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Abstract. A general question about the sufficiency of a subalgebra of
some bigger algebra in the general operator algebra framework, under the
assumption that the subalgebra in question is complete with respect to a
family of states, is considered. Two particular cases are dealt with: suffi-
ciency for Bayesian discrimination and sufficiency for unbiased estimation
with minimal variance. It turns out that in both cases sufficiency is equiva-
lent to the existence of a map from the bigger algebra into the smaller one
having some specific properties.
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1. INTRODUCTION

In this paper, we want to address some aspects of the fundamental question:
in what sense can a von Neumann subalgebra of a von Neumann algebra be con-
sidered sufficient? From the general point of view it seems reasonable to treat the
smaller algebra as such if it is able to serve the same purposes as the bigger one,
however, these purposes should be specified more concretely. For example, if we
are given a family of normal states {ρθ : θ ∈ Θ} on the von Neumann algebra
M, a von Neumann subalgebra N of M can be called sufficient if the values of
ρθ on N determine the values of ρθ on the whole of M. This can be achieved by
assuming the existence of a normal map α : M→ N such that ρθ = ρθ ◦ α for all
θ, and indeed this is the idea of the most popular definitions of sufficiency (for
technical reasons, in these definitions it is also assumed that α is unital and pos-
itive – simple sufficiency; α is unital and completely, or at least two-, positive –
Petz’s sufficiency; or that α is a conditional expectation – Umegaki’s sufficiency).
But suppose that we have a finite number of states ρ1, . . . , ρr, and we want to
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discriminate them. Then the subalgebra N will be sufficient if we can find there
a measurement which discriminates these states as efficiently as a measurement
in M. This idea of sufficiency was introduced by Jenčová in [8] under a somewhat
unfortunate name of two-sufficiency (the reason for the name was considering only
two states). It seems natural in this case to treat N as sufficient for discrimination.
Another problem consists in finding for an arbitrary unbiased estimator T ∈M of a
function g of parameter θ an unbiased estimator S ∈ N of g whose variation is not
greater than that of T . Again, in this case it seems natural to treat N as sufficient for
unbiased estimation with minimal variation. As it will turn out, these two modes of
sufficiency also lead to the existence of a map α (as mentioned earlier) with some
specific properties. In the course of our analysis, we assume that the subalgebra N

is complete with respect to the family {ρθ : θ ∈ Θ}. It would be a challenging task
to obtain similar results without this somewhat restrictive assumption.

2. PRELIMINARIES AND NOTATION

Let M be an arbitrary von Neumann algebra with identity 1 and predual M∗.
By Mh we denote the selfadjoint part of M, and by Mh

∗ – the space of Hermitian
functionals in M∗. Mh and Mh

∗ are real Banach spaces, and we have
(
Mh
∗
)∗

= Mh.
Let {ρθ : θ ∈ Θ} be a family of normal states on M. The couple (M, {ρθ :

θ ∈ Θ}) is usually called a quantum statistical model or a quantum statistical ex-
periment. If we agree that M represents the bounded observables of a physical
system, and ρθ are the possible states of this system, then our task consists in
finding in an optimal way the state in which the system really is. One of possible
approaches to this problem can be taken via Quantum Statistical Decision The-
ory. To briefly describe this approach, assume that we are given a finite number of
states ρ1, . . . , ρr which can occur with probabilities π1, . . . , πr. To make a deci-
sion, we perform a measurement M = (M1, . . . ,Mr) by which we mean positive
operators in M such that

∑r
j=1Mj = 1, and after obtaining the outcome Mj we

decide that the true state is ρj . If the true state is ρi, then the probability of obtain-
ing Mj equals ρi(Mj). If our guess is j (i.e., the state ρj) while the genuine state
is ρi, then we pay a penalty L(i, j). Thus we have, with fixed a priori probabil-
ity distribution π = (π1, . . . , πr) and loss function L, the following risk function
RM : {1, . . . , r} → R defined as

(2.1) RM (i) =
r∑

j=1

L(i, j)ρi(Mj).

(Note that RM (i) is our expected loss when the true state is ρi.) The expectation
of the risk function with respect to the a priori probability distribution π is called
the Bayes risk, and denoted by r(M), i.e.,

(2.2) r(M) =
r∑

i=1

r∑
j=1

πiL(i, j)ρi(Mj).
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Now our aim is to find a measurement M that minimizes the Bayes risk. (An
alternative approach, taken for instance in [3], is to treat L not as a loss function
but as a payoff function in which case formulas (2.1) and (2.2) define expected
gains rather than expected losses, and we want to maximize r(M) over all possible
measurements M .)

The most important particular case of the above general scheme is when we
consider the loss function L(i, j) = 1 − δij , the penalty is zero when we guess
correctly, and one when not. Then

r(M) =
∑
i ̸=j

πiρi(Mj) = 1−
r∑

i=1

πiρi(Mi).

The term

PD(M) =
r∑

i=1

πiρi(Mi)

represents the probability of correct detection of the true state while performing
measurement M = (M1, . . . ,Mr), so minimizing the Bayes risk is the same as
maximizing the probability of correct detection. The quantity

PD = sup
M

r∑
i=1

πiρi(Mi)

is often regarded as the measure of distinguishability of the states ρ1, . . . , ρr oc-
curring with a priori probabilities π1, . . . , πr (see [1], [2], [4], [6], [7] for a more
thorough description of these and other problems of Quantum Statistical Decision
Theory).

REMARK 2.1. From the point of view of comparing statistical models, the
above setup was slightly generalized so as to allow measurements (M1, . . . ,Mk)
of arbitrary length, and accordingly loss (payoff) functions L(i, j), i = 1, . . . , r,
j = 1, . . . , k, in which case we have

r(M) =
r∑

i=1

k∑
j=1

πiL(i, j)ρi(Mj).

However, considering Bayesian discrimination, it seems more appropriate to have
the number of states and the number of elements of the underlying measurement
equal (we choose the state ρj when the outcome of the measurement is Mj), so we
adopt this more natural setup.

REMARK 2.2. It can easily be shown that the set of all measurements of fixed
length is compact in an appropriate topology, thus all the “sup” and “inf” above
and in the sequel can be replaced by “max” and “min”, respectively. We shall not
make use of this fact.
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Now, let (M, {ρθ : θ ∈ Θ}) be a quantum statistical model, and let N be a
von Neumann subalgebra of M. We shall say that N is sufficient for (Bayesian)
discrimination if for each finite collection {ρθ1 , . . . , ρθr} of states, every a priori
probability distribution π = (π1, . . . , πr) on these states, and every loss function
L, we have

inf
N

r(N) = inf
M

r(M),

where N = (N1, . . . , Nr) is a measurement in N. Considering the relation above
for arbitrary functions L, it is clear that we can as well incorporate the πi into
L; consequently, for arbitrary real numbers L(i, j), we shall be dealing with the
relation

(2.3) inf
N

r∑
i=1

r∑
j=1

L(i, j)ρi(Nj) = inf
M

r∑
i=1

r∑
j=1

L(i, j)ρi(Mj),

where M = (M1, . . . ,Mr) and N = (N1, . . . , Nr) are measurements in M and
N, respectively.

Let now g : Θ→ R be any function of θ. A selfadjoint element T ∈M is said
to be an unbiased estimator of g if for all θ we have ρθ(T ) = g(θ). The variance
of T in the state ρθ is defined as

D2
θT = ρθ

((
T − ρθ(T )1

)2)
= ρθ(T

2)− ρθ(T )
2.

We shall say that N is sufficient for unbiased estimation with minimal variance if
for every function g and each unbiased estimator T ∈M of g there is an unbiased
estimator S ∈ N of g such that D2

θS 6 D2
θT . It is immediately seen that N is

sufficient for unbiased estimation with minimal variance if and only if for each
selfadjoint T ∈M there is a selfadjoint S ∈ N such that

ρθ(S) = ρθ(T ) and ρθ(S
2) 6 ρθ(T

2) for all θ ∈ Θ.

The following notion is well known in classical statistics. A subalgebra N of
M is said to be complete with respect to the family of states {ρθ : θ ∈ Θ} if for any
S ∈ N the equality ρθ(S) = 0 for all θ yields S = 0. It is clear that completeness
is equivalent to the separation of the points of N by the family {ρθ : θ ∈ Θ}. From
the Hahn–Banach theorem we infer also that the linear space Lin({ρθ|N : θ ∈ Θ})
of all linear combinations of the ρθ|N is dense in N∗, and the real linear space
LinR({ρθ|N : θ ∈ Θ}) of all linear combinations of the ρθ|N with real coefficients
is dense in Nh

∗ .

3. COMPARISON OF CHANNELS

Let A, M, N be arbitrary von Neumann algebras, and let E and F be quantum
channels transferring states of A to states of M and N, respectively, i.e., E and F
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are linear maps such that

E : A∗ →M∗, F : A∗ → N∗,

and for each normal state φ on A, Eφ is a normal state on M, and Fφ is a nor-
mal state on N. Following [5], the channel E is said to be less noisy than F , de-
noted by F ≺ E , if for an arbitrary collection of states φ1, . . . , φr in A∗ the states
Eφ1, . . . , Eφr are more distinguishable than the states Fφ1, . . . ,Fφr for any a
priori probability distribution (π1, . . . , πr). Thus, F ≺ E if

(3.1) sup
N

r∑
i=1

πi(Fφi)(Ni) 6 sup
M

r∑
i=1

πi(Eφi)(Mi)

for arbitrary states φ1, . . . , φr in A∗ and arbitrary a priori probability distribution
(π1, . . . , πr).

LEMMA 3.1. F ≺ E if and only if for arbitrary functionals φ1, . . . , φr in Ah
∗

we have

(3.2) sup
N

r∑
i=1

(Fφi)(Ni) 6 sup
M

r∑
i=1

(Eφi)(Mi).

P r o o f. Assume that F ≺ E . First we shall show that relation (3.2) holds for
arbitrary positive functionals φ1, . . . , φr in A∗. We may assume that φi ̸= 0. Then
φi/∥φi∥ are states. Put

c =
1

∥φ1∥+ . . .+ ∥φr∥
, πi = c∥φi∥, i = 1, . . . , r.

Then (π1, . . . , πr) is a probability distribution, and we have

r∑
i=1

(Eφi)(Mi) =
1

c

r∑
i=1

πi

(
E
(

φi

∥φi∥

))
(Mi),

r∑
i=1

(Fφi)(Ni) =
1

c

r∑
i=1

πi

(
F
(

φi

∥φi∥

))
(Ni),

showing that relation (3.2) follows from (3.1).
Let now φ1, . . . , φr be arbitrary functionals in Ah

∗ . Let φ0 be a positive func-
tional in A∗ such that φ0 + φi > 0 for all i = 1, . . . , r. We have

r∑
i=1

(
E(φ0 + φi)

)
(Mi) = (Eφ0)(1) +

r∑
i=1

(Eφi)(Mi)

= φ0

(
E∗(1)

)
+

r∑
i=1

(Eφi)(Mi) = φ0(1) +
r∑

i=1

(Eφi)(Mi)
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since E∗(1) = 1, and by the same token

r∑
i=1

(
F(φ0 + φi)

)
(Ni) = φ0(1) +

r∑
i=1

(Fφi)(Ni).

Since the functionals φ0 + φi are positive, we infer that relation (3.2) for positive
functionals yields the same relation for Hermitian ones.

It is obvious that relation (3.2) for arbitrary functionals φ1, . . . , φr in Ah
∗ im-

plies F ≺ E . �

It turns out that (3.1) is a quite strong relation even if it holds only for two
states.

PROPOSITION 3.1. Assume that for arbitrary states φ1, φ2 in A∗ and arbi-
trary a priori probability distribution (π1, π2) the inequality

sup
N

2∑
i=1

πi(Fφi)(Ni) 6 sup
M

2∑
i=1

πi(Eφi)(Mi)

holds. Then for each functional φ in Ah
∗ we have

∥Fφ∥ 6 ∥Eφ∥.

P r o o f. As in Lemma 3.1, we may assume that for arbitrary functionals
φ1, φ2 in Ah

∗ we have

(3.3) sup
N

2∑
i=1

(Fφi)(Ni) 6 sup
M

2∑
i=1

(Eφi)(Mi).

Let φ ∈ Ah
∗ , and put φ1 = φ, φ2 = −φ. Then for any measurement (M1,M2) we

have

(3.4) (Eφ1)(M1) + (Eφ2)(M2) = (Eφ)(M1 −M2) 6 ∥Eφ∥

since ∥M1 −M2∥ 6 1. On the other hand, for the Jordan decomposition

Eφ = (Eφ)+ − (Eφ)−,

we have
∥Eφ∥ = ∥(Eφ)+∥+ ∥(Eφ)−∥;

moreover, the positive functionals (Eφ)+ and (Eφ)− have orthogonal supports. Let
E denote the support of (Eφ)+. Then

∥(Eφ)+∥ = (Eφ)+(E), ∥(Eφ)−∥ = (Eφ)−(1− E).
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Consequently,

(Eφ)(E) = (Eφ)+(E)− (Eφ)−(E) = ∥(Eφ)+∥,
and (

E(−φ)
)
(1− E) = (Eφ)−(1− E)− (Eφ)+(1− E) = ∥(Eφ)−∥.

Thus for the measurement (E,1− E) we obtain

(Eφ)(E) +
(
E(−φ)

)
(1− E) = ∥(Eφ)+∥+ ∥(Eφ)−∥ = ∥Eφ∥,

which together with inequality (3.4) shows that

sup
M

2∑
i=1

(Eφi)(Mi) = ∥Eφ∥.

In the same way we get

sup
N

2∑
i=1

(Fφi)(Ni) = ∥Fφ∥,

so relation (3.3) yields the inequality ∥Fφ∥ 6 ∥Eφ∥. �

4. CHARACTERIZATION OF SUFFICIENCY FOR BAYESIAN DISCRIMINATION

In this section, we characterize the sufficiency of a von Neumann subalgebra
for Bayesian discrimination.

THEOREM 4.1. Let {ρθ : θ ∈ Θ} be a family of normal states on a von Neu-
mann algebra M, and let N be a von Neumann subalgebra of M complete with
respect to {ρθ : θ ∈ Θ}. Then N is sufficient for Bayesian discrimination if and
only if there is a normal conditional expectation α from M onto N such that

(4.1) ρθ ◦ α = ρθ for all θ ∈ Θ.

P r o o f. Assume first that N is sufficient for Bayesian discrimination. Take
an arbitrary fixed collection {ρθ1 , . . . , ρθr} of states. Let A be the abelian von
Neumann algebra generated by a sequence {P1, . . . , Pr} of pairwise orthogonal
projections summing up to 1:

A =
{ r∑

i=1

ciPi : ci ∈ C, i = 1, . . . , r
}
.

Each sequence (a1, . . . , ar) of complex numbers can obviously be identified
with a linear functional φ on A, and vice versa, by the equality φ(Pi) = ai, i.e.,

φ
( r∑
i=1

ciPi

)
=

r∑
i=1

aici.
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Define maps E and F from A∗ to M∗ and N∗, respectively, as

Eφ =
r∑

i=1

aiρθi , Fφ =
r∑

i=1

ai(ρθi |N)

for φ = (a1, . . . , ar). It is easily seen that E and F are quantum channels.
Let us take arbitrary functionals φ1, . . . , φr in Ah

∗ , and to conform to our
previous notation denote them by φj =

(
L(1, j), . . . , L(r, j)

)
, j = 1, . . . , r, with

L(i, j) ∈ R. Then for every measurement M = (M1, . . . ,Mr) in M we have

r∑
j=1

(Eφj)(Mj) =
r∑

j=1

r∑
i=1

L(i, j)ρθi(Mj),

and similarly for F . Since N is sufficient, we have the relation

inf
N

r∑
j=1

r∑
i=1

L(i, j)ρθi(Nj) = inf
M

r∑
j=1

r∑
i=1

L(i, j)ρθi(Mj),

which means that

inf
N

r∑
j=1

(Fφj)(Nj) = inf
M

r∑
j=1

(Eφj)(Mj).

Proposition 3.1 yields the equality

∥Fφ∥ = ∥Eφ∥

for each φ ∈ Ah
∗ , i.e.,

∥∥ r∑
i=1

ai(ρθi |N)
∥∥ =

∥∥ r∑
i=1

aiρθi
∥∥

for any a1, . . . , ar ∈ R. Since ρθ1 , . . . , ρθr were arbitrary, the relation above allows
us to define an isometry

L : LinR({ρθ|N : θ ∈ Θ})→Mh
∗

by the formula

L
( r∑
i=1

ai(ρθi |N)
)
=

r∑
i=1

aiρθi ,

and this isometry is extended to the whole of Nh
∗ . Put α = L∗. Then α is a linear

normal map from Mh to Nh of norm one. For T ∈Mh, we have

ρθ
(
α(T )

)
= (ρθ|N)

(
α(T )

)
=

(
L(ρθ|N)

)
(T ) = ρθ(T ),
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showing that relation (4.1) holds on Mh. For S ∈ Nh, we obtain

ρθ
(
α(S)

)
= ρθ(S),

and the completeness of N yields α(S) = S. Thus α is a projection onto Nh. In
particular, α is unital, and the same reasoning as for maps on the whole algebra (not
only on its selfadjoint part) shows that α is positive. Now extend α to the whole
of M. Then this extended α is a positive projection onto N, and since α(1) = 1,
the positivity yields ∥α∥ = 1. Thus α is a (positive) projection onto N of norm one,
i.e., a conditional expectation. It is obvious that relation (4.1) is satisfied.

Now assume that there is a conditional expectation α from M onto N satis-
fying condition (4.1). For each measurement (Mj) in M, put Nj = α(Mj). Then
(Nj) is a measurement in N, and for any ρθ1 , . . . , ρθr and any loss function L(i, j)
we have

r∑
i=1

r∑
j=1

L(i, j)ρθi(Nj) =
r∑

i=1

r∑
j=1

L(i, j)ρθi(Mj),

which shows that N is sufficient for Bayesian discrimination. �

5. CHARACTERIZATION OF SUFFICIENCY FOR UNBIASED ESTIMATION
WITH MINIMAL VARIANCE

Now we characterize the sufficiency of a von Neumann subalgebra for unbi-
ased estimation with minimal variation.

THEOREM 5.1. Let {ρθ : θ ∈ Θ} be a family of normal states on a von Neu-
mann algebra M, and let N be a von Neumann subalgebra of M complete with
respect to {ρθ : θ ∈ Θ}. Then N is sufficient for unbiased estimation with minimal
variance if and only if there is a linear bounded normal Hermitian projection α
from M onto N such that

(5.1) ρθ ◦ α = ρθ for all θ ∈ Θ,

and

(5.2) α(T ◦ S) = α(T ) ◦ S for all T ∈M, S ∈ N,

where “◦” stands for the Jordan product defined as

T ◦ S =
TS + ST

2
.

P r o o f. Assume that N is sufficient. Take an arbitrary T ∈Mh. There exists
uniquely determined S ∈ Nh such that ρθ(S) = ρθ(T ). Indeed, if we had ρθ(T ) =
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ρθ(S1) = ρθ(S2), then from the completeness of N it would follow that S1 = S2.
Thus we may define a map α : Mh → Nh by the formula

α(T ) = S.

We have ρθ
(
α(T )

)
= ρθ(S) = ρθ(T ), and thus ρθ ◦ α = ρθ for all θ ∈ Θ.

Let us take arbitrary T1, T2 ∈ Mh and put α(T1) = S1, α(T2) = S2,
α(T1 + T2) = S3. Then

ρθ(S1 + S2) = ρθ
(
α(T1)

)
+ ρθ

(
α(T2)

)
= ρθ(T1 + T2) = ρθ

(
α(T1 + T2)

)
= ρθ(S3),

showing that S1 + S2 = S3, i.e., α is additive. In a similar way we show homo-
geneity, thus α is linear.

Now, let Nh ∋ Tn → T ∈ Nh and α(Tn)→ S. We have

ρθ
(
α(Tn)

)
→ ρθ(S),

and, on the other hand,

ρθ
(
α(Tn)

)
= ρθ(Tn)→ ρθ(T ) = ρθ

(
α(T )

)
,

showing that ρθ(S) = ρθ
(
α(T )

)
, and, consequently, S = α(T ). This means that

α is closed, and thus bounded.
For each S ∈ N, we have ρθ

(
α(S)

)
= ρθ(S), thus α(S) = S, which shows

that α is a projection. We extend α in an obvious way from Nh to N.
For a bounded linear map α∗ : N∗ → M∗, we have α∗(ρθ|N) = ρθ, hence

α∗(Lin{ρθ|N : θ ∈ Θ}) ⊂ M∗. Since Lin{ρθ|N : θ ∈ Θ} is a dense subspace of
N∗, we obtain α∗(N∗) ⊂M∗. Now, putting α∗|N∗ = α∗, it is easily seen that α =
(α∗)

∗, which means that α is normal.
Observe that the condition of decreasing variance has now the form

ρθ(T
2) > ρθ(S

2) = ρθ
(
α(T )2

)
.

Define, for each θ ∈ Θ, a bilinear form on Mh by the formula

[T, S]θ = ρθ
(
α(T ◦ S)− α(T ) ◦ α(S)

)
, T, S ∈Mh.

We have, for each T ∈Mh,

[T, T ]θ = ρθ
(
α(T 2)− α(T )2

)
= ρθ(T

2)− ρθ
(
α(T )2

)
> 0,

so the form is positive. The Schwarz inequality yields

|[T, S]θ|2 6
(
ρθ(T

2)− ρθ
(
α(T )2

))(
ρθ(S

2)− ρθ
(
α(S)2

))
;
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in particular, for S ∈ Nh, we have
(
ρθ(S

2) − ρθ
(
α(S)2

))
= 0, thus [T, S]θ = 0

for any T ∈Mh, S ∈ Nh. This means that

0 = [T, S]θ = ρθ
(
α(T ◦ S)− α(T ) ◦ α(S)

)
= ρθ

(
α(T ◦ S)− α(T ) ◦ S

)
,

showing the equality

α(T ◦ S) = α(T ) ◦ S for T ∈Mh, S ∈ Nh.

It follows that the above equality holds for T ∈ M and S ∈ N, so α has all the
desired properties.

Assume now that there is a linear bounded normal Hermitian projection α
from M onto N satisfying (5.1) and (5.2). For each θ, define on Mh a positive
bilinear form

⟨T, S⟩θ = ρθ(T ◦ S).

For an arbitrary T ∈Mh, put S = α(T ). Then S ∈ Nh, ρθ(S) = ρθ(T ), and from
the Schwarz inequality we obtain

ρθ
(
α(T )2

)
= ρθ

(
α
(
T ◦ α(T )

))
= ρθ

(
T ◦ α(T )

)
= ⟨T, α(T )⟩θ 6

√
ρθ(T 2)

√
ρθ
(
α(T )2

)
,

showing that
ρθ(S

2) = ρθ
(
α(T )2

)
6 ρθ(T

2),

which means that S is the desired estimator having variance not greater than that
of T . �

REMARK 5.1. While it is obvious that α in the theorem above is unital, ap-
parently it need not be of norm one or, equivalently, positive. If it were, then being
a projection of norm one onto a von Neumann subalgebra, α would be a condi-
tional expectation – a condition which seems to be considerably stronger than that
required of α in formula (5.2).

6. CONCLUDING REMARKS

Theorems 4.1 and 5.1 give nice descriptions of sufficient subalgebras for Ba-
yesian discrimination and unbiased estimation with minimal variance in the case
when the subalgebra in question is complete. This assumption, although being a
counterpart of a classical notion, seems quite restrictive, and it would be desir-
able to obtain similar descriptions of sufficiency without it. On the other hand,
the notion of completeness turned out to be fruitful in the investigations of suffi-
ciency performed in [9] where it was proved, for example, that under this condition
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Umegaki’s sufficiency, Petz’s sufficiency and simple sufficiency are all equivalent
([9], Theorem 3) or that completeness plus sufficiency yield the minimality of the
subalgebra ([9], Theorem 4). Also in this context, a quantum version of Basu’s the-
orem was obtained ([9], Theorem 5). It is hoped that further investigations in the
field of sufficiency will clarify the possibility of giving up, or at least weakening,
the completeness assumption.
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