ALMOST SURE CENTRAL LIMIT THEOREMS FOR RANDOM RATIOS AND APPLICATIONS TO LSE FOR FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES

BY

PEGGY CÉNAC (Dijon) and KHALIFA ES-SEBAIY (MARrakesh)

Abstract. We will investigate an almost sure central limit theorem (ASCLT) for sequences of random variables having the form of a ratio of two terms such that the numerator satisfies the ASCLT and the denominator is a positive term which converges almost surely to one. This result leads to the ASCLT for least squares estimators for Ornstein-Uhlenbeck process driven by fractional Brownian motion.

2010 AMS Mathematics Subject Classification: Primary: 60F05, 60G15, 60H05, 60H07; Secondary: 62F12.

Key words and phrases: Almost sure central limit theorem, least squares estimator, fractional Ornstein-Uhlenbeck process, multiple stochastic integrals.

1. INTRODUCTION

The almost sure central limit theorem (ASCLT) was simultaneously proved by Brosamler [5] and Schatte [16]. The simplest form of the ASCLT (see Lacey and Philipp [10]) states that if $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of real-valued independent identically distributed random variables with $\mathbb{E}\left(X_{1}\right)=0, \mathbb{E}\left(X_{1}^{2}\right)=1$, and if we denote by $S_{n}=\frac{1}{\sqrt{n}}\left(X_{1}+\ldots+X_{n}\right)$ the normalized partial sums, then, almost surely, for all $z \in \mathbb{R}$,

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{S_{k} \leqslant z\right\}} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} P(N \leqslant z),
$$

where N is an $\mathcal{N}(0,1)$ random variable and $\mathbb{1}_{\{A\}}$ denotes the indicator of the set A. Equivalently, for any bounded and continuous function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, one has, almost surely,

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \varphi\left(S_{k}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \mathbb{E}(\varphi(N))
$$

The ASCLT was first stated, without proof, by Lévy [11]. For more discussion about ASCLT see, e.g., Berkes and Csáki [4] and the references in the survey paper by Berkes [3].

Ibragimov and Lifshits [8], [9] give a criterion (see Theorem [.].1) for the ASCLT based on the rate of convergence of the empirical characteristic function. Using this criterion and Malliavin calculus, Bercu et al. [2] provide a criterion for ASCLT for functionals of general Gaussian fields.

Our first aim is to prove an almost sure central limit theorem for a sequence of the form $\left\{G_{n} / R_{n}\right\}_{n \geqslant 1}$, where $\left\{G_{n}\right\}_{n \geqslant 1}$ satisfies the ASCLT and $\left\{R_{n}\right\}_{n \geqslant 1}$ is a sequence of positive random variables not necessarily independent of $\left\{G_{n}\right\}$ and converging almost surely to one (see Theorem (B.لD). We apply our ASCLT to a fractional Ornstein-Uhlenbeck process $X=\left\{X_{t}, t \geqslant 0\right\}$ defined as

$$
\begin{equation*}
X_{0}=0, \quad d X_{t}=-\theta X_{t} d t+d B_{t}, t \geqslant 0, \tag{1.1}
\end{equation*}
$$

where $B=\left\{B_{t}, t \geqslant 0\right\}$ is a fractional Brownian motion with Hurst parameter $H \in$ $\left(\frac{1}{2}, 1\right)$, and θ is a real parameter. θ is unknown and estimated with least squares estimators (LSE). Theorem B.] leads to the ASCLT for the LSE in this model.

Continuous observations. Recently, the parametric estimation of the continuously observed fractional Ornstein-Uhlenbeck process defined in (L.لl) was studied by using the least squares estimator (LSE) defined by

$$
\widehat{\theta}_{T}=-\frac{\int_{0}^{T} X_{t} \delta X_{t}}{\int_{0}^{T} X_{t}^{2} d t}
$$

In the ergodic case, that is, when $\theta>0, \mathrm{Hu}$ and Nualart [6] proved that the $\operatorname{LSE} \widehat{\theta}_{T}$ of θ is strongly consistent and asymptotically normal. In addition, they also proved that the estimator

$$
\bar{\theta}_{T}=\left(\frac{1}{H \Gamma(2 H) T} \int_{0}^{T} X_{t}^{2} d t\right)^{-1 /(2 H)}
$$

is strongly consistent and asymptotically normal. In the non-ergodic case $\theta<0$, Belfadli et al. [IT] established that the $\operatorname{LSE} \widehat{\theta}_{T}$ of θ is strongly consistent and asymptotically Cauchy.

In this paper, we focus our discussion on the ergodic case $\theta>0$. We shall prove that when $H \in(1 / 2,3 / 4)$, the sequence $\left\{\sqrt{n}\left(\theta-\widehat{\theta}_{n}\right)\right\}_{n \geqslant 1}$ satisfies the ASCLT (see Theorem (4.2).

Discrete observations. Assume that the process X is observed equidistantly in time with the step size $h>0$, that is, for any $i \in\{0, \ldots, n\}, t_{i}=i h . \mathrm{Hu}$ and Song [[]], motivated by the estimator $\bar{\theta}_{T}$, proved that the estimator

$$
\begin{equation*}
\widetilde{\theta}_{n}=\left(\frac{1}{H \Gamma(2 H) n} \sum_{i=1}^{n} X_{t_{i-1}}^{2}\right)^{-1 /(2 H)} \tag{1.2}
\end{equation*}
$$

is strongly consistent and asymptotically normal.

In the present work, we shall also prove that, in the case when $H \in(1 / 2,3 / 4)$, the sequence

$$
\left\{\frac{\sqrt{n}}{\sigma(H, \theta)}\left(\theta-\widetilde{\theta}_{n}\right)\right\}_{n \geqslant 1}
$$

satisfies the ASCLT (see Theorem 4.3).
The paper is organized as follows. Section 2 contains the basic tools of Malliavin calculus for the fractional Brownian motion needed throughout the paper. In Section 3 we prove the ASCLT for a sequence of random variables having the form of a ratio of two terms such that the numerator satisfies the ASCLT and the denominator is a positive term which converges almost surely to one. In Section 4, we use our ASCLT to study the ASCLT for the estimators $\widehat{\theta}_{n}$ and $\widetilde{\theta}_{n}$.

2. PRELIMINARIES

In this section we describe some basic facts on the stochastic calculus with respect to a fractional Brownian motion. For more complete presentation on the subject, see Nualart [14].

The fractional Brownian motion $\left\{B_{t}, t \geqslant 0\right\}$ with Hurst parameter $H \in(0,1)$ is defined as a centered Gaussian process starting from zero with covariance

$$
R_{H}(t, s):=\mathbb{E}\left(B_{t} B_{s}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

Assume that B is defined on a complete probability space (Ω, \mathcal{F}, P) such that \mathcal{F} is the sigma-field generated by B. By Kolmogorov's continuity criterion and the equality

$$
\mathbb{E}\left(B_{t}-B_{s}\right)^{2}=|s-t|^{2 H}, \quad s, t \geqslant 0
$$

B has Hölder continuous paths of order $H-\varepsilon$ for all $\varepsilon \in(0, H)$.
Fix a time interval $[0, T]$. We denote by \mathcal{H} the canonical Hilbert space associated with the fractional Brownian motion B. That is, \mathcal{H} is the closure of the linear span \mathcal{E} generated by the indicator functions $\mathbb{1}_{\{[0, t]\}}, t \in[0, T]$, with respect to the scalar product

$$
\left\langle\mathbb{1}_{\{[0, t]\}}, \mathbb{1}_{\{[0, s]\}}\right\rangle=R_{H}(t, s) .
$$

We denote by $|\cdot|_{\mathcal{H}}$ the associated norm. The mapping $\mathbb{1}_{[0, t]} \mapsto B_{t}$ can be extended to an isometry between \mathcal{H} and the Gaussian space associated with B. We denote this isometry by

$$
\varphi \mapsto B(\varphi)=\int_{0}^{T} \varphi(s) d B_{s}
$$

When $H>\frac{1}{2}$, the elements of \mathcal{H} may be not functions but distributions of negative order (see Pipiras and Taqqu [15]]). Therefore, it is of interest to know significant subspaces of functions contained in it.

Let $|\mathcal{H}|$ be the set of measurable functions φ on $[0, T]$ such that

$$
\|\varphi\|_{|\mathcal{H}|}^{2}:=H(2 H-1) \int_{0}^{T} \int_{0}^{T}|\varphi(u)\|\varphi(v)\| u-v|^{2 H-2} d u d v<\infty
$$

Note that if $\varphi, \psi \in|\mathcal{H}|$, then

$$
\mathbb{E}(B(\varphi) B(\psi))=H(2 H-1) \int_{0}^{T} \int_{0}^{T} \varphi(u) \psi(v)|u-v|^{2 H-2} d u d v
$$

It follows actually from Pipiras and Taqqu [15] that the space $|\mathcal{H}|$ is a Banach space for the norm $\|\cdot\|_{|\mathcal{H}|}$ and it is included in \mathcal{H}. Moreover, one has

$$
\begin{equation*}
L^{2}([0, T]) \subset L^{1 / H}([0, T]) \subset|\mathcal{H}| \subset \mathcal{H} \tag{2.1}
\end{equation*}
$$

Let $C_{b}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be the class of infinitely differentiable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that f and all its partial derivatives are bounded. We denote by \mathcal{S} the class of cylindrical random variables F of the form

$$
\begin{equation*}
F=f\left(B\left(\varphi_{1}\right), \ldots, B\left(\varphi_{n}\right)\right) \tag{2.2}
\end{equation*}
$$

where $n \geqslant 1, f \in C_{b}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and $\varphi_{1}, \ldots, \varphi_{n} \in \mathcal{H}$. The derivative operator D of a cylindrical random variable F of the form (2.2) is defined as the \mathcal{H}-valued random variable

$$
D_{t} F=\sum_{i=1}^{N} \frac{\partial f}{\partial x_{i}}\left(B\left(\varphi_{1}\right), \ldots, B\left(\varphi_{n}\right)\right) \varphi_{i}(t)
$$

In this way the derivative $D F$ is an element of $L^{2}(\Omega ; \mathcal{H})$. For $p \geqslant 1$, let $D^{1, p}$ be the closure of \mathcal{S} with respect to the norm defined by

$$
\|F\|_{1, p}^{p}=\mathbb{E}\left(\|F\|^{p}\right)+\mathbb{E}\left(\|D F\|_{\mathcal{H}}^{p}\right) .
$$

The divergence operator δ is the adjoint of the derivative operator D. Concretely, a random variable $u \in L^{2}(\Omega ; \mathcal{H})$ belongs to the domain of the divergence operator $\operatorname{Dom}(\delta)$ if, for every $F \in \mathcal{S}$,

$$
\mathbb{E}\left|\langle D F, u\rangle_{\mathcal{H}}\right| \leqslant c\|F\|_{L^{2}(\Omega)}
$$

In this case $\delta(u)$ is given by the duality relationship

$$
\mathbb{E}(F \delta(u))=\mathbb{E}\langle D F, u\rangle_{\mathcal{H}}
$$

for any $F \in D^{1,2}$. We will make use of the notation

$$
\delta(u)=\int_{0}^{T} u_{s} d B_{s}, \quad u \in \operatorname{Dom}(\delta)
$$

In particular, for $h \in \mathcal{H}, B(h)=\delta(h)=\int_{0}^{T} h_{s} d B_{s}$.

For every $n \geqslant 1$, let \mathcal{H}_{n} be the n-th Wiener chaos of B, that is, the closed linear subspace of $L^{2}(\Omega)$ generated by the random variables $\left\{H_{n}(B(h)), h \in\right.$ $\left.\mathcal{H},\|h\|_{\mathcal{H}}=1\right\}$, where H_{n} is the n-th Hermite polynomial. The mapping $I_{n}\left(h^{\otimes n}\right)=$ $n!H_{n}(B(h))$ provides a linear isometry between the symmetric tensor product $\mathcal{H}^{\odot n}$ (equipped with the modified norm $\|\cdot\|_{\mathcal{H}^{\ominus n}}=\frac{1}{\sqrt{n!}}\|\cdot\|_{\mathcal{H}^{\otimes n}}$) and \mathcal{H}_{n}. For every $f, g \in \mathcal{H}^{\odot n}$ the following multiplication formula holds:

$$
\mathbb{E}\left(I_{n}(f) I_{n}(g)\right)=n!\langle f, g\rangle_{\mathcal{H}^{\otimes n}}
$$

On the other hand, it is well known that $L^{2}(\Omega)$ can be decomposed into the infinite orthogonal sum of the spaces \mathcal{H}_{n}. That is, any square integrable random variable $F \in L^{2}(\Omega)$ admits the following chaotic expansion:

$$
F=\mathbb{E}(F)+\sum_{n=1}^{\infty} I_{n}\left(f_{n}\right),
$$

where $f_{n} \in \mathcal{H}^{\odot n}$ are uniquely determined by F.
Let $\left\{e_{n}, n \geqslant 1\right\}$ be a complete orthonormal system in \mathcal{H}. Given $f \in \mathcal{H}^{\odot p}$ and $g \in \mathcal{H}^{\odot q}$, for every $r=0, \ldots, p \wedge q$, the r-th contraction of f and g is the element of $\mathcal{H}^{\otimes(p+q-2 r)}$ defined as

$$
f \otimes_{r} g=\sum_{i_{1}=1, \ldots, i_{r}=1}^{\infty}\left\langle f, e_{i_{1}} \otimes \ldots \otimes e_{i_{r}}\right\rangle_{\mathcal{H}^{\otimes r}} \otimes\left\langle g, e_{i_{1}} \otimes \ldots \otimes e_{i_{r}}\right\rangle_{\mathcal{H}^{\otimes r}} .
$$

In particular, note that $f \otimes_{0} g=f \otimes g$ and, when $p=q, f \otimes_{p} g=\langle f, g\rangle_{\mathcal{H} \otimes p}$. Since, in general, the contraction $f \otimes_{r} g$ is not necessarily symmetric, we denote its symmetrization by $f \widetilde{\otimes}_{r} g \in \mathcal{H}^{\odot}(p+q-2 r)$. When $f \in \mathcal{H}^{\odot q}$, we write $I_{q}(f)$ to indicate its q-th multiple integral with respect to X. The following formula is useful to compute the product of such multiple integrals: if $f \in \mathcal{H}^{\odot p}$ and $g \in \mathcal{H}^{\odot q}$, then

$$
\begin{equation*}
I_{p}(f) I_{q}(g)=\sum_{r=0}^{p \wedge q} r!\binom{p}{r}\binom{q}{r} I_{p+q-2 r}\left(f \widetilde{\otimes}_{r} g\right) . \tag{2.3}
\end{equation*}
$$

Let us now recall the criterion of Ibragimov and Lifshits [9], which plays a crucial role in Bercu et al. [2] to study ASCLTs for sequences of functionals of general Gaussian fields.

Theorem 2.1 (Ibragimov and Lifshits [9]). Let $\left\{G_{n}\right\}$ be a sequence of random variables converging in distribution towards a random variable G_{∞}, and set

$$
\Delta_{n}(t)=\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}\left(e^{i t G_{k}}-\mathbb{E}\left(e^{i t G_{\infty}}\right)\right) .
$$

Assume that, for all $r>0$,

$$
\sup _{|t| \leqslant r} \sum_{n} \frac{E\left|\Delta_{n}(t)\right|^{2}}{n \log n}<\infty .
$$

Then, almost surely, for all continuous and bounded functions $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, one has

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \varphi\left(G_{k}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \mathbb{E}\left(\varphi\left(G_{\infty}\right)\right)
$$

For the rest of the paper, we will use the standard notation $\phi(z):=P(N \leqslant z)$, where N is an $\mathcal{N}(0,1)$ random variable. We will denote by $C(\theta, H)$ a generic positive constant which depends only on θ and H.

3. ALMOST SURE CENTRAL LIMIT THEOREMS

In this section we shall state and prove our results concerning the ASCLT for the sequences of \mathbb{R}-valued random variables of the form $\left\{G_{n} / R_{n}\right\}_{n \geqslant 1}$ and $\left\{G_{n}+R_{n}\right\}_{n \geqslant 1}$.

THEOREM 3.1. Let $\left\{G_{n}\right\}_{n \geqslant 1}$ be a sequence of \mathbb{R}-valued random variables satisfying the ASCLT. Let $\left\{R_{n}\right\}_{n \geqslant 1}$ be a sequence of positive random variables converging almost surely to one. Then $\left\{G_{n} / R_{n}\right\}_{n \geqslant 1}$ satisfies the ASCLT. In other words, if N is an $\mathcal{N}(0,1)$ random variable, then, almost surely, for all $z \in \mathbb{R}$,

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z R_{k}\right\}} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \phi(z) .
$$

THEOREM 3.2. Let $\left\{G_{n}\right\}_{n \geqslant 1}$ be a sequence of \mathbb{R}-valued random variables satisfying the ASCLT. Let $\left\{R_{n}\right\}_{n \geqslant 1}$ be a sequence of \mathbb{R}-valued random variables converging almost surely to zero. Then $\left\{G_{n}+R_{n}\right\}_{n \geqslant 1}$ satisfies the ASCLT. In other words, almost surely, for all $z \in \mathbb{R}$,

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k}+R_{k} \leqslant z\right\}} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \phi(z) .
$$

REMARK 3.1. A similar result to Theorem B. 2 for the ASCLT of the sequence $\left\{G_{n}+R_{n}\right\}_{n \geqslant 1}$, where $\left\{R_{n}\right\}_{n \geqslant 1}$ converges in $L^{2}(\Omega)$ to zero, and such that

$$
\sum_{n \geqslant 2} \frac{1}{n \log ^{2} n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{E}\left|R_{k}\right|^{2}<\infty
$$

was established by Nourdin and Peccati in [13]].
The proofs of Theorems 3.1 and 3.2 are respectively direct consequences of the following two lemmas:

Lemma 3.1. Let $\left\{G_{n}\right\}_{n \geqslant 1}$ and $\left\{R_{n}\right\}_{n \geqslant 1}$ be two sequences of real-valued random variables. Define

$$
\begin{align*}
U_{n, \varepsilon} & :=\left|\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z(1-\varepsilon)\right\}}-\phi(z(1-\varepsilon))\right|, \tag{3.1}\\
V_{n, \varepsilon} & :=\left|\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z(1+\varepsilon)\right\}}-\phi(z(1+\varepsilon))\right| . \tag{3.2}
\end{align*}
$$

Then, for all $z \in \mathbb{R}$ and $\varepsilon>0$,
$\left|\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z R_{k}\right\}}-\phi(z)\right| \leqslant \max \left(U_{n, \varepsilon}, V_{n, \varepsilon}\right)+\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{\left|R_{k}-1\right| \geqslant \varepsilon\right\}}+\varepsilon$.
Lemma 3.2. Let $\left\{S_{n}\right\}_{n \geqslant 1}$ and $\left\{R_{n}\right\}_{n \geqslant 1}$ be two sequences of real-valued random variables. Define

$$
\begin{align*}
T_{n, \eta} & :=\left|\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z+\eta\right\}}-\phi(z+\eta)\right|, \tag{3.3}\\
W_{n, \eta} & :=\left|\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z-\eta\right\}}-\phi(z-\eta)\right| . \tag{3.4}
\end{align*}
$$

Then, for all $z \in \mathbb{R}$ and $\eta>0$,

$$
\begin{aligned}
& \left|\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k}+R_{k} \leqslant z\right\}}-\phi(z)\right| \\
& \leqslant
\end{aligned}
$$

Proof of Lemma 3.1. It is inspired by Lemma 1 from Michael and Pfanzagl [|12], p. 78. The case $\varepsilon \geqslant 1$ is easy. We now assume that $\varepsilon \in(0,1)$. When $z \geqslant 0$, using the inclusion

$$
\left\{G_{k} \leqslant(1-\varepsilon) z\right\} \subset\left\{G_{k} \leqslant z R_{k}\right\} \cup\left\{R_{k} \leqslant 1-\varepsilon\right\}
$$

we have

$$
\begin{equation*}
\mathbb{1}_{\left\{G_{k} \leqslant z(1-\varepsilon)\right\}} \leqslant \mathbb{1}_{\left\{G_{k} \leqslant z R_{k}\right\}}+\mathbb{1}_{\left\{\left|R_{k}-1\right| \geqslant \varepsilon\right\}} . \tag{3.5}
\end{equation*}
$$

Since, for every $x \geqslant 0, x e^{-x^{2} / 2} \leqslant e^{-1 / 2}$, we get

$$
\begin{equation*}
|\phi(z)-\phi(z(1-\varepsilon))| \leqslant \min \left(\frac{1}{2}, \frac{z \varepsilon}{\sqrt{2 \pi}} \exp \left(\frac{-z^{2}(1-\varepsilon)^{2}}{2}\right)\right) \leqslant \varepsilon \tag{3.6}
\end{equation*}
$$

Combining (3.5) and (3.6), we obtain

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z R_{k}\right\}}-\phi(z) \geqslant-U_{n, \varepsilon}-\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{\left|R_{k}-1\right| \geqslant \varepsilon\right\}}-\varepsilon .
$$

Now, when $z \leqslant 0$, the inclusion $\left\{G_{k} \leqslant(1+\varepsilon) z\right\} \subset\left\{G_{k} \leqslant z R_{k}\right\} \cup\left\{R_{k} \geqslant 1+\varepsilon\right\}$ leads to

$$
\mathbb{1}_{\left\{G_{k} \leqslant z(1+\varepsilon)\right\}} \leqslant \mathbb{1}_{\left\{G_{k} \leqslant z R_{k}\right\}}+\mathbb{1}_{\left\{\left|R_{k}-1\right| \geqslant \varepsilon\right\}} .
$$

Moreover, since

$$
|\phi(z)-\phi(z(1+\varepsilon))| \leqslant \frac{|z| \varepsilon}{\sqrt{2 \pi}} \exp \left(\frac{-z^{2}(1+\varepsilon)^{2}}{2}\right) \leqslant \varepsilon
$$

we have

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z R_{k}\right\}}-\phi(z) \geqslant-V_{n, \varepsilon}-\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{\left|R_{k}-1\right| \geqslant \varepsilon\right\}}-\varepsilon .
$$

Thus, for every $z \in \mathbb{R}$,

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z R_{k}\right\}}-\phi(z) \geqslant-\max \left(U_{n, \varepsilon}, V_{n, \varepsilon}\right)-\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{\left|R_{k}-1\right| \geqslant \varepsilon\right\}}-\varepsilon .
$$

Following the same guidelines as above and using

$$
\begin{array}{ll}
\left\{G_{k} \leqslant z R_{k}\right\} \subset\left\{G_{k} \leqslant(1+\varepsilon) z\right\} \cup\left\{R_{k} \geqslant 1+\varepsilon\right\} & \text { for } z \geqslant 0, \\
\left\{G_{k} \leqslant z R_{k}\right\} \subset\left\{G_{k} \leqslant(1-\varepsilon) z\right\} \cup\left\{R_{k} \leqslant 1-\varepsilon\right\} & \text { for } z \leqslant 0
\end{array}
$$

we get, for every $z \in \mathbb{R}$,

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z R_{k}\right\}}-\phi(z) \leqslant \max \left(U_{n, \varepsilon}, V_{n, \varepsilon}\right)+\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{\left|R_{k}-1\right| \geqslant \varepsilon\right\}}+\varepsilon .
$$

This completes the proof of Lemma [3.].

Proof of Lemma 3.2. Fix $z \in \mathbb{R}$ and $\eta>0$. Remark that

$$
\left\{G_{k}+R_{k} \leqslant z\right\} \subset\left\{G_{k} \leqslant z+\eta\right\} \cup\left\{\left|R_{k}\right|>\eta\right\} .
$$

Thus we obtain

$$
\begin{aligned}
& \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k}+R_{k} \leqslant z\right\}}-\phi(z) \\
\leqslant & \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z+\eta\right\}}-\phi(z+\eta)+\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{\left|R_{k}\right|>\eta\right\}}+\phi(z+\eta)-\phi(z) \\
\leqslant & T_{n, \eta}+\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{\left|R_{k}\right|>\eta\right\}}+\frac{\eta}{\sqrt{2 \pi}} .
\end{aligned}
$$

On the other hand, it follows from the inclusion

$$
\left\{G_{k} \leqslant z-\eta\right\} \subset\left\{G_{k}+R_{k} \leqslant z\right\} \cup\left\{\left|R_{k}\right|>\eta\right\}
$$

that

$$
\begin{aligned}
& \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k}+R_{k} \leqslant z\right\}}-\phi(z) \\
\geqslant & \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z+\eta\right\}}-\phi(z-\eta)-\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{\left|R_{k}\right|>\eta\right\}}+\phi(z-\eta)-\phi(z) \\
\geqslant & -W_{n, \eta}-\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{\left|R_{k}\right|>\eta\right\}}-\frac{\eta}{\sqrt{2 \pi}} .
\end{aligned}
$$

The desired conclusion follows.

4. APPLICATION TO LSE FOR FRACTIONAL ORNSTEIN-UHLENBECK PROCESS

First we recall a result of [2] concerning the ASCLT for multiple stochastic integrals.

THEOREM 4.1 (Bercu et al. [2]). Let $q \geqslant 2$ be an integer and let $\left\{G_{n}\right\}_{n \geqslant 1}$ be a sequence of the form $G_{n}=I_{q}\left(f_{n}\right)$ with $f_{n} \in \mathcal{H}^{\odot q}$. Assume that $\mathbb{E}\left[G_{n}^{2}\right]=$ $q!\left\|f_{n}\right\|_{\mathcal{H}^{\otimes q}}^{2}=1$ for all n and that G_{n} converges in distribution towards a standard Gaussian. Moreover, assume that
(4.2) $\quad \sum_{n=2}^{\infty} \frac{1}{n \log ^{3} n} \sum_{k, l=1}^{n} \frac{\left|\left\langle f_{k}, f_{l}\right\rangle_{\mathcal{H} \otimes q}\right|}{k l}<\infty$.

Then $\left\{G_{n}\right\}_{n \geqslant 1}$ satisfies an ASCLT. In other words, almost surely, for all $z \in \mathbb{R}$,

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{G_{k} \leqslant z\right\}} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \phi(z)
$$

or, equivalently, almost surely, for any bounded and continuous function $\varphi: \mathbb{R} \rightarrow$ \mathbb{R}, we have

$$
\frac{1}{\log (n)} \sum_{k=1}^{n} \frac{1}{k} \varphi\left(G_{k}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \mathbb{E} \varphi(N) .
$$

4.1. Continuous case. In this section we apply Theorem B.1] to a least squares estimator for fractional Ornstein-Uhlenbeck processes based on continuous-time observations.

Let us consider the fractional Ornstein-Uhlenbeck process $X=\left\{X_{t}, t \geqslant 0\right\}$ given by the linear stochastic differential equation

$$
\begin{equation*}
X_{0}=0 \quad \text { and } \quad d X_{t}=-\theta X_{t} d t+d B_{t}, t \geqslant 0 \tag{4.3}
\end{equation*}
$$

where $B=\left\{B_{t}, t \geqslant 0\right\}$ is a fractional Brownian motion of Hurst index $H \in\left(\frac{1}{2}, 1\right)$ and θ is a real unknown parameter. Let $\widehat{\theta}_{t}$ be a least squares estimator (LSE) of θ given by

$$
\begin{equation*}
\widehat{\theta}_{t}=-\frac{\int_{0}^{t} X_{s} \delta X_{s}}{\int_{0}^{t} X_{s}^{2} d s}, \quad t>0 \tag{4.4}
\end{equation*}
$$

This LSE is obtained by the least squares technique, that is, $\widehat{\theta}_{t}$ (formally) minimizes

$$
\theta \mapsto \int_{0}^{t}\left|\dot{X}_{s}+\theta X_{s}\right|^{2} d s
$$

The linear equation (4.3) has the following explicit solution:

$$
\begin{equation*}
X_{t}=e^{-\theta t} \int_{0}^{t} e^{\theta s} d B_{s}, \quad t>0 \tag{4.5}
\end{equation*}
$$

Using the equations (4.3) and (4.5) we can write the LSE $\left\{\widehat{\theta}_{t}\right\}$ defined in (4.4) as follows:

$$
\begin{equation*}
\widehat{\theta}_{t}-\theta=-\frac{\int_{0}^{t} X_{s} \delta B_{s}}{\int_{0}^{t} X_{s}^{2} d s}=-\frac{\int_{0}^{t} \delta B_{s} e^{\theta s} \int_{0}^{s} \delta B_{r} e^{-\theta r}}{\int_{0}^{t} X_{s}^{2} d s} \tag{4.6}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\sqrt{t}\left(\theta-\widehat{\theta}_{t}\right)=\frac{F_{t}}{t^{-1} \int_{0}^{t} X_{s}^{2} d s}, \quad t>0 \tag{4.7}
\end{equation*}
$$

where

$$
F_{t}:=I_{2}\left(f_{t}\right)
$$

is a multiple integral of f_{t} with

$$
f_{t}(u, v)=\frac{1}{2 \sqrt{t}} e^{-\theta|u-v|} \mathbb{1}_{\{[0, t]\}}^{\otimes 2}(u, v) .
$$

Until the end of this paper we will use the following notation for all $t>0$:

$$
\begin{equation*}
\sigma_{t}=\lambda(\theta, H) \sqrt{\mathbb{E}\left(F_{t}^{2}\right)} \quad \text { with } \lambda(\theta, H):=\theta^{-2 H} H \Gamma(2 H) . \tag{4.8}
\end{equation*}
$$

We are now ready to state the main result of this subsection. First we recall some results of Hu and Nualart [6] needed throughout the paper:

$$
\begin{equation*}
\mathbb{E}\left(F_{t}^{2}\right) \underset{t \rightarrow \infty}{\longrightarrow} A(\theta, H), \tag{4.9}
\end{equation*}
$$

where

$$
A(\theta, H)=\theta^{1-4 H}\left(H^{2}(4 H-1)\left[\Gamma(2 H)^{2}+\frac{\Gamma(2 H) \Gamma(3-4 H) \Gamma(4 H-1)}{\Gamma(2-2 H)}\right]\right) .
$$

Moreover, for every $t \geqslant 0$

$$
\begin{equation*}
\mathbb{E}\left[\left(\left\|D F_{t}\right\|_{\mathcal{H}}^{2}-\mathbb{E}\left\|D F_{t}\right\|_{\mathcal{H}}^{2}\right)^{2}\right] \leqslant C(\theta, H) t^{8 H-6}, \tag{4.10}
\end{equation*}
$$

and as $t \rightarrow \infty$

$$
\begin{equation*}
F_{t} \xrightarrow{\mathrm{~d}} N \sim \mathcal{N}(0, A(\theta, H)) \tag{4.11}
\end{equation*}
$$

(where $\xrightarrow{\mathrm{d}}$ means convergence in distribution). At last, we have the convergence

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} X_{s}^{2} d s \underset{t \rightarrow \infty}{\text { a.s. }} \lambda(\theta, H) \tag{4.12}
\end{equation*}
$$

as $t \rightarrow \infty$.
Theorem 4.2. Assume $H \in(1 / 2,3 / 4)$. Then, almost surely, for all $z \in \mathbb{R}$,

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{\left(\sqrt{k} / \sigma_{k}\right)\left(\theta-\widehat{\theta}_{k}\right) \leqslant z\right\}} \xrightarrow[n \rightarrow \infty]{ } \phi(z)
$$

or, equivalently, almost surely, for any bounded and continuous function φ

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \varphi\left(\frac{\sqrt{k}}{\sigma_{k}}\left(\theta-\widehat{\theta}_{k}\right)\right) \xrightarrow[n \rightarrow \infty]{ } \mathbb{E}(\varphi(N)) .
$$

Proof. Let us consider, for each $t>0$,

$$
G_{t}=\frac{1}{\sqrt{\mathbb{E}\left(F_{t}^{2}\right)}} F_{t}=\frac{1}{\sqrt{\mathbb{E}\left(F_{t}^{2}\right)}} I_{2}\left(f_{t}\right)
$$

and

$$
R_{t}=\frac{1}{\lambda(\theta, H) t} \int_{0}^{t} X_{s}^{2} d s
$$

Thus, (4.7) leads to

$$
\frac{\sqrt{n}}{\sigma_{n}}\left(\theta-\widehat{\theta}_{n}\right)=G_{n} / R_{n}, \quad n \geqslant 1
$$

It follows from (4.12) that R_{n} converges almost surely to one as n tends to infinity. Then, using Theorem 3.1] it suffices to show that $\left\{G_{n}\right\}_{n \geqslant 1}$ satisfies the ASCLT. To do that, it is sufficient to prove that $\left\{G_{n}\right\}_{n \geqslant 1}$ satisfies the conditions of Theorem 4.11.

We have $E\left(G_{n}^{2}\right)=1$. In addition, the convergence of G_{n} towards the standard Gaussian is a straightforward consequence of (4.9) and (4.1]). It remains to fulfill the conditions (4.ل1) and (4.2). Hence, we shall prove that

$$
\begin{equation*}
I=\sum_{n \geqslant 2} \frac{1}{n \log ^{2}(n)} \sum_{k=1}^{n} \frac{1}{k}\left\|f_{k} \otimes_{1} f_{k}\right\|_{\mathcal{H} \otimes 2}<\infty \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
J=\sum_{n \geqslant 2} \frac{1}{n \log ^{3}(n)} \sum_{k, l=1}^{n} \frac{\left|\left\langle f_{k}, f_{l}\right\rangle_{\mathcal{H}^{\otimes 2}}\right|}{k l}<\infty . \tag{4.14}
\end{equation*}
$$

Let us deal with the first convergence (4.J3). For every $t>0$, we have

$$
\begin{equation*}
\mathbb{E}\left[\left(\left\|D F_{t}\right\|_{\mathcal{H}}^{2}-\mathbb{E}\left\|D F_{t}\right\|_{\mathcal{H}}^{2}\right)^{2}\right]=16\left\|f_{t} \otimes_{1} f_{t}\right\|_{\mathcal{H} \otimes 2}^{2} . \tag{4.15}
\end{equation*}
$$

Combining (4.10) and (4.15) we obtain

$$
\begin{equation*}
I \leqslant C(\theta, H) \sum_{n \geqslant 2} \frac{1}{n \log ^{2}(n)} \sum_{k=1}^{n} \frac{1}{k^{4-4 H}} \tag{4.16}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
I \leqslant C(\theta, H) \sum_{n \geqslant 2} \frac{1}{n^{4-4 H}}<\infty \tag{4.17}
\end{equation*}
$$

since $H<3 / 4$, where $C(\theta, H)$ is a generic constant depending only on θ, H.
Now, we prove (4.14). Let $k<l$. Then for some $k^{*} \in[0, k]$ we have

$$
\begin{aligned}
\left|\left\langle f_{k}, f_{l}\right\rangle_{\mathcal{H}}\right|= & H^{2}(2 H-1)^{2} \frac{1}{\sqrt{k l}} \\
& \times \int_{[0, k]^{2}} d x d u e^{-\theta|x-u|} \int_{[0, l]^{2}} d y d v e^{-\theta|y-v|}|x-y|^{2 H-2}|u-v|^{2 H-2} \\
= & 2 H^{2}(2 H-1)^{2} \sqrt{\frac{k}{l}} \int_{\left[0, k^{*}\right]} d u e^{-\theta\left|k^{*}-u\right|} \\
& \times \int_{[0, l]^{2}} d y d v e^{-\theta|y-v|}\left|k^{*}-y\right|^{2 H-2}|u-v|^{2 H-2} \\
:= & 2 H^{2}(2 H-1)^{2} \sqrt{\frac{k}{l}}\left(D^{(1)}+D^{(2)}+D^{(3)}+D^{(4)}\right) .
\end{aligned}
$$

Moreover, the first term can be bounded above by

$$
\begin{aligned}
D^{(1)} & =\int_{\left[0, k^{*}\right]} d u e^{-\theta\left(k^{*}-u\right)} \int_{\left[0, k^{*}\right]^{2}} d y d v e^{-\theta|y-v|}\left(k^{*}-y\right)^{2 H-2}|u-v|^{2 H-2} \\
& =\int_{\left[0, k^{*}\right]^{3}} e^{-\theta u} e^{-\theta|y-v|} y^{2 H-2}|u-v|^{2 H-2} d u d v d y \\
& \leqslant \int_{[0, \infty)^{3}} e^{-\theta u} e^{-\theta|y-v|} y^{2 H-2}|u-v|^{2 H-2} d u d v d y<\infty
\end{aligned}
$$

The last inequality is a consequence of the proof of Lemma 5.3 (see only web Appendix) in [6]. Following the same guidelines, we get for the other terms:

$$
\begin{aligned}
D^{(2)} & =\int_{\left[0, k^{*}\right]} d u e^{-\theta\left(k^{*}-u\right)} \int_{\left[k^{*}, l\right]^{2}} d y d v e^{-\theta|y-v|}\left(y-k^{*}\right)^{2 H-2}|u-v|^{2 H-2} \\
& =\int_{\left[0, k^{*}\right]} d u e^{-\theta u} \int_{\left[0, l-k^{*}\right]^{2}} d y d v e^{-\theta|y-v|} y^{2 H-2}(u+v)^{2 H-2} \\
& \leqslant \int_{[0, \infty)^{3}} e^{-\theta u} e^{-\theta|y-v|} y^{2 H-2}|u-v|^{2 H-2} d u d v d y<\infty
\end{aligned}
$$

$$
\begin{aligned}
D^{(3)} & =\int_{\left[0, k^{*}\right]} d u e^{-\theta\left(k^{*}-u\right)} \int_{\left[0, k^{*}\right]} d y \int_{\left[k^{*}, l\right]} d v e^{-\theta|y-v|}\left(k^{*}-y\right)^{2 H-2}|u-v|^{2 H-2} \\
& =\int_{\left[0, k^{*}\right]} d u e^{-\theta u} \int_{\left[0, k^{*}\right]} d y \int_{\left[0, l-k^{*}\right]} d v e^{-\theta(y+v)} y^{2 H-2}(u+v)^{2 H-2} \\
& \leqslant \int_{[0, \infty)^{3}} e^{-\theta u} e^{-\theta|y-v|} y^{2 H-2}|u-v|^{2 H-2} d u d v d y<\infty,
\end{aligned}
$$

and

$$
\begin{aligned}
D^{(4)} & =\int_{\left[0, k^{*}\right]} d u e^{-\theta\left(k^{*}-u\right)} \int_{\left[k^{*}, l\right]} d y \int_{\left[0, k^{*}\right]} d v e^{-\theta|y-v|}\left(y-k^{*}\right)^{2 H-2}|u-v|^{2 H-2} \\
& =\int_{\left[0, k^{*}\right]} d u e^{-\theta u} \int_{\left[0, l-k^{*}\right]} d y \int_{\left[0, k^{*}\right]} d v e^{-\theta(y+v)} y^{2 H-2}|u-v|^{2 H-2} \\
& \leqslant \int_{[0, \infty)^{3}} e^{-\theta u} e^{-\theta|y-v|} y^{2 H-2}|u-v|^{2 H-2} d u d v d y<\infty .
\end{aligned}
$$

Thus, we deduce that, for every $k<l$,

$$
\left|\left\langle f_{k}, f_{l}\right\rangle_{\mathcal{H}}\right|=C(\theta, H) \sqrt{\frac{k}{l}}
$$

Consequently, we obtain

$$
\begin{align*}
J & \leqslant C(\theta, H) \sum_{n \geqslant 2} \frac{1}{n \log ^{3}(n)} \sum_{l=1}^{n} \frac{1}{l^{3 / 2}} \sum_{k=1}^{l} \frac{1}{\sqrt{k}} \tag{4.18}\\
& \leqslant C(\theta, H) \sum_{n \geqslant 2} \frac{1}{n \log ^{3}(n)} \sum_{l=1}^{n} \frac{1}{l} \\
& \leqslant C(\theta, H) \sum_{n \geqslant 2} \frac{1}{n \log ^{2}(n)}<\infty
\end{align*}
$$

which concludes the proof.
4.2. Discrete case. Consider the fractional Ornstein-Uhlenbeck process $X=$ $\left\{X_{t}, t \geqslant 0\right\}$ defined in (4.3)). Assume that the process X is observed equidistantly in time with the step size $h>0$: $t_{i}=i h, i=0, \ldots, n$.

Theorem 4.3. Assume $H \in(1 / 2,3 / 4)$. Let $\widetilde{\theta}_{n}$ be the estimator of θ defined in (L2). Then, almost surely, for all $z \in \mathbb{R}$,

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbb{1}_{\left\{(\sqrt{n} / \sigma(H, \theta))\left(\theta-\tilde{\theta}_{k}\right) \leqslant z\right\}} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \phi(z),
$$

or, equivalently, for any bounded and continuous function φ,

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \varphi\left(\frac{\sqrt{n}}{\sigma(H, \theta)}\left(\theta-\widetilde{\theta}_{k}\right)\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \mathbb{E}(\varphi(N)),
$$

where $\sigma(H, \theta)>0$ is a constant depending only on H and θ.
Proof. Setting

$$
Q_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{t_{i-1}}^{2},
$$

we can write

$$
\begin{equation*}
\tilde{\theta}_{n}=\left(\frac{Q_{n}}{H \Gamma(2 H)}\right)^{-1 /(2 H)} \tag{4.19}
\end{equation*}
$$

Let us recall that (see [[]]) , as $n \rightarrow \infty$,

$$
\begin{equation*}
\widetilde{\theta}_{n} \xrightarrow{\text { a.s. }} \theta \tag{4.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sqrt{n}}{\sigma(H, \theta)}\left(\theta-\widetilde{\theta}_{n}\right) \xrightarrow{\mathrm{d}} \mathcal{N}(0,1) . \tag{4.21}
\end{equation*}
$$

We have

$$
\frac{\sqrt{n}}{\sigma(H, \theta)}\left(\theta-\widetilde{\theta}_{n}\right)=\xi_{n}^{-1 /(2 H)-1} \frac{\sqrt{n}}{2 H \sigma(H, \theta)}\left(\frac{Q_{n}}{H \Gamma(2 H)}-\theta^{-2 H}\right)
$$

where ξ_{n} is a random variable between $Q_{n} /(H \Gamma(2 H))$ and $\theta^{-2 H}$. The convergence (4.20) leads to $\theta^{-2 H-1} \xi_{n}^{-1 /(2 H)-1} \rightarrow 1$ almost surely as $n \rightarrow \infty$. Then, using Theorem 3 .ل] it suffices to show that

$$
\left\{\frac{\theta^{2 H+1} \sqrt{n}}{2 H \sigma(H, \theta)}\left(\frac{Q_{n}}{H \Gamma(2 H)}-\theta^{-2 H}\right)\right\}_{n \geqslant 1}
$$

satisfies the ASCLT. On the other hand,

$$
\frac{\theta^{2 H+1} \sqrt{n}}{2 H \sigma(H, \theta)}\left(\frac{Q_{n}}{H \Gamma(2 H)}-\theta^{-2 H}\right):=\bar{G}_{n}+\bar{R}_{n},
$$

where

$$
\bar{G}_{n}=\frac{\theta^{2 H+1} \sqrt{n}}{2 H \sigma(H, \theta)}\left(\frac{Q_{n}-\mathbb{E} Q_{n}}{H \Gamma(2 H)}\right) \in \mathcal{H}_{2},
$$

and from [7] it follows that

$$
\bar{R}_{n}=\frac{\theta^{2 H+1} \sqrt{n}}{2 H \sigma(H, \theta)}\left(\frac{\mathbb{E} Q_{n}}{H \Gamma(2 H)}-\theta^{-2 H}\right)
$$

converges to zero as $n \rightarrow \infty$. Hence, using Theorem 3.2 it remains to prove that $\left\{\bar{G}_{n}\right\}_{n \geqslant 1}$ satisfies the ASCLT. The conditions (4.ل-1) and (4.2) are satisfied by using the following estimates inspired by Hu and Song [7$]$]:

$$
\mathbb{E}\left[\left(\left\|D \bar{G}_{n}\right\|_{\mathcal{H}}^{2}-\mathbb{E}\left\|D \bar{G}_{n}\right\|_{\mathcal{H}}^{2}\right)^{2}\right] \leqslant C(\theta, H) \frac{1}{n^{8 H-6}}
$$

and for all $k \leqslant l$

$$
\left|\mathbb{E}\left[\bar{G}_{k} \bar{G}_{l}\right]\right| \leqslant C(\theta, H) \sqrt{\frac{k}{l}}
$$

Thus the proof of Theorem 4.3 is completed.

REFERENCES

[1] R. Belfadli, K. Es-Sebaiy, and Y. Ouknine, Parameter estimation for fractional Ornstein-Uhlenbeck processes: Non-ergodic case, Frontiers in Science and Engineering. An International Journal Edited by Hassan II Academy of Science and Technology 1 (1) (2011), pp. 1-16.
[2] B. Bercu, I. Nourdin, and M. Taqqu, Almost sure central limit theorem on the Wiener space, Stochastic Process. Appl. 120 (2010), pp. 1607-1628.
[3] I. Berkes, Results and problems related to the pointwise central limit theorem, in: Asymptotic Methods in Probability and Statistics: A Volume in Honour of Miklós Csörgö, B. Szyszkowicz (Ed.), Elsevier, Amsterdam 1998, pp. 59-96.
[4] I. Berkes and E. Csáki, A universal result in almost sure central limit theory, Stochastic Process. Appl. 94 (1) (2001), pp. 105-134.
[5] G. A. Brosamler, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (3) (1988), pp. 561-574.
[6] Y. Hu and D. Nualart, Parameter estimation for fractional Ornstein-Uhlenbeck processes, Statist. Probab. Lett. 80 (2010), pp. 1030-1038.
[7] Y. Hu and J. Song, Parameter estimation for fractional Ornstein-Uhlenbeck processes with discrete observations, in: Malliavin Calculus and Stochastic Analysis: A Festschrift in Honor of David Nualart, F. Viens et al. (Eds.), Springer Proc. Math. Statist. 34 (2013), pp. 427-442.
[8] I. A. Ibragimov and M. A. Lifshits, On the convergence of generalized moments in almost sure central limit theorem, Statist. Probab. Lett. 40 (4) (1998), pp. 343-351.
[9] I. A. Ibragimov and M. A. Lifshits, On limit theorems of almost sure type, Theory Probab. Appl. 44 (2) (2000), pp. 254-272.
[10] M. T. Lacey and W. Philipp, A note on the almost sure central limit theorem, Statist. Probab. Lett. 9 (1990), pp. 201-205.
[11] P. Lévy, Théorie de l'addition des variables aléatoires. Monographies des probabilites, Gauthier-Villars, Paris 1937.
[12] R. Michael and J. Pfanzagl, The accuracy of the normal approximation for minimum contrast estimate, Z. Wahrsch. Verw. Gebiete 18 (1971), pp. 37-84.
[13] I. Nourdin and G. Peccati, Universal Gaussian fluctuations of non-Hermitian matrix ensembles: From weak convergence to almost sure CLTs, ALEA 7 (2010), pp. 341-375.
[14] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, second edition, 2006.
[15] V. Pipiras and M. S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Related Fields 118 (2) (2000), pp. 251-291.
[16] P. Schatte, On strong versions of the central limit theorem, Math. Nachr. 137 (1988), pp. 249-256.

Peggy Cénac	Khalifa Es-Sebaiy
Institut de Mathématiques de Bourgogne	National School of Applied Sciences - Marrakesh
Université de Bourgogne	Cadi Ayyad University
9 Rue Alain Savary, 21078 Dijon, France	Av. Abdelkarim Khattabi, Gueliz, Marrakesh
E-mail: peggy.cenac@u-bourgogne.fr	Morocco
	E-mail: k.essebaiy@uca.ma

Received on 4.4.2014;
revised version on 18.12.2014

