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1. INTRODUCTION

The almost sure central limit theorem (ASCLT) was simultaneously proved by
Brosamler [5] and Schatte [16]. The simplest form of the ASCLT (see Lacey and
Philipp [10]) states that if {Xn, n > 1} is a sequence of real-valued independent
identically distributed random variables with E(X1) = 0, E(X2

1 ) = 1, and if we
denote by Sn = 1√

n
(X1 + . . .+Xn) the normalized partial sums, then, almost

surely, for all z ∈ R,
1

log n

n∑
k=1

1

k
11{Sk6z}

a.s.−−−→
n→∞

P (N 6 z),

where N is an N (0, 1) random variable and 11{A} denotes the indicator of the
setA. Equivalently, for any bounded and continuous function φ : R→ R, one has,
almost surely,

1

log n

n∑
k=1

1

k
φ(Sk)

a.s.−−−→
n→∞

E
(
φ(N)

)
.

The ASCLT was first stated, without proof, by Lévy [11]. For more discussion
about ASCLT see, e.g., Berkes and Csáki [4] and the references in the survey paper
by Berkes [3].
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Ibragimov and Lifshits [8], [9] give a criterion (see Theorem 2.1) for the
ASCLT based on the rate of convergence of the empirical characteristic function.
Using this criterion and Malliavin calculus, Bercu et al. [2] provide a criterion for
ASCLT for functionals of general Gaussian fields.

Our first aim is to prove an almost sure central limit theorem for a sequence
of the form {Gn/Rn}n>1, where {Gn}n>1 satisfies the ASCLT and {Rn}n>1 is
a sequence of positive random variables not necessarily independent of {Gn} and
converging almost surely to one (see Theorem 3.1). We apply our ASCLT to a
fractional Ornstein–Uhlenbeck process X = {Xt, t > 0} defined as

(1.1) X0 = 0, dXt = −θXtdt+ dBt, t > 0,

whereB = {Bt, t > 0} is a fractional Brownian motion with Hurst parameterH ∈(
1
2 , 1

)
, and θ is a real parameter. θ is unknown and estimated with least squares

estimators (LSE). Theorem 3.1 leads to the ASCLT for the LSE in this model.

Continuous observations. Recently, the parametric estimation of the continu-
ously observed fractional Ornstein–Uhlenbeck process defined in (1.1) was studied
by using the least squares estimator (LSE) defined by

θ̂T = −

T∫
0

XtδXt

T∫
0

X2
t dt

.

In the ergodic case, that is, when θ > 0, Hu and Nualart [6] proved that the LSE θ̂T
of θ is strongly consistent and asymptotically normal. In addition, they also proved
that the estimator

θT =

(
1

HΓ(2H)T

T∫
0

X2
t dt

)−1/(2H)

is strongly consistent and asymptotically normal. In the non-ergodic case θ < 0,
Belfadli et al. [1] established that the LSE θ̂T of θ is strongly consistent and asymp-
totically Cauchy.

In this paper, we focus our discussion on the ergodic case θ > 0. We shall
prove that when H ∈ (1/2, 3/4), the sequence {

√
n(θ − θ̂n)}n>1 satisfies the

ASCLT (see Theorem 4.2).

Discrete observations. Assume that the process X is observed equidistantly
in time with the step size h > 0, that is, for any i ∈ {0, . . . , n}, ti = ih. Hu and
Song [7], motivated by the estimator θT , proved that the estimator

(1.2) θ̃n =

(
1

HΓ(2H)n

n∑
i=1

X2
ti−1

)−1/(2H)

is strongly consistent and asymptotically normal.
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In the present work, we shall also prove that, in the case whenH ∈ (1/2, 3/4),
the sequence { √

n

σ(H, θ)
(θ − θ̃n)

}
n>1

satisfies the ASCLT (see Theorem 4.3).

The paper is organized as follows. Section 2 contains the basic tools of Mal-
liavin calculus for the fractional Brownian motion needed throughout the paper.
In Section 3 we prove the ASCLT for a sequence of random variables having the
form of a ratio of two terms such that the numerator satisfies the ASCLT and the
denominator is a positive term which converges almost surely to one. In Section 4,
we use our ASCLT to study the ASCLT for the estimators θ̂n and θ̃n.

2. PRELIMINARIES

In this section we describe some basic facts on the stochastic calculus with
respect to a fractional Brownian motion. For more complete presentation on the
subject, see Nualart [14].

The fractional Brownian motion {Bt, t > 0} with Hurst parameterH ∈ (0, 1)
is defined as a centered Gaussian process starting from zero with covariance

RH(t, s) := E(BtBs) =
1

2
(t2H + s2H − |t− s|2H).

Assume that B is defined on a complete probability space (Ω,F , P ) such that F
is the sigma-field generated by B. By Kolmogorov’s continuity criterion and the
equality

E (Bt −Bs)
2 = |s− t|2H , s, t > 0,

B has Hölder continuous paths of order H − ε for all ε ∈ (0,H).
Fix a time interval [0, T ]. We denote byH the canonical Hilbert space associ-

ated with the fractional Brownian motion B. That is, H is the closure of the linear
span E generated by the indicator functions 11{[0,t]}, t ∈ [0, T ], with respect to the
scalar product

⟨11{[0,t]}, 11{[0,s]}⟩ = RH(t, s).

We denote by | · |H the associated norm. The mapping 11[0,t] 7→ Bt can be extended
to an isometry between H and the Gaussian space associated with B. We denote
this isometry by

φ 7→ B(φ) =
T∫
0

φ(s) dBs.

WhenH > 1
2 , the elements ofHmay be not functions but distributions of negative

order (see Pipiras and Taqqu [15]). Therefore, it is of interest to know significant
subspaces of functions contained in it.
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Let |H| be the set of measurable functions φ on [0, T ] such that

∥φ∥2|H| := H(2H − 1)
T∫
0

T∫
0

|φ(u)||φ(v)||u− v|2H−2dudv <∞.

Note that if φ, ψ ∈ |H|, then

E
(
B(φ)B(ψ)

)
= H(2H − 1)

T∫
0

T∫
0

φ(u)ψ(v)|u− v|2H−2dudv.

It follows actually from Pipiras and Taqqu [15] that the space |H| is a Banach space
for the norm ∥ · ∥|H| and it is included inH. Moreover, one has

(2.1) L2([0, T ]) ⊂ L1/H([0, T ]) ⊂ |H| ⊂ H.

Let C∞b (Rn,R) be the class of infinitely differentiable functions f : Rn → R
such that f and all its partial derivatives are bounded. We denote by S the class of
cylindrical random variables F of the form

(2.2) F = f
(
B(φ1), . . . , B(φn)

)
,

where n > 1, f ∈ C∞b (Rn,R) and φ1, . . . , φn ∈ H. The derivative operator D
of a cylindrical random variable F of the form (2.2) is defined as the H-valued
random variable

DtF =
N∑
i=1

∂f

∂xi

(
B(φ1), . . . , B(φn)

)
φi(t).

In this way the derivative DF is an element of L2(Ω;H). For p > 1, let D1,p be
the closure of S with respect to the norm defined by

∥F∥p1,p = E(∥F∥p) + E(∥DF∥pH).

The divergence operator δ is the adjoint of the derivative operator D. Concretely,
a random variable u ∈ L2(Ω;H) belongs to the domain of the divergence operator
Dom(δ) if, for every F ∈ S ,

E |⟨DF, u⟩H| 6 c∥F∥L2(Ω).

In this case δ(u) is given by the duality relationship

E
(
Fδ(u)

)
= E ⟨DF, u⟩H

for any F ∈ D1,2. We will make use of the notation

δ(u) =
T∫
0

usdBs, u ∈ Dom(δ).

In particular, for h ∈ H, B(h) = δ(h) =
∫ T

0
hsdBs.
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For every n > 1, let Hn be the n-th Wiener chaos of B, that is, the closed
linear subspace of L2(Ω) generated by the random variables

{
Hn

(
B(h)

)
, h ∈

H, ∥h∥H=1
}

, whereHn is the n-th Hermite polynomial. The mapping In(h⊗n)=
n!Hn

(
B(h)

)
provides a linear isometry between the symmetric tensor product

H⊙n (equipped with the modified norm ∥ · ∥H⊙n = 1√
n!
∥ · ∥H⊗n) and Hn. For

every f, g ∈ H⊙n the following multiplication formula holds:

E
(
In(f)In(g)

)
= n!⟨f, g⟩H⊗n .

On the other hand, it is well known that L2(Ω) can be decomposed into the infinite
orthogonal sum of the spaces Hn. That is, any square integrable random variable
F ∈ L2(Ω) admits the following chaotic expansion:

F = E(F ) +
∞∑
n=1

In(fn),

where fn ∈ H⊙n are uniquely determined by F .
Let {en, n > 1} be a complete orthonormal system inH. Given f ∈ H⊙p and

g ∈ H⊙q, for every r = 0, . . . , p ∧ q, the r-th contraction of f and g is the element
ofH⊗(p+q−2r) defined as

f ⊗r g =
∞∑

i1=1,...,ir=1

⟨f, ei1 ⊗ . . .⊗ eir⟩H⊗r ⊗ ⟨g, ei1 ⊗ . . .⊗ eir⟩H⊗r .

In particular, note that f ⊗0 g = f ⊗ g and, when p = q, f ⊗p g = ⟨f, g⟩H⊗p .
Since, in general, the contraction f ⊗r g is not necessarily symmetric, we denote
its symmetrization by f⊗̃rg ∈ H⊙(p+q−2r). When f ∈ H⊙q, we write Iq(f) to
indicate its q-th multiple integral with respect toX . The following formula is useful
to compute the product of such multiple integrals: if f ∈ H⊙p and g ∈ H⊙q, then

(2.3) Ip(f)Iq(g) =
p∧q∑
r=0

r!

(
p
r

)(
q
r

)
Ip+q−2r(f⊗̃rg).

Let us now recall the criterion of Ibragimov and Lifshits [9], which plays a crucial
role in Bercu et al. [2] to study ASCLTs for sequences of functionals of general
Gaussian fields.

THEOREM 2.1 (Ibragimov and Lifshits [9]). Let {Gn} be a sequence of ran-
dom variables converging in distribution towards a random variable G∞, and set

∆n(t) =
1

log n

n∑
k=1

1

k

(
eitGk − E(eitG∞)

)
.
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Assume that, for all r > 0,

sup
|t|6r

∑
n

E|∆n(t)|2

n log n
<∞.

Then, almost surely, for all continuous and bounded functions φ : R→ R, one has

1

log n

n∑
k=1

1

k
φ(Gk)

a.s.−−−→
n→∞

E
(
φ(G∞)

)
.

For the rest of the paper, we will use the standard notation ϕ(z) := P (N 6 z),
where N is an N (0, 1) random variable. We will denote by C(θ,H) a generic
positive constant which depends only on θ and H .

3. ALMOST SURE CENTRAL LIMIT THEOREMS

In this section we shall state and prove our results concerning the ASCLT
for the sequences of R-valued random variables of the form {Gn/Rn}n>1 and
{Gn +Rn}n>1.

THEOREM 3.1. Let {Gn}n>1 be a sequence of R-valued random variables
satisfying the ASCLT. Let {Rn}n>1 be a sequence of positive random variables
converging almost surely to one. Then {Gn/Rn}n>1 satisfies the ASCLT. In other
words, if N is an N (0, 1) random variable, then, almost surely, for all z ∈ R,

1

log n

n∑
k=1

1

k
11{Gk6zRk}

a.s.−−−→
n→∞

ϕ(z).

THEOREM 3.2. Let {Gn}n>1 be a sequence of R-valued random variables
satisfying the ASCLT. Let {Rn}n>1 be a sequence of R-valued random variables
converging almost surely to zero. Then {Gn + Rn}n>1 satisfies the ASCLT. In
other words, almost surely, for all z ∈ R,

1

log n

n∑
k=1

1

k
11{Gk+Rk6z}

a.s.−−−→
n→∞

ϕ(z).

REMARK 3.1. A similar result to Theorem 3.2 for the ASCLT of the sequence
{Gn +Rn}n>1, where {Rn}n>1 converges in L2(Ω) to zero, and such that

∑
n>2

1

n log2 n

n∑
k=1

1

k
E|Rk|2 <∞

was established by Nourdin and Peccati in [13].

The proofs of Theorems 3.1 and 3.2 are respectively direct consequences of
the following two lemmas:
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LEMMA 3.1. Let {Gn}n>1 and {Rn}n>1 be two sequences of real-valued
random variables. Define

Un,ε :=

∣∣∣∣ 1

log n

n∑
k=1

1

k
11{Gk6z(1−ε)} − ϕ

(
z(1− ε)

)∣∣∣∣,(3.1)

Vn,ε :=

∣∣∣∣ 1

log n

n∑
k=1

1

k
11{Gk6z(1+ε)} − ϕ

(
z(1 + ε)

)∣∣∣∣.(3.2)

Then, for all z ∈ R and ε > 0,∣∣∣∣ 1

log n

n∑
k=1

1

k
11{Gk6zRk} − ϕ(z)

∣∣∣∣6max(Un,ε, Vn,ε)+
1

log n

n∑
k=1

1

k
11{|Rk−1|>ε}+ε.

LEMMA 3.2. Let {Sn}n>1 and {Rn}n>1 be two sequences of real-valued ran-
dom variables. Define

Tn,η :=

∣∣∣∣ 1

log n

n∑
k=1

1

k
11{Gk6z+η} − ϕ(z + η)

∣∣∣∣,(3.3)

Wn,η :=

∣∣∣∣ 1

log n

n∑
k=1

1

k
11{Gk6z−η} − ϕ(z − η)

∣∣∣∣.(3.4)

Then, for all z ∈ R and η > 0,∣∣∣∣ 1

log n

n∑
k=1

1

k
11{Gk+Rk6z} − ϕ(z)

∣∣∣∣
6 max(Tn,η,Wn,η) +

1

log n

n∑
k=1

1

k
11{|Rk|>η} +

η√
2π
.

P r o o f o f L e m m a 3.1. It is inspired by Lemma 1 from Michael and Pfan-
zagl [12], p. 78. The case ε > 1 is easy. We now assume that ε ∈ (0, 1). When
z > 0, using the inclusion

{Gk 6 (1− ε)z} ⊂ {Gk 6 zRk} ∪ {Rk 6 1− ε},
we have

(3.5) 11{Gk6z(1−ε)} 6 11{Gk6zRk} + 11{|Rk−1|>ε}.

Since, for every x > 0, xe−x
2/2 6 e−1/2, we get

(3.6)
∣∣ϕ(z)− ϕ(z(1− ε))∣∣ 6 min

(
1

2
,
zε√
2π

exp

(
−z2(1− ε)2

2

))
6 ε.
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Combining (3.5) and (3.6), we obtain

1

log n

n∑
k=1

1

k
11{Gk6zRk} − ϕ(z) > −Un,ε −

1

logn

n∑
k=1

1

k
11{|Rk−1|>ε} − ε.

Now, when z 6 0, the inclusion {Gk 6 (1 + ε)z}⊂{Gk 6 zRk}∪{Rk>1+ε}
leads to

11{Gk6z(1+ε)} 6 11{Gk6zRk} + 11{|Rk−1|>ε}.

Moreover, since∣∣ϕ(z)− ϕ(z(1 + ε)
)∣∣ 6 |z|ε√

2π
exp

(
−z2(1 + ε)2

2

)
6 ε,

we have

1

log n

n∑
k=1

1

k
11{Gk6zRk} − ϕ(z) > −Vn,ε −

1

log n

n∑
k=1

1

k
11{|Rk−1|>ε} − ε.

Thus, for every z ∈ R,

1

log n

n∑
k=1

1

k
11{Gk6zRk}−ϕ(z)>−max(Un,ε, Vn,ε)−

1

log n

n∑
k=1

1

k
11{|Rk−1|>ε}− ε.

Following the same guidelines as above and using

{Gk 6 zRk} ⊂ {Gk 6 (1 + ε)z} ∪ {Rk > 1 + ε} for z > 0,

{Gk 6 zRk} ⊂ {Gk 6 (1− ε)z} ∪ {Rk 6 1− ε} for z 6 0

we get, for every z ∈ R,

1

log n

n∑
k=1

1

k
11{Gk6zRk} − ϕ(z)6max(Un,ε, Vn,ε)+

1

log n

n∑
k=1

1

k
11{|Rk−1|>ε} + ε.

This completes the proof of Lemma 3.1. �

P r o o f o f L e m m a 3.2. Fix z ∈ R and η > 0. Remark that

{Gk +Rk 6 z} ⊂ {Gk 6 z + η} ∪ {|Rk| > η}.

Thus we obtain

1

log n

n∑
k=1

1

k
11{Gk+Rk6z} − ϕ(z)

6 1

log n

n∑
k=1

1

k
11{Gk6z+η}−ϕ(z + η)+

1

log n

n∑
k=1

1

k
11{|Rk|>η}+ϕ(z+η)−ϕ(z)

6 Tn,η +
1

log n

n∑
k=1

1

k
11{|Rk|>η} +

η√
2π
.
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On the other hand, it follows from the inclusion

{Gk 6 z − η} ⊂ {Gk +Rk 6 z} ∪ {|Rk| > η}
that

1

log n

n∑
k=1

1

k
11{Gk+Rk6z} − ϕ(z)

> 1

log n

n∑
k=1

1

k
11{Gk6z+η} − ϕ(z − η)−

1

log n

n∑
k=1

1

k
11{|Rk|>η}+ϕ(z−η)−ϕ(z)

> −Wn,η −
1

log n

n∑
k=1

1

k
11{|Rk|>η} −

η√
2π
.

The desired conclusion follows. �

4. APPLICATION TO LSE FOR FRACTIONAL ORNSTEIN–UHLENBECK PROCESS

First we recall a result of [2] concerning the ASCLT for multiple stochastic
integrals.

THEOREM 4.1 (Bercu et al. [2]). Let q > 2 be an integer and let {Gn}n>1

be a sequence of the form Gn = Iq(fn) with fn ∈ H⊙q. Assume that E[G2
n] =

q!∥fn∥2H⊗q = 1 for all n and that Gn converges in distribution towards a standard
Gaussian. Moreover, assume that

∞∑
n=2

1

n log2 n

n∑
k=1

1

k
∥fk ⊗r fk∥H⊗2(q−r) <∞ for every 1 6 r 6 q − 1,(4.1)

∞∑
n=2

1

n log3 n

n∑
k,l=1

|⟨fk, fl⟩H⊗q |
kl

<∞.(4.2)

Then {Gn}n>1 satisfies an ASCLT. In other words, almost surely, for all z ∈ R,

1

log n

n∑
k=1

1

k
11{Gk6z}

a.s.−−−→
n→∞

ϕ(z)

or, equivalently, almost surely, for any bounded and continuous function φ : R→
R, we have

1

log(n)

n∑
k=1

1

k
φ(Gk)

a.s.−−−→
n→∞

Eφ(N).

4.1. Continuous case. In this section we apply Theorem 3.1 to a least squares
estimator for fractional Ornstein–Uhlenbeck processes based on continuous-time
observations.
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Let us consider the fractional Ornstein–Uhlenbeck process X = {Xt, t > 0}
given by the linear stochastic differential equation

X0 = 0 and dXt = −θXtdt+ dBt, t > 0,(4.3)

whereB = {Bt, t > 0} is a fractional Brownian motion of Hurst indexH ∈
(
1
2 , 1

)
and θ is a real unknown parameter. Let θ̂t be a least squares estimator (LSE) of θ
given by

(4.4) θ̂t = −

t∫
0

Xs δXs

t∫
0

X2
sds

, t > 0.

This LSE is obtained by the least squares technique, that is, θ̂t (formally) minimizes

θ 7→
t∫
0

|Ẋs + θXs|2ds.

The linear equation (4.3) has the following explicit solution:

(4.5) Xt = e−θt
t∫
0

eθsdBs, t > 0.

Using the equations (4.3) and (4.5) we can write the LSE {θ̂t} defined in (4.4) as
follows:

(4.6) θ̂t − θ = −

t∫
0

XsδBs

t∫
0

X2
sds

= −

t∫
0

δBse
θs

s∫
0

δBre
−θr

t∫
0

X2
sds

.

Thus, we have

(4.7)
√
t(θ − θ̂t) =

Ft

t−1
t∫
0

X2
sds

, t > 0,

where
Ft := I2(ft)

is a multiple integral of ft with

ft(u, v) =
1

2
√
t
e−θ|u−v|11⊗2{[0,t]}(u, v).
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Until the end of this paper we will use the following notation for all t > 0:

(4.8) σt = λ(θ,H)
√

E(F 2
t ) with λ(θ,H) := θ−2HHΓ(2H).

We are now ready to state the main result of this subsection. First we recall
some results of Hu and Nualart [6] needed throughout the paper:

(4.9) E(F 2
t ) −−−→

t→∞
A(θ,H),

where

A(θ,H) = θ1−4H
(
H2(4H − 1)

[
Γ(2H)2 +

Γ(2H)Γ(3− 4H)Γ(4H − 1)

Γ(2− 2H)

])
.

Moreover, for every t > 0

(4.10) E[(∥DFt∥2H − E∥DFt∥2H)2] 6 C(θ,H)t8H−6,

and as t→∞

(4.11) Ft
d→ N ∼ N

(
0, A(θ,H)

)
(where d→ means convergence in distribution). At last, we have the convergence

(4.12)
1

t

t∫
0

X2
sds

a.s.−−−→
t→∞

λ(θ,H)

as t→∞.

THEOREM 4.2. Assume H ∈ (1/2, 3/4). Then, almost surely, for all z ∈ R,

1

log n

n∑
k=1

1

k
11{(
√
k/σk)(θ−θ̂k)6z} −−−→n→∞

ϕ(z)

or, equivalently, almost surely, for any bounded and continuous function φ

1

log n

n∑
k=1

1

k
φ

(√
k

σk
(θ − θ̂k)

)
−−−→
n→∞

E
(
φ(N)

)
.

P r o o f. Let us consider, for each t > 0,

Gt =
1√

E(F 2
t )
Ft =

1√
E(F 2

t )
I2(ft)

and

Rt =
1

λ(θ,H)t

t∫
0

X2
sds.
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Thus, (4.7) leads to
√
n

σn
(θ − θ̂n) = Gn/Rn, n > 1.

It follows from (4.12) that Rn converges almost surely to one as n tends to infinity.
Then, using Theorem 3.1 it suffices to show that {Gn}n>1 satisfies the ASCLT.
To do that, it is sufficient to prove that {Gn}n>1 satisfies the conditions of Theo-
rem 4.1.

We have E(G2
n) = 1. In addition, the convergence ofGn towards the standard

Gaussian is a straightforward consequence of (4.9) and (4.11). It remains to fulfill
the conditions (4.1) and (4.2). Hence, we shall prove that

(4.13) I =
∑
n>2

1

n log2(n)

n∑
k=1

1

k
∥fk ⊗1 fk∥H⊗2 <∞,

and

(4.14) J =
∑
n>2

1

n log3(n)

n∑
k,l=1

|⟨fk, fl⟩H⊗2 |
kl

<∞.

Let us deal with the first convergence (4.13). For every t > 0, we have

(4.15) E[(∥DFt∥2H − E∥DFt∥2H)2] = 16∥ft ⊗1 ft∥2H⊗2 .

Combining (4.10) and (4.15) we obtain

(4.16) I 6 C(θ,H)
∑
n>2

1

n log2(n)

n∑
k=1

1

k4−4H

and, consequently,

(4.17) I 6 C(θ,H)
∑
n>2

1

n4−4H
<∞,

since H < 3/4, where C(θ,H) is a generic constant depending only on θ,H .
Now, we prove (4.14). Let k < l. Then for some k∗ ∈ [0, k] we have

|⟨fk, fl⟩H| = H2(2H − 1)2
1√
kl

×
∫

[0,k]2
dxdu e−θ|x−u|

∫
[0,l]2

dydv e−θ|y−v||x−y|2H−2|u−v|2H−2

= 2H2(2H − 1)2
√
k

l

∫
[0,k∗]

du e−θ|k
∗−u|

×
∫

[0,l]2
dydv e−θ|y−v||k∗ − y|2H−2|u− v|2H−2

:= 2H2(2H − 1)2
√
k

l
(D(1) +D(2) +D(3) +D(4)).
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Moreover, the first term can be bounded above by

D(1) =
∫

[0,k∗]

du e−θ(k
∗−u) ∫

[0,k∗]2
dydv e−θ|y−v|(k∗ − y)2H−2|u− v|2H−2

=
∫

[0,k∗]3
e−θu e−θ|y−v|y2H−2|u− v|2H−2dudvdy

6
∫

[0,∞)3
e−θu e−θ|y−v|y2H−2|u− v|2H−2dudvdy <∞.

The last inequality is a consequence of the proof of Lemma 5.3 (see only web
Appendix) in [6]. Following the same guidelines, we get for the other terms:

D(2) =
∫

[0,k∗]

du e−θ(k
∗−u) ∫

[k∗,l]2
dydv e−θ|y−v|(y − k∗)2H−2|u− v|2H−2

=
∫

[0,k∗]

du e−θu
∫

[0,l−k∗]2
dydv e−θ|y−v|y2H−2(u+ v)2H−2

6
∫

[0,∞)3
e−θu e−θ|y−v|y2H−2|u− v|2H−2dudvdy <∞,

D(3) =
∫

[0,k∗]

du e−θ(k
∗−u) ∫

[0,k∗]

dy
∫

[k∗,l]

dv e−θ|y−v|(k∗ − y)2H−2|u− v|2H−2

=
∫

[0,k∗]

du e−θu
∫

[0,k∗]

dy
∫

[0,l−k∗]
dv e−θ(y+v)y2H−2(u+ v)2H−2

6
∫

[0,∞)3
e−θu e−θ|y−v|y2H−2|u− v|2H−2dudvdy <∞,

and

D(4) =
∫

[0,k∗]

du e−θ(k
∗−u) ∫

[k∗,l]

dy
∫

[0,k∗]

dv e−θ|y−v|(y − k∗)2H−2|u− v|2H−2

=
∫

[0,k∗]

du e−θu
∫

[0,l−k∗]
dy

∫
[0,k∗]

dv e−θ(y+v)y2H−2|u− v|2H−2

6
∫

[0,∞)3
e−θu e−θ|y−v|y2H−2|u− v|2H−2dudvdy <∞.

Thus, we deduce that, for every k < l,

|⟨fk, fl⟩H| = C(θ,H)

√
k

l
.
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Consequently, we obtain

J 6 C(θ,H)
∑
n>2

1

n log3(n)

n∑
l=1

1

l3/2

l∑
k=1

1√
k

(4.18)

6 C(θ,H)
∑
n>2

1

n log3(n)

n∑
l=1

1

l

6 C(θ,H)
∑
n>2

1

n log2(n)
<∞,

which concludes the proof. �

4.2. Discrete case. Consider the fractional Ornstein–Uhlenbeck process X =
{Xt, t > 0} defined in (4.3). Assume that the process X is observed equidistantly
in time with the step size h > 0: ti = ih, i = 0, . . . , n.

THEOREM 4.3. Assume H ∈ (1/2, 3/4). Let θ̃n be the estimator of θ defined
in (1.2). Then, almost surely, for all z ∈ R,

1

log n

n∑
k=1

1

k
11{(√n/σ(H,θ))(θ−θ̃k)6z}

a.s.−−−→
n→∞

ϕ(z),

or, equivalently, for any bounded and continuous function φ,

1

log n

n∑
k=1

1

k
φ

( √
n

σ(H, θ)
(θ − θ̃k)

)
a.s.−−−→

n→∞
E
(
φ(N)

)
,

where σ(H, θ) > 0 is a constant depending only on H and θ.

P r o o f. Setting

Qn :=
1

n

n∑
i=1

X2
ti−1

,

we can write

(4.19) θ̃n =

(
Qn

HΓ(2H)

)−1/(2H)

.

Let us recall that (see [7]), as n→∞,

(4.20) θ̃n
a.s.−−→ θ

and

(4.21)
√
n

σ(H, θ)
(θ − θ̃n)

d−→ N (0, 1).
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We have
√
n

σ(H, θ)
(θ − θ̃n) = ξ−1/(2H)−1

n

√
n

2Hσ(H, θ)

(
Qn

HΓ(2H)
− θ−2H

)
,

where ξn is a random variable between Qn/
(
HΓ(2H)

)
and θ−2H . The conver-

gence (4.20) leads to θ−2H−1ξ
−1/(2H)−1
n → 1 almost surely as n → ∞. Then,

using Theorem 3.1 it suffices to show that{
θ2H+1√n
2Hσ(H, θ)

(
Qn

HΓ(2H)
− θ−2H

)}
n>1

satisfies the ASCLT. On the other hand,

θ2H+1√n
2Hσ(H, θ)

(
Qn

HΓ(2H)
− θ−2H

)
:= Gn +Rn,

where

Gn =
θ2H+1√n
2Hσ(H, θ)

(
Qn − EQn

HΓ(2H)

)
∈ H2,

and from [7] it follows that

Rn =
θ2H+1√n
2Hσ(H, θ)

(
EQn

HΓ(2H)
− θ−2H

)
converges to zero as n→∞. Hence, using Theorem 3.2 it remains to prove that
{Gn}n>1 satisfies the ASCLT. The conditions (4.1) and (4.2) are satisfied by using
the following estimates inspired by Hu and Song [7]:

E[(∥DGn∥2H − E∥DGn∥2H)2] 6 C(θ,H)
1

n8H−6
,

and for all k 6 l

|E[GkGl]| 6 C(θ,H)

√
k

l
.

Thus the proof of Theorem 4.3 is completed. �
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