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Abstract. We provide Buehler-optimal one-sided and valid two-sided
confidence intervals for the average success probability of a possibly inho-
mogeneous fixed length Bernoulli chain, based on the number of observed
successes. Contrary to some claims in the literature, the one-sided Clopper–
Pearson intervals for the homogeneous case are not completely robust here,
not even if applied to hypergeometric estimation problems.
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1. INTRODUCTION AND RESULTS

The purpose of this paper is to provide optimal one-sided (Theorem 1.2) and
valid two-sided (Theorems 1.1 and 1.3) confidence intervals for the average suc-
cess probability of a possibly inhomogeneous fixed length Bernoulli chain, based
on the number of observed successes. For this situation, intervals proposed in the
literature known to us are, if at all clearly specified, in the one-sided case either
not optimal or erroneously claimed to be valid (see Remarks 1.3 and 1.8 below),
and in the two-sided case either improved here (see Remark 1.11) or not previously
proven to be valid.

To be more precise, let Bp for p ∈ [0, 1], Bn,p for n ∈ N0 and p ∈ [0, 1],
and BCp := ∗nj=1 Bpj for n ∈ N0 and p ∈ [0, 1]n denote the Bernoulli, binomial,
and Bernoulli convolution (or Poisson-binomial) laws with the indicated param-
eters. For a, b ∈ R ∪ {−∞,∞} let ]a, b] := {x : a < x ¬ b} and let the other
intervals be defined analogously. Then, for n ∈ N and β ∈ ]0, 1[, and writing
p := 1

n

∑n
j=1 pj for p ∈ [0, 1]n, we are interested in β-confidence regions for the

estimation problem (
(BCp : p ∈ [0, 1]n) , [0, 1]n ∋ p 7→ p

)
,(1.1)
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that is, in functions K: {0, . . . , n} → 2[0,1] satisfying BCp (K ∋ p)  β for p ∈
[0, 1]n. Clearly, every such K is also a β-confidence region for the binomial esti-
mation problem (

(Bn,p : p ∈ [0, 1]), id[0,1]
)
,(1.2)

that is, satisfies Bn,p (K ∋ p)  β for p ∈ [0, 1], but the converse is false by Re-
mark 1.2 below. However, a classical Chebyshev–Hoeffding result easily yields the
following basic fact.

THEOREM 1.1. Let n ∈ N and β ∈ ]0, 1[. For m ∈ {0, . . . , n}, let K′m be a
β-confidence region for

(
(Bm,p : p ∈ [0, 1]), id[0,1]

)
. Then a β-confidence region K

for (1.1) is given by

K(x) :=
∪

l∈{0,...,x},
m∈{x−l,...,n−l}

(
m
n K
′
m(x− l) + l

n

)
⊇ K′n(x) for x ∈ {0, . . . , n}.

Proofs of the three theorems of this paper are presented in Section 2 below.
If the above K′m are taken to be one-sided intervals of Clopper and Pearson [5],

then the resulting K turns out to be Buehler-optimal and, if β is not unusually small,
the formula for K simplifies drastically, as stated in Theorem 1.2 below for uprays:

A set J ⊆ [0, 1] is an upray in [0, 1] if x ∈ J, y ∈ [0, 1], x ¬ y jointly imply
y ∈ J . This is equivalent to J being of the form [a, 1] or ]a, 1] for some a ∈ [0, 1].
A function K: {0, . . . , n} → 2[0,1] is an upray if each of its values K(x) is an
upray in [0, 1].

For β ∈ ]0, 1[ and with

gn(x) := gn,β(x) := the p ∈ [0, 1] with Bn,p({x, . . . , n}) = 1− β

for n ∈ N and x ∈ {1, . . . , n}, which is well defined due to the strict isotonicity of
p 7→ Bn,p({x, . . . , n}) and which yields, in particular, the special values

(1.3) gn(1) = 1− β1/n and gn(n) = (1− β)1/n

and the fact that

(1.4) gn,β(x) is strictly
{

increasing
decreasing

}
in

{
x
β

}
,

the Clopper–Pearson β-confidence uprays KCP,n : {0, . . . , n} → 2[0,1] are given
by the formula

(1.5) KCP,n(x) := KCP,n,β(x) :=

{
[0, 1] if x = 0,

]gn(x), 1] if x ∈ {1, . . . , n}
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for n ∈ N0, and in particular

KCP,n(1) = ]1− β1/n, 1] and KCP,n(n) = ](1− β)1/n, 1]

for n ∈ N.
An upray K: {0, . . . , n} → 2[0,1] is isotone if it is isotone with respect to the

usual order on {0, . . . , n} and the order reverse to set inclusion on 2[0,1], that is, if
we have the implication

x, y ∈ {0, . . . , n}, x < y ⇒ K(x) ⊇ K(y),

and strictly isotone if “⊇” above can be sharpened to “)”. For example, each of the
above KCP,n is strictly isotone by (1.4) and (1.5). An isotone β-confidence upray K
for (1.1) is (Buehler-)optimal (see Buehler [2] and the recent discussion by Lloyd
and Kabaila [11], prompted by rediscoveries by Wang [16]) if every other isotone
β-confidence upray K∗ for (1.1) satisfies K(x) ⊆ K∗(x) for every x ∈ {0, . . . , n}.
Finally, a not necessarily isotone β-confidence upray K for (1.1) is admissible in
the set of all confidence uprays for (1.1) if for every other β-confidence upray K∗

for (1.1) with K∗(x) ⊆ K(x) for each x ∈ {0, . . . , n} we have K∗ = K.
Let us put

βn := Bn,1/n({0, 1}) for n ∈ N,

so that β1 = 1, β2 = 3
4 , β3 = 20

27 , and βn ↓ 2
e = 0.735 . . ., with the strict antitonic-

ity of (βn) following from Jogdeo and Samuels [9] (see [9], Theorem 2.1 with
mn := n, pn := 1

n , r := 0), so that we have in particular

βn ¬ 3
4 for n  2.

THEOREM 1.2. Let n ∈ N and β ∈ ]0, 1[, and let K be as in Theorem 1.1 with
the K′m := KCP,m as defined in (1.5). Then K is the optimal isotone β-confidence
upray for (1.1), is admissible in the set of all β-confidence uprays for (1.1), is
strictly isotone, and has the effective level infp∈[0,1]n BCp (K ∋ p) = β. We have

(1.6) K(x) =


[0, 1] if x = 0,]1−β

n , 1
]

if x = 1,

]gn(x), 1] if x ∈ {2, . . . , n} and β  βn.

REMARK 1.1. Nestedness is preserved by the construction in Theorem 1.1:
Suppose that we apply Theorem 1.1 to several β ∈ ]0, 1[ and that we accordingly
write K′m,β and Kβ in place of K′m and K. If now β, β̃ ∈ ]0, 1[ with β < β̃ are
such that K′m,β(x) ⊆ K′

m,β̃
(x) holds for m ∈ {0, . . . , n} and x ∈ {0, . . . ,m},

then, obviously, Kβ(x) ⊆ Kβ̃(x) holds for x ∈ {0, . . . , n}. By the second line
in (1.4) and by (1.5), the Clopper–Pearson uprays are nested, and hence so are
the uprays of Theorem 1.2. Analogous remarks apply to the confidence downrays
of Remark 1.6 and to the two-sided confidence intervals of Theorem 1.3.
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REMARK 1.2. Let n  2 and β ∈ ]0, 1[. As noted by Agnew [1] but ignored
by later authors (compare Remark 1.8 below), KCP,n is not a β-confidence region
for (1.1). This is obvious from Theorem 1.2 and KCP,n(1) ( K(1), by using either
the optimality of K and the isotonicity of KCP,n, or the admissibility of K and
KCP,n(x) ⊆ K(x) for every x. If β  βn, then Theorem 1.2 further implies that
the effective level of KCP,n as a confidence region for (1.1) is

γn := 1− n(1− β1/n) ∈ ]1 + log(β), β[,

as for p ∈ [0, 1]n with p /∈
]1−β

n , gn(1)
]
, formula (1.6) yields BCp(KCP,n ∋ p) =

BCp (K ∋ p)  β, and considering p1 = ngn(1) ¬ 1 and p2 = . . . = pn = 0 in
the second step below yields

inf
p∈](1−β)/n,gn(1)]

BCp(KCP,n ∋ p) = inf
p∈](1−β)/n,gn(1)]

n∏
j=1

(1− pj)

= 1− ngn(1) = γn.

Since γn ↓ 1 + log(β) < β for n → ∞, it follows for β > 2
e that the KCP,n are

not even asymptotic β-confidence regions for (1.1).

REMARK 1.3. The only previous β-confidence upray for (1.1) known to us
was provided by Agnew [1] (see [1], Section 3) as KA(x) := [gA(x), 1] with gA(0)
:= 0 and gA(x) := gn(x) ∧ x−1

n for x ∈ {1, . . . , n}. But KA is strictly worse than
the optimal isotone K from Theorem 1.2, since KA is isotone as well,with KA(1) =
[0, 1] ) K(1). On the other hand, Lemma 2.2 below shows that actually gA(x) =
gn(x) for β  βn and x ∈ {2, . . . , n}, which is a precise version of an unproven
claim in the cited reference.

REMARK 1.4. The condition β  βn in (1.6) cannot be omitted. Indeed, for
n ∈ N, let An :=

{
β ∈ ]0, 1[ : If K is as in Theorem 1.2, then K(x) = ]gn(x), 1]

for x ∈ {2, . . . , n}
}

. Then [βn, 1[ ⊆ An by Theorem 1.2. Numerically, we found,
for example, also βn − 0.001 ∈ An for 2 ¬ n ¬ 123, but K(2) ) ]gn(2), 1] for
β = βn − 0.001 and 124 ¬ n ¬ 3000.

REMARK 1.5. The β-confidence upray K for (1.1) from Theorem 1.2 con-
sidered merely as a β-confidence interval shares with KCP,n as a β-confidence
interval for (1.2) the defect of not being admissible in the set of all β-confidence
intervals, since with c :=

(
inf K(n)

)
∨
(
1− (1− β)1/n

)
and

K∗(x) :=

{
[0, c] ( K(0) if x = 0,

K(x) if x ∈ {1, . . . , n},

we have BCp(K
∗ ∋ p) = BCp(K ∋ p)  β if p ¬ c, and, if p > c, BCp(K

∗ ∋ p)
= BCp({1, . . . , n}) = 1−

∏n
j=1(1− pj)  1− (1− p)n > 1− (1− c)n  β.



Confidence intervals for average success probabilities 305

REMARK 1.6. Since K is a β-confidence region for (1.1) iff {0, . . . , n} ∋
x 7→ 1−K(n−x) is one, Theorem 1.2 and Remarks 1.1–1.5 yield obvious analogs
for downrays, that is, confidence regions with each value being [0, b[ or [0, b]
for some b ∈ [0, 1]: A downray Λ: {0, . . . , n} → 2[0,1] is isotone if Λ(x) ⊆ Λ(y)
holds for x < y. The Clopper–Pearson downrays ΛCP,n := ΛCP,n,β defined by
ΛCP,n,β(x) := 1−KCP,n,β(n− x) are isotone, and Theorem 1.2 remains valid if
we replace KCP,m by ΛCP,m, upray by downray, and (1.6) by

(1.7) K(x) =


[0, 1− gn(n− x)[ if x ∈ {0, . . . , n− 2} and β  βn,[
0, 1− 1−β

n

[
if x = n− 1,

[0, 1] if x = n.

REMARK 1.7. Let n ∈ N, x ∈ {0, . . . ,n}, and beta  3/4 be given. Then,
by Theorem 1.2, an R code for computing the lower beta-confidence bound is

(x==1)*((1-beta)/n)+
(x!=1)*binom.test(x,n,alt="g",conf.level=beta)$conf.int[1]

and, by Remark 1.6, the corresponding code for the upper beta-confidence bound
is the following:

(x==n-1)*(1-(1-beta)/n)+
(x!=n-1)*binom.test(x,n,alt="l",conf.level=beta)$conf.int[2]

For example, in [3] (p. 249, lines 13–21) we have n = 7 and x = 6, yield-
ing here for beta = 0.99, 0.98, and 0.95 the lower confidence bounds 0.356 . . . ,
0.404 . . . , and 0.479 . . . , respectively, so that the bounds claimed in [3] are indeed
valid, but only now proven to be valid by Theorem 1.2 (compare Remark 1.8).

REMARK 1.8. Papers erroneously claiming the Clopper–Pearson uprays or
downrays to be β-confidence regions for (1.1) include: Kappauf and Bohrer [10]
(p. 652, lines 3–5), Byers et al. [3] (p. 249, the first column, lines 15–18), and
Cheng et al. [4] (p. 7, lines 10–8 from the bottom). The analogous claim of Ollero
and Ramos [12] (p. 247, lines 9–12) for a certain subfamily of (BCp : p ∈ [0, 1]n),
which includes the hypergeometric laws with sample size parameter n, is refuted
in Remark 1.10 below. The common source of error in these papers seems to
be an unclear remark of Hoeffding [8] (p. 720, the first paragraph of Section 5)
related to the fact that, by Theorem 4 in [8] or by David [6], certain tests for
Θ0 ⊆ [0, 1] in the binomial model (Bn,p : p ∈ [0, 1]) keep their level as tests for
Θ̃0 := {p ∈ [0, 1]n : p ∈ Θ0} in (BCp : p ∈ [0, 1]n). Let us further note that Ollero
and Ramos [12] could have cited Vatutin and Mikhailov [15] concerning the rep-
resentability of hypergeometric laws as Bernoulli convolutions.

REMARK 1.9. The core of the unclear remark in [8] mentioned in Remark 1.8
is “that the usual (one-sided and two-sided) tests for the constant probability of
‘success’ in n independent (Bernoulli) trials can be used as tests for the average
probability of success when the probability of success varies from trial to trial.”
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We specify and generalise this in the following way. Let n ∈ N, p1 ¬ p2 ∈
[0, 1], γ−, γ+ ∈ [0, 1], c− ¬ ⌊np1⌋− 1, and c+  ⌈np2⌉+1. Then the randomised
test

ψ := 1{0,...,c−−1} + γ−1{c−} + γ+1{c+} + 1{c++1,...,n}

for the hypothesis [p1, p2] in the binomial model (Bn,p : p ∈ [0, 1]) keeps its level as
a randomised test for {p ∈ [0, 1]n : p ∈ [p1, p2]} in the model (BCp : p ∈ [0, 1]n)
because for every p with p ∈ [p1, p2] it follows from Theorem 4 in [8] that we have

BCpψ = γ−BCp({0, . . . , c−}) + (1− γ−)BCp({0, . . . , c− − 1})
+ γ+BCp({c+, . . . , n}) + (1− γ+)BCp({c+ + 1, . . . , n})
¬ Bn,pψ.

But this statement does not always apply to the one-sided tests based on the Clop-
per–Pearson uprays. Indeed, let n=2 and β∈ ]0, 1[. Let r∈ [0, 1], H :=[0, r], and
ψ := 1{KCP,n∩H=∅}, so that we have supp∈H Bn,pψ ¬ 1− β. But if, for example,
r = 1 −

√
β, the test simplifies to ψ = 1{1,2}, and for p := (r − ε, r + ε) for an

ε > 0 small enough, we have p ∈ H and BCpψ = 1−BCp({0}) = 1− β + ε2 >
1− β.

REMARK 1.10. Clopper–Pearson uprays can be invalid for hypergeometric
estimation problems: ForN ∈ N0, n ∈ {0, . . . , N}, and p∈

{ j
N : j∈{0, . . . , N}

}
,

let Hn,p,N denote the hypergeometric law of the number of red balls drawn in a
simple random sample of size n from an urn containing Np red and N(1 − p)
blue balls, so that we have Hn,p,N ({k}) =

(
Np
k

)(N(1−p)
n−k

)
/
(
N
n

)
for k ∈ N0. For

β ∈ ]0, 1[ and fixed n and N, in general, KCP,n is not a β-confidence region
for the estimation problem

((
Hn,p,N : p ∈

{ j
N : j ∈ {0, . . . , N}

})
, p 7→ p

)
be-

cause if, for example, n  2 and β =
(
1− 1

N

)n
, then for p = gn(1) we have p =

1 − β1/n = 1
N , and so Hn,p,N (KCP,n ∋ p) = Hn,p,N ({0}) =

(
N(1−p)

n

)
/
(
N
n

)
=∏n−1

j=0
N(1−p)−j

N−j < (1− p)n = β.

In contrast to Remark 1.2, we have the following positive result for the two-
sided Clopper–Pearson β-confidence intervals MCP,n for (1.2), as defined in (1.8)
below.

THEOREM 1.3. Let n ∈ N, β ∈ ]0, 1[, and

(1.8) MCP,n(x) := KCP,n,(1+β)/2(x) ∩ ΛCP,n,(1+β)/2(x) for x ∈ {0, . . . , n}

with KCP,n,(1+β)/2 as in (1.5) and ΛCP,n,(1+β)/2 as in Remark 1.6. If β  2βn − 1

or n = 1, hence, in particular, if β  1
2 , then MCP,n is a β-confidence interval

for (1.1).
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REMARK 1.11. The interval MCP,n of Theorem 1.3 improves on the two-sided
interval for (1.1) obtained by Agnew [1] in the obvious way from his one-sided
ones.

REMARK 1.12. In contrast to Remark 1.4, we do not know whether the con-
dition “β  2βn − 1 or n = 1” in Theorem 1.3 might be omitted.

REMARK 1.13. The robustness property of the two-sided Clopper–Pearson
intervals given by Theorem 1.3 does not extend to every other two-sided interval
for (1.2), for example, if n = 2, not to the Sterne [13] type β-confidence interval
KS,n for (1.2) of Dümbgen [7] (p. 5, CSt

α ).
Indeed, for β ∈ ]0, 1[ and n ∈ N, KS,n is given by

KS,n(x) := KS,n,β(x)

:=
{
p ∈ [0, 1] : Bn,p

({
k : Bn,p({k}) ¬ Bn,p({x})

})
> 1− β

}
.

If, for example, n = 2 and β > β2, we have in particular KS,2(0) = [0, 1− g2(2)[,
KS,2(1) = ]g2(1), 1− g2(1)[, and KS,2(2) = ]g2(2), 1] , and indeed KS,2 is not
valid for (1.1) because for p ∈ [0, 1]2 with p = g2(1) and p1 ̸= p2 we have

BCp(KS,2 ∋ p) = BCp ({0}) =
2∏

j=1

(1− pj) < (1− p)2 =
(
1− g2(1)

)2
= β.

For n = 2 and β > β2 we get a β-confidence interval for (1.2), say K̃, from Theo-
rem 1.1 by setting K′m := KS,m for m ∈ {0, 1, 2}, namely,

K̃(0) = [0, 1− (1− β)1/2[, K̃(1) =
]1−β

2 , 1+β
2

[
, K̃(2) = ](1− β)1/2, 1].

It can be seen that K̃(x) ( MCP,2(x) for x ∈ {0, 1, 2}, with MCP,2 as defined
in Theorem 1.3. We do not know whether these inclusions are true for every n
and usual β, but in fact we do not even know whether KS,n(x) ⊆ MCP,n(x) holds
universally.

2. PROOFS OF THE THEOREMS

P r o o f o f T h e o r e m 1.1. We obviously have K(x) ⊆ [0, 1] and, by con-
sidering l = 0 and m = n, K(x) ⊇ K′n(x) for every x. If φ : {0, . . . , n} → R is
any function and π ∈ [0, 1], then, by Hoeffding’s ([8], Corollary 2.1) generalization
of Tchebichef’s second theorem in [14], the minimum of the expectation BCpφ as
a function of p ∈ [0, 1]n subject to p = π is attained at some point p whose coordi-
nates take on at most three values and with at most one of them distinct from zero
and one. Given p ∈ [0, 1]n, the preceding sentence applied to π := p and to φ being
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the indicator of {K ∋ π} yields the existence of r, s ∈ {0, . . . , n} with r + s ¬ n
and of an a ∈ [0, 1] with r + sa = nπ, and

BCp (K ∋ p)  (δr ∗ Bs,a)
({
x ∈ {r, . . . , r + s} : K(x) ∋ π

})
 (δr ∗ Bs,a)

({
x ∈ {r, . . . , r + s} : s

nK
′
s(x− r) + r

n ∋ π
})

= Bs,a(K
′
s ∋ a)

 β

by bounding in the second step the union defining K(x) by the set with the index
(l,m) = (r, s). �

For proving Theorem 1.2, we use Lemma 2.2 prepared by Lemma 2.1. LetFn,p

and fn,p denote the distribution and density functions of the binomial law Bn,p.

LEMMA 2.1. Let n ∈ N. Then

(2.1) Fn,x/n(x) < Fn,1/n(1) for x ∈ {2, . . . , n− 1}.

P r o o f. If x ∈ N with x ¬ n−1
2 , then for p ∈

]
x
n ,

x+1
n

[
we have y := x+1−

np > 0, hence

fn−1,p (x)

fn,(x+1)/n (x+ 1)
=

fn−1,p (x)

fn−1,(x+1)/n (x)

=

(
1 + y/(n− x− 1)

)n−x−1(
1 + y/(np)

)x
>

(
1 + y/(n− x− 1)

)n−x−1
(1 + y/x)x

 1,

using the isotonicity of ]0,∞[ ∋ t 7→
(
1 + y

t

)t in the last step, and hence we get

Fn,x/n(x)−Fn,(x+1)/n(x+ 1)=n
(x+1)/n∫

x/n

fn−1,p (x) dp−fn,(x+1)/n (x+ 1)>0;

consequently, (2.1) holds under the restriction x ¬ n+1
2 . If now x ∈ N with n+1

2 ¬
x ¬ n − 1, then 1 ¬ k := n − x < n

2 , and hence an inequality attributed to Sim-
mons by Jogdeo and Samuels ([9], Corollary 4.2) yields Fn,k/n(k − 1) > 1 −
Fn,k/n(k), so that

Fn,x/n(x) = 1− Fn,k/n(k − 1) < Fn,k/n(k) ¬ Fn,1/n(1),

using (2.1) in the last step in a case already proved in the previous sentence. �
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LEMMA 2.2. Let n ∈ N, β ∈ [βn, 1[, and x ∈ {2, . . . , n}. Then gn(x) ¬ x−1
n .

P r o o f. Using Lemma 2.1, we get Fn,(x−1)/n(x − 1) ¬ Fn,1/n(1) = βn ¬
β = Fn,gn(x)

(x− 1), and hence the claim. �

P r o o f o f T h e o r e m 1.2. To simplify the defining representation of K in
the present case, let us put

(2.2) g(x) := min
l∈{0,...,x−1},

m∈{x−l,...,n−l}

(
m
n gm(x− l) + l

n

)
for x ∈ {1, . . . , n}.

For x ∈ {0, . . . , n}, we have, using (1.5),

K(x) ⊇ n−x
n KCP,n−x(x− x) + x

n =
[
x
n , 1

]
,

and hence, in particular, K(0) = [0, 1]. For x ∈ {1, . . . , n}, we have, with (l,m)
denoting some pair where the minimum in (2.2) is attained,

K(x) ⊇ m
n KCP,m(x− l) + l

n =
]
g(x), l+m

n

]
⊇

]
g(x), xn

]
and, using gx(x) < 1 in the third step below,

K(x) \ ]g(x), 1] ⊆
∪

m∈{0,...,n−x}

(
m
n KCP,m(x− x) + x

n

)
⊆

[
x
n , 1

]
⊆

]
x
ngx(x− 0) + 0

n , 1
]
⊆ ]g(x), 1].

Combining the above yields

(2.3) K(x) =

{
[0, 1] if x = 0,

]g(x), 1] if x ∈ {1, . . . , n},

so, in particular, K is indeed an upray, and (1.6) holds in its trivial first case. Us-
ing (1.3) and the isotonicity of t 7→ (βt − 1)/t due to the convexity of t 7→ βt, we
have

g(1) =
n

min
m=1

m
n gm(1) = 1

n

n
min
m=1

m(1− β1/m) = 1−β
n ,

and hence (1.6) holds also in the second case. The last case is treated at the end of
this proof.



310 L. Mattner and C. Tasto

K is strictly isotone since, for x ∈ {2, . . . , n}, we get, using gm(x − 1) <
gm(x) for 2 ¬ x ¬ m ¬ n due to (1.4),

g(x) = min
m∈{x,...,n}

m
n gm(x)

∧ min
l∈{1,...,x−1},

m∈{x−(l−1)−1,...,n−(l−1)−1}

(
m
n gm

(
x− 1− (l − 1)

)
+ l−1

n + 1
n

)
> min

m∈{x−1,...,n}
m
n gm(x− 1) ∧ min

l∈{0,...,x−1},
m∈{x−1−l,...,n−1−l}

(
m
n gm(x− 1− l) + l

n

)
 g(x− 1).

By considering p = (1− β, 0, . . . , 0) ∈ [0, 1]n in the first step below, and us-
ing K(1) =

]1−β
n , 1

]
̸∋ 1−β

n and the isotonicity of K in the second, we get

inf
p∈[0,1]n

BCp(K ∋ p) ¬ B1−β

(
K ∋ 1−β

n

)
= B1−β ({0}) = β,

and hence, by Theorem 1.1, infp∈[0,1]n BCp(K ∋ p) = β.
To prove the optimality of K, let us assume that K̃ : {0, . . . , n} → 2[0,1] is

another isotone upray and that we have an x′ ∈ {0, . . . , n} with

(2.4) K̃(x′) ( K(x′).

We have to show that infp∈[0,1]n BCp(K̃ ∋ p) < β. If x′ = 0, then K(x′) = [0, 1]

and, since K̃(0) is an upray in [0, 1], (2.4) yields 0 /∈ K̃(0), and hence

inf
p∈[0,1]n

BCp(K̃ ∋ p) ¬ δ0(K̃ ∋ 0) = 0 < β.

If x′ ∈ {1, . . . , n}, by (2.3) and (2.2) we get K(x′) =
]
m
n gm(x′ − l) + l

n , 1
]

for
some l ∈ {0, . . . , x′ − 1} and m ∈ {x′ − l, . . . , n− l}, and since gm(x′ − l) < 1,
we find an a ∈ ]gm(x′ − l), 1] with m

n a+
l
n /∈ K̃(x′). Hence m

n a+
l
n /∈ K̃(y) for

y ∈ {x′, . . . , n} by the isotonicity of K̃, and we obtain

inf
p∈[0,1]n

BCp(K̃ ∋ p) ¬ Bm,a

({
x ∈ {0, . . . , n} : K̃(x+ l) ∋ l+ma

n

})
¬ Bm,a({0, . . . , x′ − l − 1})
< Bm,gm(x′−l)({0, . . . , x′ − l − 1})
= β.

To prove the admissibility of K, assume that there was a β-confidence upray
K∗ for (1.1) with K∗(x) ⊆ K(x) for each x ∈ {0, . . . , n} and K∗(x′) ( K(x′) for
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some x′. Then, since K is strictly isotone,

K∗∗(x) :=


K(x) if x ̸= x′,

K∗(x′) ∪K(x′ + 1) if x = x′ < n,

K∗(x′) if x = x′ = n,

 ⊇ K∗(x)

would define an isotone β-confidence upray for (1.1) with K∗∗(x′) ( K(x′), con-
tradicting the optimality of K.

To prove finally the last case of (1.6), let n  2 and β  βn, and let now
K̃ : {0, . . . , n} → 2[0,1] be defined by the right-hand side of (1.6). If p ∈ [0, 1]n

with p ∈
[
0, 1−βn

]
, then

BCp(K̃ ∋ p)  BCp({0}) =
n∏

j=1

(1− pj)  1−
n∑

j=1

pj = 1− np  β.

If p ∈ [0, 1]n with p ∈
]1−β

n , 1
]
, then with gn(n + 1) := 1 either there is a c ∈

{2, . . . , n} with p ∈]gn(c), gn(c + 1)], or p ∈
]1−β

n , gn(2)
]

and we put c := 1; in
either case then np ¬ ngn(c + 1) ¬ c ¬ n by Lemma 2.2, and hence an applica-
tion of Theorem 4, (26) from Hoeffding [8] in the second step below yields

BCp(K̃ ∋ p) = BCp ({0, . . . , c})  Fn,p (c)  Fn,gn(c+1) (c)  β.

Hence K̃ is a β-confidence upray for (1.1) and satisfies K̃(x) ⊆ K(x) for each x,
and so the admissibility of K yields K̃ = K, and hence (1.6) holds true. �

P r o o f o f T h e o r e m 1.3. Let γ := 1+β
2 , let Kγ be the γ-confidence up-

ray from Theorem 1.2, and let Λγ be the analogous γ-confidence downray from
Remark 1.6. Then, by subadditivity, Mβ(x) := Kγ(x) ∩Λγ(x) for x ∈ {0, . . . , n}
defines a β-confidence interval for (1.1). If n = 1, then MCP,n = Mβ , hence the
claim. So let β  2βn − 1, that is, γ  βn. Then (1.6) and (1.7), with γ in place of
β, yield MCP,n(x) = Mβ(x) for x /∈ {1, n− 1}. So, if p /∈

(
MCP,n(1) \Mβ(1)

)
∪(

MCP,n(n− 1) \Mβ(n− 1)
)
, we have BCp(MCP,n ∋ p) = BCp(Mβ ∋ p)  β.

Otherwise, p ∈
]1−γ

n , gn,γ(1)
]

or p ∈
[
gn,γ(n − 1), 1 − 1−γ

n

[
. In the first case,

we have p ∈
]1−γ

n , gn,γ(1)
]
=

]1−γ
n , 1− γ1/n

]
⊆ [0, 1− (1− γ)1/n[ = MCP,n(0)

and from p ∈ MCP,n(0) and p ¬ 1− γ1/n we get

BCp(MCP,n ∋ p)  BCp({0}) =
n∏

j=1

(1− pj)

 1− np  1− n(1− γ1/n)  γ > β.

In the second case, analogously, p ∈
[
gn,γ(n− 1), 1− 1−γ

n

[
=

[
γ1/n, 1− 1−γ

n

[
⊆

MCP,n(n) and from p ∈ MCP,n(n) and p  γ1/n we get BCp(MCP,n ∋ p) 
BCp({n}) =

∏n
j=1 pj  p

n  γ > β. �
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