (0,∞) is the constant from Theorem 2.1.
Moreover, if the variables Xj have a finite exponential moment, then the above

mentioned equalities are true under assumptions (2.1) and lnT = o(rT ).

3. A TOOL FOR TRANSFER TO RANDOM WALK

We now recall the main tool for the transfer of the results known for a Wiener
process to a random walk.

Let X = {X1, X2, . . . } be a sequence of independent random variables with
finite second moments and let Y = {Y1, Y2, . . . } be a sequence of independent
Gaussian random variables such that each Yj has the same expectation and variance
as Xj . We want to construct (on some common probability space) the sequences
X̄ = {X̄1, X̄2, . . . } and Ȳ = {Ȳ1, Ȳ2, . . . } equidistributed with X and Y , respec-
tively, so that the discrepancy

max
1¬k¬n

∣∣∣ k∑
j=1

X̄j −
k∑

j=1

Ȳj

∣∣∣
is small in the sense of a.s. behavior: as n→∞, with probability one the discrep-
ancy should increase no faster than some known function; the latter is defined by
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the moment characteristics of the sequence X . Such closeness of two sequences is
called strong approximation.

The optimal rate of strong approximation for sums of i.i.d. random variables
was obtained by J. Komlos, P. Major and G. Tusnady. Here is a statement of their
result, called the KMT-theorem.

THEOREM 3.1. Let X = {X1, X2, . . . } be a sequence of i.i.d. random vari-
ables having finite moment of order p > 2. Then one may construct on some proba-
bility space a sequence X̄ = {X̄1, X̄2, . . . } equidistributed withX and a sequence
{Ȳ1, Ȳ2, . . . } of independent Gaussian random variables having the same expec-
tation and variance such that

n∑
j=1

X̄j −
n∑

j=1

Ȳj = o(n1/p) a.s.

If the variables Xj have a finite exponential moment, then one can obtain

n∑
j=1

X̄j −
n∑

j=1

Ȳj = O(lnn) a.s.

For the first claim of the theorem, see [14, p. 214] for 2 < p < 3 and [8] for
p > 2. For the second claim see [7, p. 112]. We also refer to [17], [21] for various
extensions of the KMT-approach.

4. PROOFS

4.1. Proof of Theorem 2.3. Before starting the proof, recall the following useful
technical result. Let m(T, r) denote the median of the random variable IW (T, r).
The concentration of IW (T, r) and the limiting properties ofm(T, r) are described
in the following lemma [12, Corollary 3.2 and p. 408].

LEMMA 4.1. (a) For all T, r, ρ > 0,

(4.1) P (|IW (T, r)−m(T, r)| ­ ρ) ¬ exp{−ρ2/2}.

(b) If a function T 7→ rT satisfies limT→∞ rT /T
1/2 = 0, then

lim
T→∞

rT

T 1/2
m(T, r) = C.

Now we are ready to start proving (2.2) and (2.3).

STEP 1: the proof of (2.2). Consider first an exponentially growing sequence
of time instants Tk := ak, where a > 1 is an arbitrary fixed number, as well as the
corresponding sequence of band widths rTk

. By using the concentration inequality
(4.1) together with (2.1), for arbitrary ε,M > 0 and sufficiently large k0 we have
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∞∑
k=k0

P
(
rTk

T
1/2
k

|IW (Tk, rTk
a1/2)−m(Tk, rTk

a1/2)| > ε

)
¬

∞∑
k=k0

exp

{
− Tkε

2

2r2Tk

}
¬

∞∑
k=k0

exp{−ε2M ln lnTk/2}

=
∞∑

k=k0

exp{−ε2M(ln ln a+ ln k)/2},

and this sum turns out to be finite if we choose M = M(ε) > 2ε−2. By the
Borel–Cantelli lemma we obtain

(4.2) lim
k→∞

rTk

T
1/2
k

(
IW (Tk, rTk

a1/2)−m(Tk, rTk
a1/2)

)
= 0 a.s.

Next, by the assumption of our theorem, a1/2rTk
/T

1/2
k → 0, and therefore

Lemma 4.1 yields the convergence of medians,
rTk

T
1/2
k

m(Tk, a
1/2rTk

)→ a−1/2C.

Taking into account (4.2), we obtain

(4.3) lim
k→∞

rTk

T
1/2
k

IW (Tk, a
1/2rTk

) = a−1/2C a.s.

Similarly, considering the sequence a−1/2rTk
, we get

(4.4) lim
k→∞

rTk

T
1/2
k

IW (Tk, a
−1/2rTk

) = a1/2C a.s.

Let us now consider arbitrary values of the time parameter T . By the assump-
tion of our theorem, the function

T 7→ rT

T 1/2
=
rT (ln lnT )1/2

T 1/2
· 1

(ln lnT )1/2

is non-increasing. Therefore, for every T ∈ [Tk−1, Tk],
rTk

T
1/2
k

¬ rT
T 1/2

¬
rTk−1

T
1/2
k−1

,

hence
a−1/2rTk

¬ rT ¬ a1/2rTk−1
.

By using the first of these inequalities as well as the fact that IW (·, r) is non-
decreasing, while IW (T, ·) is non-increasing, we obtain the bound

IW (T, rT ) ¬ IW (Tk, a
−1/2rTk

).

Since rT is non-decreasing, the limiting relation (4.4) yields

lim sup
T→∞

rT IW (T, rT )

T 1/2
¬ lim sup

k→∞

rTk
IW (Tk, a

−1/2rTk
)

(Tk/a)1/2
¬ aC.
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Similarly, on the other hand,

IW (T, rT ) ­ IW (Tk−1, a
1/2rTk−1

),

and it follows from (4.3) that

lim inf
T→∞

rT IW (T, rT )

T 1/2
­ lim inf

k→∞

rTk−1
IW (Tk−1, a

1/2rTk−1
)

(aTk−1)1/2
­ a−1C.

By letting a tend to 1 in the asymptotic bounds obtained, we get (2.2).

STEP 2: the proof of (2.3). We will now check the convergence of I0W (T, rT ).
It follows from the definition that

IW (T, r) ¬ I0W (T, r) for all T, r > 0.

This yields the lower bound in (2.3):

lim inf
T→∞

rT
T 1/2

I0W (T, rT ) ­ lim
T→∞

rT
T 1/2

IW (T, rT ) = C.

The proof of the upper bound requires another approach because I0W (·, r) is not
necessarily monotone.

Let us fix a δ ∈ (0, 1/3). For each interval length T we decompose T =
T∗ + LT , where LT ≈ r2T � T is small compared to T . The choice of LT will be
made precise later on.

Let h1 be the taut string at which IW (T∗, (1−3δ)rT ) is attained, i.e. h1(0) = 0
and

‖h1 −W‖T∗ ¬ (1− 3δ)rT ,(4.5)
|h1|T∗ = IW (T∗, (1− 3δ)rT ) ¬ IW (T, (1− 3δ)rT ).(4.6)

Further, let us introduce an auxiliary Wiener process

W̃ (s) := W (T∗ + s)−W (T∗), 0 ¬ s ¬ T − T∗ = LT ,

and approximate it with the taut string h2 at which I
W̃

(LT , δrT ) is attained, i.e.
h2(0) = 0 and

‖h2 − W̃‖LT
¬ δrT ,(4.7)

|h2|LT
= I

W̃
(LT , δrT ).(4.8)

Finally, we define an approximation function h with fixed end h(T ) = W (T ) by

h(t) :=

{
h1(t), 0 ¬ t ¬ T∗,
h1(T∗) + h2(t− T∗) + (t− T∗)ν, T∗ ¬ t ¬ T,
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where the constant ν is found from the equation

h(T ) = h1(T∗) + h2(LT ) + LT ν = W (T ),

i.e.

ν =
W (T )− h1(T∗)− h2(LT )

LT
.

Let us remark that h is continuous at the transition point T∗, since h2(0) = 0.
Moreover, h is absolutely continuous, being the result of continuous gluing of two
absolutely continuous pieces.

Furthermore, by (4.5) and (4.7) we have

(4.9) |ν| = |[W (T∗)− h1(T∗)] + [W (T )−W (T∗)− h2(LT )]|
LT

¬ |W (T∗)− h1(T∗)|+ |W̃ (LT )− h2(LT )|
LT

¬ (1− 3δ)rT + δrT
LT

=
(1− 2δ)rT

LT
.

Let us evaluate the uniform distance between h and W . For 0 ¬ t ¬ T∗, by
using (4.5) we have

|h(t)−W (t)| = |h1(t)−W (t)| ¬ ‖h1 −W‖T∗ ¬ (1− 3δ)rT .

For T∗ ¬ t ¬ T , we use an identity that is easy to verify,

h(t)−W (t) = h2(t−T∗)− W̃ (t−T∗)−
[
LT − (t−T∗)

]
ν+ W̃ (LT )−h2(LT ).

By using (4.7) and (4.9), we obtain

|h(t)−W (t)| ¬ 2|h2 − W̃ |LT
+ LT |ν| ¬ 2δrT + (1− 2δ)rT ¬ rT .

By merging the estimates for both intervals, we find

‖h−W‖T ¬ rT .

Let us now evaluate the energy of the function h. In view of (4.6), (4.8), and (4.9),
we have

|h|2T =
T∗∫
0

h′(t)2 dt+
T∫
T∗

h′(t)2 dt

=
T∗∫
0

h′1(t)
2 dt+

T∫
T∗

(h′2(t− T∗) + ν)2 dt

¬
T∗∫
0

h′1(t)
2 dt+ 2

T∫
T∗

h′2(t− T∗)2 dt+ 2ν2LT

¬ IW (T, (1− 3δ)rT )2 + 2I
W̃

(LT , δrT )2 +
2r2T
LT

.
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We may conclude that

I0W (T, rT )2 ¬ |h|2T ¬ IW (T, (1− 3δ)rT )2 + 2I
W̃

(LT , δrT )2 +
2r2T
LT

.

Since by (2.2),

lim
T→∞

r2T
T
IW (T, (1− 3δ)rT )2 = (1− 3δ)−2C2 a.s.,

and δ can be chosen arbitrarily small, to get the upper bound in (2.3) it is enough
to show that

lim
T→∞

r2T
T
I
W̃

(LT , δrT )2 = 0 a.s.,(4.10)

lim
T→∞

r2T
T

r2T
LT

= 0.(4.11)

Our next goal is a reduction to a discrete set of time instants. To this end, we
construct a time sequence inductively by letting T0 := 1, Tk+1 := Tk + r2Tk

.

We denote rk := rTk
and introduce the auxiliary Wiener processes by W̃k(s) :=

W (Tk + s)−W (Tk).
From the regularity conditions of our theorem, it easily follows that

lim
k→∞

Tk =∞, lim
k→∞

Tk+1

Tk
= 1, lim

k→∞

rk+1

rk
= 1.

Let us now specify the parameters of the previous construction by letting, for
T ∈ [Tk+1, Tk+2),

T∗ = T∗(T ) := Tk, LT := T − Tk.

Then for all sufficiently large k we have

rT
T 1/2

¬ 2rk

T
1/2
k

and
LT ­ Tk+1 − Tk = r2k > r2k+2/2 ­ r2T /2,

and (4.11) follows from (2.1). On the other hand, for all large k,

LT ¬ Tk+2 − Tk = r2k + r2k+1 < 3r2k,

which in combination with (4.10) yields

I
W̃k

(LT , δrT ) ¬ I
W̃k

(LT , δrk) ¬ I
W̃k

(3r2k, δrk).
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Therefore, to prove (4.10) it is sufficient to verify the relation

lim
k→∞

rk

T
1/2
k

I
W̃k

(3r2k, δrk)2 = 0 a.s.

which only concerns the discrete sequence of time instants.
Notice that the variables I

W̃k
(3r2k, δrk) are equidistributed with IW (3, δ) by the

self-similarity of the Wiener process. According to the Borel–Cantelli lemma, it is
enough to check that for every ε > 0,

(4.12)
∑
k

P
(
IW (3, δ) ­ ε

T
1/2
k

rk

)
<∞.

By using the Gaussian concentration estimate (4.1) we only need to check that for
every h > 0, ∑

k

exp

{
−hTk
r2k

}
<∞.

By using the fact that the functions T 7→ rT and T 7→ T/r2T are non-decreasing,
we get

Tk∫
Tk−1

exp

{
−hT
r2T

}
r−2T dT ­ (Tk − Tk−1) exp

{
−hTk
r2k

}
r−2k

=
r2k−1
r2k

exp

{
−hTk
r2k

}
= exp

{
−hTk
r2k

}
(1 + o(1)).

It remains to prove that

∞∫
exp

{
−hT
r2T

}
r−2T dT <∞.

Let us write the integrand as

exp

{
−hT
r2T

}
r−2T = exp

{
−hT
r2T

}
h
T

r2T
· h−1T−1 = exp{−u}u · h−1T−1,

where u := hT/r2T . Recall that, according to (2.1), we have u > 2 ln lnT for
sufficiently large T . Therefore,

exp{−u}u ¬ 2 exp{−2 ln lnT} ln lnT = 2(lnT )−2 ln lnT,

and we arrive at an estimate having the form of a convergent integral,

2h−1
∞∫ ln lnT

(lnT )2
T−1 dT <∞.

Thus (4.12) is proved, and hence (4.10) also follows. �



20 M. A. Lifshits and A. A. Siuniaev

4.2. Proof of Proposition 2.1. Our reasoning is based on the following elementary
bound: for all T, r > 0 and every function w ∈ C[0, T ],

(4.13) Iw(T, r)2 ­
[|w(T )− w(0)| − r]2+

T
.

Indeed, suppose ‖h − w‖T ¬ r and h(0) = w(0). Then the Hölder inequality
yields

|h|2T =
T∫
0

h′(s)2 ds ­
(
∫ T

0
h′(s) ds)2

T

=
(h(T )− h(0))2

T
­

[|w(T )− w(0)| − r]2+
T

,

and (4.13) follows.
Applying now (4.13) to w = W, r = rT in the framework of our proposition,

and using the law of the iterated logarithm for a Wiener process [11, Ch. 17], we
obtain

lim sup
T→∞

rT
T 1/2

IW (T, rT ) ­M lim sup
T→∞

1

(ln lnT )1/2
[|W (T )| − rT ]+

T 1/2

= M lim sup
T→∞

|W (T )|
(T ln lnT )1/2

= M
√

2. �

4.3. Proof of Theorem 2.4. Recall that for every integer k ∈ [0, T ] we consider the
partial sum Sk of i.i.d. random variables Xj , with zero expectations, unit variances
and finite moment of order p > 2. We approximate these sums by the partial sums
Wk of independent standard normal random variables Ȳj satisfying the assump-
tions of Theorem 3.1. The random broken line S is defined by the nodes (k, Sk) as
follows:

S(t) =

{
Sk, t = k, k = 0, 1, . . . , T ,

(k + 1− t)Sk + (t− k)Sk+1, t ∈ (k, k + 1), k = 0, 1, . . . , T − 1.

The random broken line W (t) is defined analogously for the nodes (k,Wk). Then
Theorem 3.1 yields Sk −Wk = o(k1/p) with probability one. This means that, as
T →∞, we have

(4.14) ‖S−W‖T = sup
0¬t¬T

|S(t)−W (t)| = max
0¬k¬T

|Sk−Wk| = o(T 1/p) a.s.

Now we build a Wiener process W̃ (t) upon the broken line W (t), by adding
independently a Brownian bridge W 0

k (t − k) to every segment, connecting the
nodes (k,Wk) and (k + 1,Wk+1). Let I

W̃
(T, rT )2 denote the energy of the taut
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string running in the band of width rT around the process W̃ on the time interval
[0, T ].

An upper bound for the energy. First of all, notice that (4.14) and the assump-
tions of our theorem provide

‖S −W‖T = o(T 1/p) = o(rT ).

Let ρT := rT − ‖S −W‖T = rT (1 + o(1)).
Choose a string h accompanying the Wiener process W̃ so that ‖h−W̃‖T ¬ ρT

and |h|T = I
W̃

(T, ρT ). Let ĥ be the random broken line corresponding to the
nodes (k, h(k)), 0 ¬ k ¬ T . Then

‖ĥ− S‖T ¬ ‖ĥ−W‖T + ‖W − S‖T ¬ ‖h− W̃‖T + ‖W − S‖T
¬ ρT + ‖W − S‖T = rT

and

|ĥ|2T =
T−1∑
k=0

k+1∫
k

ĥ′(s)2 ds =
T−1∑
k=0

(ĥ(k + 1)− ĥ(k))2 =
T−1∑
k=0

(h(k + 1)− h(k))2

=
T−1∑
k=0

(k+1∫
k

h′(s) ds
)2
¬

T−1∑
k=0

k+1∫
k

h′(s)2 ds = |h|2T .

By applying Theorem 2.3 and Remark 2.1, we obtain

IS(T, rT ) ¬ |ĥ|T ¬ |h|T = I
W̃

(T, ρT )

= CT
1/2

ρT
(1 + o(1)) = CT

1/2

rT
(1 + o(1)),

which provides the required upper bound.

A lower bound for the energy. Here, we must additionally take into account
that

‖W̃ −W‖T = max
0¬k<T

max
0¬s¬1

|W 0
k (s)| = O((lnT )1/2) a.s.

This follows from the well known bounds for the maxima of Gaussian processes
[11, Ch. 12]

P
(

max
0¬s¬1

|W 0
k (s)| ­ x

)
= exp{−2x2(1 + o(1))}, x→∞,

combined with the Borel–Cantelli lemma. In particular, under the assumptions of
our theorem we have

‖W̃ −W‖T = O((lnT )1/2) = o(T 1/p) = o(rT ).
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Let

ρT := rT + ‖S −W‖T + ‖W̃ −W‖T
= rT + o(T 1/p) +O((lnT )1/2) = rT (1 + o(1)).

Consider the string h accompanying the random broken line S such that
‖h− S‖T ¬ rT and |h|T = IS(T, rT ). Then

‖h− W̃‖T ¬ ‖h− S‖T + ‖S −W‖T + ‖W − W̃‖ ¬ ρT .

Therefore, Theorem 2.3 and Remark 2.1 yield

IS(T, rT ) = |h|T ­ IW̃ (T, ρT ) = CT
1/2

ρT
(1 + o(1)) = CT

1/2

rT
(1 + o(1)),

which yields the required lower bound.
The asymptotic behavior of I0S(T, rT ) is investigated in the same way. One

should additionally apply Remark 2.2 to Theorem 2.3 with xT := S(T )−W (T ).
The second part of the theorem is proved exactly as the first one but refers to

the second part of Theorem 3.1, i.e. instead of (4.14) we use

‖S −W‖T = sup
0¬t¬T

|S(t)−W (t)| = max
0¬k¬T

|Sk −Wk| = O(lnT ) a.s. �
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