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Abstract. Burkschat et al. (2003) have introduced the concept of dual
generalized order statistics (dgos) to unify several models that produce de-
scendingly ordered random variables (rv’s) like reversed order statistics,
lower k-records and lower Pfeifer records. In this paper we derive the limit
distribution functions (df’s) of bivariate central and bivariate intermediate
m-dgos. It is revealed that the convergence of the marginals of the m-dgos
implies the convergence of the joint df. Moreover, we derive the conditions
under which the asymptotic independence between the two marginals oc-
curs.
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1. INTRODUCTION

Generalized order statistics (gos) have been introduced in Kamps [8] as a uni-
fication of several models of ascendingly ordered rv’s. The use of the gos model
has been steadily growing along the years. This is due to the fact that this model
includes important well-known submodels that have been separately treated in sta-
tistical literature. Theoretically, many of the models of ordered rv’s are contained
in the gos model, such as ordinary order statistics (oos), order statistics with non-
integral sample size, sequential order statistics (sos), record values, Pfeifer’s record
model and progressive type II censored order statistics (pos). These models can be
applied in reliability theory. For instance, the sos model is an extension of the oos
model and serves as a model describing certain dependencies or interactions among
the system components caused by failures of components, and the pos model is an
important method of obtaining data in lifetime tests. Live units removed early on
can be readily used in other tests, thereby saving cost to the experimenter. Random
variables that are decreasingly ordered cannot be integrated into the framework
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of gos. Therefore, Burkschat et al. [4] have introduced the concept of dual gen-
eralized order statistics (dgos) to unify several models that produce descendingly
ordered rv’s like reversed order statistics and lower records models. Uniform dgos
U∗d;r:n, r = 1, 2, . . . , n, are defined by their probability density function (pdf)

fU∗d;1:n,U
∗
d;2:n,...,U

∗
d;n:n(u1, u2, . . . , un) =

( n∏
j=1

γj
) ( n−1∏

j=1

u
γj−γj+1−1
j

)
uγn−1n ,

where 1  u1  . . .  un > 0. The parameters γ1, γ2, . . . , γn are defined by γn =
k > 0 and γr = k+n− r+Mr, r = 1, 2, . . . , n− 1, where Mr =

∑n−1
j=r mj and

m̃ = (m1, m2, . . . ,mn−1) ∈ ℜn−1. The dual rv based on a df F is defined by

the quantile transformation Xd(r, n, m̃, k)
d
= F←(U∗d;r:n), r = 1, 2, . . . , n, where

F← denotes the quantile function of F, i.e., F←(y) = inf{x : F (x)  y} ( d
=

means identical distribution). The connections between m-gos and m-dgos are also
established in Cramer [6] and Burkschat et al. [4]. Nasri-Roudsari [10] (see also
Barakat [1]) has derived the marginal df of the rth m-gos, m ̸= −1, in the form
Φ
(m,k)
r:n (x) = IGm(x)(r,N − r + 1), where Gm(x) = 1−

(
1− F (x)

)m+1
= 1 −

F̄m+1(x), Ix(a, b) =
1

β(a,b)

∫ x

0
ta−1(1 − t)b−1dt denotes the incomplete beta ra-

tio function, and N = k
m+1 + n− 1. By using the well-known relation Ix(a, b) =

1 − Ix(b, a), where x = 1 − x, and by putting Tm(x) = Fm+1(x), the marginal
df of the rth m-dgos, m ̸= −1, is given by Φ

d(m,k)
r:n (x) = ITm(x)(N − r + 1, r).

Moreover, using the results of Burkschat et al. [4], we can write explicitly the joint
pdf’s of the rth and sth m-dgos, m ̸= −1, 1 ¬ r < s ¬ n, in the form

fd(m,k)
r,s:n (x, y) =

Cs−1,n
Γ(r)Γ(s− r)

Fm(x)
(
gm

(
F (y)

)
−gm

(
F (x)

))s−r−1
gr−1m

(
F (x)

)(1.1)

× F γs−1(y)f(x)f(y), −∞ < y < x <∞,

where Cs−1,n=
∏s

i=1 γi, s = 1, 2, . . . , n, and gm(x)= 1
m+1 [1−x

m+1]. In the pres-
ent paper we reveal the asymptotic structural dependence between the members
of dgos with variable ranks. The limit joint df of the m-dgos Xd(r, n,m, k) and
Xd(s, n,m, k) for m ̸= −1 is derived in the following two cases:

(1) C e n t r a l c a s e, where r, s → ∞ and r/N → λ1, s/N → λ2, for 0 <
λ1 < λ2 < 1, as N → ∞ (or, equivalently, as n → ∞). A remarkable example
of the central oos is the pth sample quantile, where rn = [np], 0 < p < 1, and [x]
denotes the largest integer not exceeding x (see [7]).

(2) I n t e r m e d i a t e c a s e, where r, s→∞ and r/N, s/N→0 as N→∞
(or, equivalently, as n→∞). The intermediate oos have many applications, e.g., in
the theory of statistics they can be used to estimate probabilities of future extreme
observations and to estimate tail quantiles of the underlying distribution that are
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extreme relative to the available sample size, see Pickands [11]. Many authors,
e.g., Teugels [13] and Mason [9], have also found estimates that are based, in part,
on intermediate order statistics.

The asymptotic bivariate df of the extreme m-dgos is derived in Barakat et
al. [2]. Moreover, the asymptotic behavior for bivariate central and intermediate
gos is investigated in Barakat et al. [3]. Everywhere in what follows the symbols
−→n and w−→n stand for convergence, as n→∞, and weak convergence, as n→∞,

respectively.

2. LIMIT DISTRIBUTION FUNCTIONS OF THE BIVARIATE CENTRAL m-dgos

Consider a variable rank sequence r = rn −→n ∞ and
√
n(rn/n − λ) −→n 0,

where 0 < λ < 1. Smirnov [12] showed that if there exist normalizing constants
α̃n > 0 and β̃n such that

(2.1) Φd(0,1)
r:n (α̃nx+ β̃n) = IF (α̃nx+β̃n)

(n− r + 1, r)
w−→n Φd(0,1)(x;λ),

where Φd(0,1)(x;λ) is some nondegenerate df, then Φd(0,1)(x;λ) must have one
and only one of the typesN

(
Wi,β(x)

)
, i = 1, 2, 3, 4, whereN (·) denotes the stan-

dard normal df, and

W1;β(x) =

{
−∞, x ¬ 0,

cxβ, x > 0,
W2;β(x) =

{
−c|x|β, x ¬ 0,

∞, x > 0,

W3;β(x) =

{
−c1|x|β, x ¬ 0,

c2x
β, x > 0,

W4;β(x) = W4(x) =


−∞, x ¬ −1,
0, −1 < x ¬ 1,

∞, x > 1,

and β, c, c1, c2 > 0. In this case we say that F belongs to the λ-normal domain of
attraction of the limit df Φd(0,1)(x;λ), written F ∈ Dλ

(
Φd(0,1)(x;λ)

)
. Moreover,

(2.1) is satisfied with Φd(0,1)(x;λ) = N
(
Wi;β(x)

)
for some i ∈ {1, 2, 3, 4} if and

only if

√
n
λ− F (α̃nx+ β̃n)

Cλ
→Wi,β(x), where Cλ =

√
λ(1− λ).

It is worth mentioning that the condition
√
n(rn/n− λ) −→n 0 is necessary to have

a unique limit law for any two ranks r, r′ for which limn→∞ r/n = limn→∞ r′/n.

The following lemma characterizes the possible limit laws of the df Φd(m,k)
r:n (x).
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LEMMA 2.1. Let r = rn be such that
√
n(r/n− λ) −→n 0, where 0 < λ < 1.

Furthermore, let m1 = m2 = . . . = mn−1 = m > −1. Then there exist normaliz-
ing constants ãn > 0 and b̃n for which

(2.2) Φd(m,k)
r:n (ãnx+ b̃n)

w−→n Φd(m,k)(x;λ),

where Φd(m,k)(x;λ) is a nondegenerate df if and only if

√
n
λ− Tm(ãnx+ b̃n)

Cλ
−→n U(x),

where Φd(m,k)(x;λ) = N
(
U(x)

)
. Moreover, (2.2) is satisfied for some nonde-

generate df Φd(m,k)(x;λ) if and only if F ∈ Dλ(m)

(
N
(
Wi;β(x)

))
for some i ∈

{1, 2, 3, 4}, where λ(m) = 1− λ
1/(m+1)

and λ = 1− λ. In this case we have

U(x) =
C∗λ(m)

C∗λ
(m+ 1)Wi;β(x), where C∗λ =

Cλ

λ
.

P r o o f. The proof follows by using the same argument that is applied in the
proof of Theorem 2.2 of Barakat [1] in the case of central m-gos. �

We assume in this section that r = rn, s = sn −→n ∞ and
√
n(r/n− λ1) −→n 0,

√
n(s/n− λ2) −→n 0, where 0 < λ1 < λ2 < 1. Moreover, we assume that there are

suitable normalizing constants ãn, c̃n > 0 and b̃n, d̃n for which

Φd(m,k)
r:n (ãny+b̃n)

w−→n Φd(m,k)(y;λ1) and Φd(m,k)
s:n (c̃nx+d̃n)

w−→n Φd(m,k)(x;λ2),

where Φd(m,k)(y;λ1) and Φd(m,k)(x;λ2) are nondegenerate df’s. Let Φd(m,k)
r,s:n (x, y)

be the joint df’s of the rth and sth m-dgos, m ̸= −1. By (1.1) we get Φd(m,k)
r,s:n (x, y)

= Φ
d(m,k)
s:n (x), x ¬ y, and

(2.3) Φd(m,k)
r,s:n (x, y) =

= C∗n

F (y)∫
0

F (x)∫
η

ξmηγs−1(1− ξm+1)r−1(ξm+1− ηm+1)s−r−1dξdη, x  y,

where

C∗n =
(m+ 1)2Γ(N + 1)

Γ(N − s+ 1)(r − 1)!(s− r − 1)!
.

The following lemma concerning the asymptotic behavior of the df Φd(m,k)
r,s:n (x, y)

is an essential tool in studying the limit df of the bivariate central m-dgos.
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LEMMA 2.2. Let λi = i/(N + 1), νi = 1 − λi , τi =
√

λiνi/(N + 1) for

i = r, s, 0 < Rrs =
√

λr(1− λs)/
(
λs(1− λr)

)
< 1, and let

Ud(1)
n (y) =

λr − Tm(ỹn)

τr
, Ud(2)

n (x) =
λs − Tm(x̃n)

τs
,

where x̃n = ãnx+ b̃n and ỹn = c̃ny + d̃n. Then

∣∣∣∣Φd(m,k)
r,s:n (x̃n, ỹn)−

1

2π
√

1−R2
rs

U
d(1)
n (y)∫
−∞

U
d(2)
n (x)∫
−∞

Wr,s(ξ, η)dξdη

∣∣∣∣ −→n 0

uniformly with respect to x and y, where

Wr,s(ξ, η) =
1

2π
√

1−R2
rs

exp

(
−ξ2 − 2ξηRrs + η2

2(1−R2
rs)

)
.

P r o o f. For given ϵ > 0 choose T large enough to satisfy both of the inequal-
ities 1/T 2 < ϵ and N (−T ) < ϵ. If Ud(1)

n (y) ¬ −T, then, for sufficiently large n,
we have Fm+1(ỹn) < νr − τrT < 1. Therefore, after routine calculations, we can
show that

Φd(m,k)
r:n (ỹn) =

1

β(N − r + 1, r)

Fm+1(ỹn)∫
0

ηN−r(1− η)r−1dη

¬ 1

β(N − r + 1, r)

νr−τrT∫
0

ηN−r(1− η)r−1dη

¬ 1

β(N − r + 1, r)

1∫
0

(η − νr)
2

τ2r T
2

ηN−r(1− η)r−1dη =
N + 1

(N + 2)T 2
<

1

T 2
< ϵ.

Since Φ
d(m,k)
r,s:n (x̃n, ỹn)¬Φ

d(m,k)
r:n (ỹn), it follows that Φd(m,k)

r,s:n (x̃n, ỹn)<ϵ. Simi-
larly, if Ud(2)

n (x) ¬ −T, we can prove that Φd(m,k)
r,s:n (x̃n, ỹn) ¬ Φ

d(m,k)
s:n (x̃n) < ϵ.

On the other hand, we have

U
d(1)
n (y)∫
−∞

U
d(2)
n (x)∫
−∞

Wr,s(ξ, η)dξdη ¬ min
(
N
(
Ud(1)
n (y)

)
,N

(
Ud(2)
n (x)

))
< ϵ.

Therefore, if Ud(1)
n (y) ¬ −T or Ud(2)

n (x) ¬ −T, we get

∣∣Φd(m,k)
r,s:n (x̃n, ỹn)−

U
d(1)
n (y)∫
−∞

U
d(2)
n (x)∫
−∞

Wr,s(ξ, η)dξdη
∣∣ < 2ϵ.
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Now, if Ud(1)
n (y)  T, then Fm+1(ỹn)  νr + τrT. Therefore, we get

1− Φd(m,k)
r:n (ỹn) ¬

1

β(N − r + 1, r)

1∫
νr+τrT

ηN−r(1− η)r−1dη

¬ 1

β(N − r + 1, r)

1∫
0

(η − νr)
2

τ2r T
2

ηN−r(1− η)r−1dη =
N + 1

(N + 2)T 2
<

1

T 2
< ϵ.

Thus, we also obtain

(2.4) Φd(m,k)
s:n (x̃n)− Φd(m,k)

r,s:n (x̃n, ỹn) < 1− Φd(m,k)
r:n (ỹn) < ϵ.

On the other hand, in view of our assumptions and Lemma 2.1, we get

(2.5)

N
(
Ud(2)
n (x)

)
−

U
d(1)
n (y)∫
−∞

U
d(2)
n (x)∫
−∞

Wr,s(ξ, η)dξdη =
∞∫

U
d(1)
n (y)

U
d(2)
n (x)∫
−∞

Wr,s(ξ, η)dξdη

¬ 1√
2π

∞∫
U

d(1)
n (y)

exp

(
−ξ2

2

)
dξ ¬ 1√

2π

∞∫
T

exp

(
−ξ2

2

)
dξ < ϵ

for sufficiently large n, and

(2.6)
∣∣Φd(m,k)

s:n (x̃n)−N
(
Ud(2)
n (x)

)∣∣ < ϵ

for sufficiently large n. The inequalities (2.4)–(2.6) show that when U
d(1)
n (y)  T,

we have ∣∣Φd(m,k)
r,s:n (x̃n, ỹn)−

U
d(1)
n (y)∫
−∞

U
d(2)
n (x)∫
−∞

Wr,s(ξ, η)dξdη
∣∣ < 3ϵ.

Similarly, we can show that the last inequality holds for sufficiently large n if
U

d(2)
n (x)  T. In order to complete the proof of the lemma, we have to consider

the case |Ud(1)
n (y)|, |Ud(2)

n (x)| < T. First, we note that, in this case, for sufficiently
large n, since Tm(ỹn) −→n λ1 < λ2 ←−n Tm(x̃n), we have x̃n  ỹn. Therefore, for

sufficiently large n, Φ
d(m,k)
r,s:n (x̃n, ỹn) is given by (2.3). On the other hand, in this

case we get 1− Fm+1(ỹn) < λr + τrT  0 and 1− Fm+1(x̃n) < λs + τsT  0.
Therefore,

(2.7) Φd(m,k)
r,s:n (x̃n, ỹn) =

1∫
1−Fm+1(ỹn)

w∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw =

λr+τrT∫
1−Fm+1(ỹn)

λs+τsT∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw+

λr+τrT∫
1−Fm+1(ỹn)

w∫
λs+τsT

φd(m,k)
r,s:n (w, z)dzdw

+
1∫

λr+τrT

w∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw,
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where
φd(m,k)
r,s:n (w, z) =

C∗n
(m+ 1)2

zr−1(1− w)N−s(w − z)s−r−1.

We shall separately consider each of the integrals in the summation (2.7). We have

(2.8)
1∫

λr+τrT

w∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw ¬

λr+τrT∫
0

w∫
1

φd(m,k)
r,s:n (w, z)dzdw

=
C∗n

(m+ 1)2

λr+τrT∫
0

w∫
1

zr−1(1− w)N−s(w − z)s−r−1dzdw

=
Γ(N + 1)

Γ(N − r + 1)Γ(r)

λr+τrT∫
0

wr−1(1− w)N−rdw <
1

T 2
< ϵ,

(2.9)
λr+τrT∫

1−Fm+1(ỹn)

w∫
λs+τsT

φd(m,k)
r,s:n (w, z)dzdw ¬

λs+τsT∫
0

λs+τsT∫
w

φd(m,k)
r,s:n (w, z)dzdw

=
Γ(N + 1)

Γ(N − s + 1)(s − 1)!

λs+τsT∫
0

zs−1(1− z)N−sdz <
1

T 2
< ϵ,

and by using the transformation z = λr − ξτr, w = λs − ητs, the third integral
takes the form

λr+τrT∫
1−Fm+1(ỹn)

λs+τsT∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw=Ar,s:n

U
d(1)
n (y)∫
−T

U
d(2)
n (x)∫
−T

g(d)r,s:n(ξ, η)dηdξ,

where

Ar,s:n =
Γ(N + 1)τrτsλ

r−1
r νN−ss (λs − λr)

s−r−1

Γ(N − s+ 1)(r − 1)!(s− r − 1)!

and

g(d)r,s:n(ξ, η) =

(
1− ξτr

λr

)r−1(
1− ητs − ξτr

λs − λr

)s−r−1(
1 +

ητs
νs

)N−s
.

On the other hand, by Stirling’s formula Γ(M + 1) = e−M
√
2πMMM

(
1+ o(1)

)
as M →∞, we get

Ar,s:n =
(N + 1)2Γ(N + 1)τrτsλ

r
rν

N−s
s (λs − λr)

s−r

Γ(N − s+ 1)r!(s− r)!

=
1 + o(1)

2π
√

(N+1)(s−r)
s(N−r)

=
1 + o(1)

2π
√

1−R2
rs

.
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Also, it is easy to show that

g(d)r,s:n(ξ, η) =

(
1− ξτr

λr

)r(
1− ητs − ξτr

λs − λr

)s−r(
1 +

ητs
νs

)N−s
(2.10)

×
[(

1− ξτr
λr

)−1(
1− ητs − ξτr

λs − λr

)−1]
=

(
1− ξτr

λr

)r(
1− ητs − ξτr

λs − λr

)s−r(
1 +

ητs
νs

)N−s

×
[(

1 +
ξτr
λr

(
1 + o(1)

))(
1 +

ητs − ξτr
λs − λr

(
1 + o(1)

))]
=

(
1− ξτr

λr

)r(
1− ητs − ξτr

λs − λr

)s−r(
1 +

ητs
νs

)N−s(
1 + ρn(ξ, η)

)
,

where ρn(ξ, η) −→n 0 uniformly in any finite interval (−T, T ) of the values ξ and η.

On the other hand, we have

r ln

(
1− ξτr

λr

)
= −r

(
ξτr
λr
− ξ2τ2r

2λ2
r

+
ξ3τ3r
3λ3

r

+ . . .

)
(2.11)

= −ξτr(N + 1)− ξ2νr
2

+ o

(
T 3

√
r

)
,

(2.12) (s− r) ln

(
1− ητs−ξτr

λs−λr

)
= −(ητs−ξτr)(N + 1)− 1

2

(ητs−ξτr)2

λs−λr
(N + 1) + o

(
T 3

√
s

)
and

(2.13) (N − s) ln

(
1− ητs

νs

)
= ητs(N + 1)− 1

2
η2λs + o

(
λ
3/2
s T 3

√
N

)
.

Therefore, combining (2.10)–(2.13) as n→∞ (or, equivalently, as N →∞), we
obtain

ln g(d)r,s:n(ξ, η) =

= r ln

(
1− ξτr

λr

)
+ (s− r) ln

(
1− ητs − ξτr

λs − λr

)
+ (N − s) ln

(
1 +

ητs
νs

)
∼ −ξ2νr

2
− η2τ2s − 2ξητrτs + ξ2τ2r

2(λs − λr)
(N + 1)− 1

2
η2λs

= −ξ2νr
2

(
1 +

λr

λs − λr

)
− 1

2
η2λs

(
1 +

νs
λs − λr

)
− 1

2

(
− 2ξη

τrτs
λs − λr

)
= −1

2

λs(1− λr)

λs − λr

(
ξ2 + η2 − 2ξη

√
λr(1− λs)

λs(1− λr)

)
,
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which implies

g(d)r,s:n(ξ, η) = exp

(
−ξ2 + η2 − 2ξηRrs

2(1−R2
rs)

)(
1 + o(1)

)
.

Therefore, for sufficiently large n (or, equivalently, for large N ), we obtain

∣∣ λr+τrT∫
1−Fm+1(ỹn)

λs+τsT∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw−

U
d(1)
n (y)∫
−T

U
d(2)
n (x)∫
−T

Wr,s(ξ, η)dξdη
∣∣<ϵ.

Since

−T∫
−∞

U
d(2)
n (x)∫
−T

Wr,s(ξ, η)dξdη +
U

d(1)
n (y)∫
−∞

−T∫
−∞

Wr,s(ξ, η)dξdη < 2N (−T ) < 2ϵ

and

U
d(1)
n (y)∫
−∞

U
d(2)
n (x)∫
−∞

Wr,s(ξ, η)dξdη =
U

d(1)
n (y)∫
−∞

−T∫
−∞

Wr,s(ξ, η)dξdη

+
−T∫
−∞

U
d(2)
n (x)∫
−T

Wr,s(ξ, η)dξdη +
U

d(1)
n (y)∫
−T

U
d(2)
n (x)∫
−T

Wr,s(ξ, η)dξdη,

we have

∣∣ λr+τrT∫
1−Fm+1(ỹn)

λs+τsT∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw−

U
d(1)
n (y)∫
−∞

U
d(2)
n (x)∫
−∞

Wr,s(ξ, η)dξdη
∣∣<3ϵ.

By combining the last inequality with (2.8) and (2.9) we get for sufficiently large n

∣∣Φd(m,k)
r,s:n (x̃n, ỹn)−

U
d(1)
n (y)∫
−∞

U
d(2)
n (x)∫
−∞

Wr,s(ξ, η)dξdη
∣∣ < 5ϵ,

which proves the lemma in the case |Ud(1)
n (y)|, |Ud(2)

n (x)| < T. This completes the
proof. �

Lemma 2.2 yields directly the following interesting theorem, which character-
izes the possible limit laws of the df of the bivariate central m-dgos.

THEOREM 2.1. The convergence of two marginals

Φd(m,k)
r:n (ỹn)

w−→n Φd(m,k)(y;λ1) = N
(
Ũ(y)

)
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and
Φd(m,k)
s:n (x̃n)

w−→n Φd(m,k)(x;λ2) = N
(
U(x)

)
,

where N
(
U(x)

)
and N

(
Ũ(y)

)
are nondegenerate df’s, is a necessary and suffi-

cient condition for the convergence of the joint df Φd(m,k)
r,s:n (x̃n, ỹn) to the nonde-

generate limit

Φd(m,k)(x, y;λ1, λ2) =
1

2π
√
1−R2

Ũ(y)∫
−∞

U(x)∫
−∞

exp

(
−ξ2 + η2 − 2ξηR

2(1−R2)

)
dξdη,

where R=
√

λ1(1−λ2)/
(
λ2(1−λ1)

)
. Moreover, the convergence of the bivariate

df Φd(m,k)
r,s:n (x̃n, ỹn), as well as the convergence of two marginals Φd(m,k)

r:n (ỹn) and
Φ
d(m,k)
s:n (x̃n), occurs if and only if

Φd(0,1)
r:n (ỹn)

w−→n N
(
Wi;β(y)

)
and Φd(0,1)

s:n (x̃n)
w−→n N

(
Wj;β′(x)

)
for some i, j ∈ {1, 2, 3, 4}, where λt(m) = 1− λ

1/(m+1)
t , λt = 1 − λt, t = 1, 2.

In this case we have

Ũ(y) =
C∗λ1(m)

C∗λ1

(m+ 1)Wi;β(y) and U(x) =
C∗λ2(m)

C∗λ2

(m+ 1)Wj;β′(x),

where C∗λt
= Cλt/λ, t = 1, 2.

3. LIMIT DISTRIBUTION FUNCTIONS OF THE BIVARIATE INTERMEDIATE m-dgos

A wide class of intermediate oos where r = rn = ℓ2nα
(
1 + o(1)

)
, 0<α<1,

was studied by Chibisov [5] who showed that if there are normalizing constants
α̃n > 0 and β̃n such that

(3.1) Φd(0,1)
r:n (α̃nx+ β̃n) = IF (α̃nx+β̃n)

(n− r + 1, r)
w−→n Φd(0,1)(x),

where Φd(0,1)(x) is a nondegenerate df, then Φd(0,1)(x) must have one and only
one of the types N

(
Vi(x)

)
, i = 1, 2, 3, where V1(x) = x for all x, and

(3.2) V2(x) =

{
−β ln |x|, x ¬ 0,

∞, x > 0,
V3(x) =

{
−∞, x ¬ 0,

β ln |x|, x > 0,

where β is some positive constant. In this case we say that F belongs to the domain
of attraction of the df Φd(0,1)(x), written F ∈ D

(
Φd(0,1)(x)

)
. Moreover, (3.1) is

satisfied with Φd(0,1)(x) = N
(
Vi(x)

)
for some i ∈ {1, 2, 3} if and only if

(3.3)
r − nF (α̃nx+ β̃n)√

r
−→n Vi(x).
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Wu [14] generalized the Chibisov result for any nondecreasing intermediate
rank sequence and proved that the only possible types for the limit df of the inter-
mediate oos are those defined in (3.2).

Barakat [1] in Lemma 2.2 and Theorem 2.3 characterized the possible limit
laws of the df of the upper intermediate m-gos. The following corresponding
lemma characterizes the possible limit laws of the df of the lower intermediate
m-dgos.

LEMMA 3.1. Let m1 = m2 = . . . = mn−1 = m > −1, and let rn be a non-
decreasing intermediate rank sequence. Then there exist normalizing constants
ãn > 0 and b̃n such that

(3.4) Φd(m,k)
rn :n

(ãnx+ b̃n)
w−→n Φd(m,k)(x),

where Φd(m,k)(x) is a nondegenerate df if and only if

rN −NTm(ãnx+ b̃n)√
rN

−→n V (x),

where Φd(m,k)(x) = N
(
V (x)

)
. Furthermore, let r∗n be a variable rank sequence

defined by r∗n = rθ−1(N), with θ(n) = (m+ 1)N (remember that N = k/(m+ 1)
+ n− 1; then θ(n) = n if m = 0, k = 1, i.e., in the case of oos). Then there exist
normalizing constants ãn > 0 and b̃n for which (3.4) is satisfied for some nonde-
generate df Φd(m,k)(x) if and only if there are normalizing constants α̃n > 0 and
β̃n for which Φ

d(0,1)
r∗
n
:n (α̃nx + β̃n)

w−→n Φd(0,1)(x), where Φd(0,1)(x) is some nonde-

generate df, or, equivalently,
(
r∗n − nF (α̃nx+ β̃n)

)
/
√
r∗n −→n Vi(x), i ∈ {1, 2, 3},

and Φd(0,1)(x) = N
(
Vi(x)

)
. In this case ãn and b̃n may be chosen such that

ãn = α̃θ(n) and b̃n = β̃θ(n). Moreover, Φd(m,k)(x) must have the formN
(
Vi(x)

)
,

i.e., V (x) = Vi(x).

P r o o f. The proof follows by using the same argument which is applied in
the proof of Lemma 2.2 and Theorem 2.3 of Barakat [1] in the case of upper inter-
mediate m-gos. �

Now, we consider the limit df of two intermediate m-dgos

η(d)r =
Xd(r, n,m, k)− b̃n

ãn
and ζ(d)s =

Xd(s, n,m, k)− d̃n
c̃n

,

where r/nα1 −→n l21, s/n
α2 −→n l22, 0 < α1, α2 < 1, l1, l2 > 0, and ãn, c̃n > 0, b̃n, d̃n

are suitable normalizing constants. Our main aim is:
1. to prove that the weak convergence of the df’s of η(d)r and ζ

(d)
s implies the

convergence of the bivariate df of η(d)r and ζ
(d)
s ;
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2. to obtain the limit joint df of η(d)r and ζ
(d)
s and derive the condition under

which the two statistics η(d)r and ζ
(d)
s are asymptotically independent.

We can distinguish the following distinct and exhausted two cases:
(A) s− r −→n c, 0 ¬ c <∞.

(B) s− r −→n ∞.

REMARK 3.1. Under the condition (A) we clearly have l1= l2, α1=α2=α.
Moreover, r/s −→n 1. Finally, under the condition (B) we have the following three
distinct and exhausted cases:

(B1) α2 > α1, which implies r/s −→n 0.

(B2) α2 = α1 = α, l2 > l1, which implies r/s −→n l21/l
2
2.

(B3) α2 = α1 = α, l2 = l1, which implies r/s −→n 1.

The following lemma, corresponding to Lemma 2.2, characterizes the possible
limit laws of the bivariate intermediate m-dgos.

LEMMA 3.2. Let us assume that Φd(m,k)
r,s:n (x̃n,ỹn)=P (η

(d)
r < x, ζ

(d)
s < y), 0 <

Rrs =
√

λr(1− λs)/
(
λs(1−λr)

)
< 1, x̃n= ãnx+ b̃n, ỹn= c̃ny + d̃n, and let

Ud(1)
n (y) =

λr − Tm(ỹn)

τr
, Ud(2)

n (x) =
λs − Tm(x̃n)

τs
,

λi = i/(N + 1), τi =
√

λiνi/(N + 1) and νi = 1− λi , i = r, s. Then

∣∣∣∣Φd(m,k)
r,s:n (x̃n, ỹn)−

1

2π
√
1−R2

rs

×
U

d(1)
n (y)∫
−∞

U
d(2)
n (x)∫
−∞

exp

(
−ξ2 + η2 − 2ξηRrs

2(1−R2
rs)

)
dξdη

∣∣∣∣ −→n 0

uniformly with respect to x and y.

P r o o f. The proof is very close to the proof of Lemma 2.2. Therefore, we
show only the necessary changes in the proof of Lemma 2.2. First, we begin the
proof, as we have done in Lemma 2.2, by choosing T, for given ϵ > 0, large enough
to satisfy both of the inequalities 1/T 2 < ϵ and N (−T ) < ϵ. In this case it is
easy to see that the proof of the two lemmas coincides in the cases Ud(t)

n (·) ¬ −T
and U

d(t)
n (·)  T, t = 1, 2. Therefore, we will prove the lemma only in the case

|Ud(1)
n (y)| < T and |Ud(2)

n (x)| < T. In this case we have 1 − Fm+1(ỹn) < λr +
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τrT  0 and 1− Fm+1(x̃n) < λs + τsT  0. Thus, we get

(3.5) Φd(m,k)
r,s:n (x̃n, ỹn) =

λr+τrT∫
1−Fm+1(ỹn)

λs+τsT∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw

+
λr+τrT∫

1−Fm+1(ỹn)

w∫
λs+τsT

φd(m,k)
r,s:n (w, z)dzdw+

1∫
λr+τrT

w∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw,

where
φ(m,k)
r,s:n (w, z) =

C∗n
(m+ 1)2

zr−1(1− w)N−s(w − z)s−r−1.

We shall separately consider each of the integrals in the summation (3.5). We have

1∫
λr+τrT

w∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw ¬

λr+τrT∫
0

w∫
1

φd(m,k)
r,s:n (w, z)dzdw

=
Γ(N + 1)

Γ(N − r + 1)(r − 1)!

λr+τrT∫
0

wr−1(1− w)N−rdw =
N + 1

(N + 2)T 2
< ϵ.

Since |Ud(1)
n (y)| < T, for large N we get

(3.6) 1− Fm+1(ỹn) < λr + τrT.

On the other hand, we have

(3.7)
λr + τrT

λs − τsT
−→n


0 in the case (B1),
l2l /l

2
2 in the case (B2),

1 in the cases (A) and (B3).

Therefore, for large N, the relations (3.6) and (3.7) imply the inequality

(3.8) 1− Fm+1(ỹn) < λs + τsT.

The inequality (3.8) leads to the following estimate for the second integral in (3.5):

λr+τrT∫
1−Fm+1(ỹn)

w∫
λs+τsT

φd(m,k)
r,s:n (w, z)dzdw ¬

λs+τsT∫
0

λs+τsT∫
w

φd(m,k)
r,s:n (w, z)dzdw

=
λs+τsT∫

0

z∫
0

φd(m,k)
r,s:n (w, z)dwdz =

Γ(N + 1)

Γ(N − s + 1)(s − 1)!

×
λs+τsT∫

0

zs−1(1− z)N−sdz <
1

T 2
< ϵ.
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It is easy to show that under the conditions (B1) and (B2) the mathematical treat-
ments of the third integral of the summation, as well as the remaining part of the
proof, is exactly the same as in the proof of Lemma 2.2. Consequently, we consider
only the third integral under the conditions (A) and (B3). It is convenient now to
divide the case (B3) into the following two cases:

(B3a) s− r = o(Nα) = a Nβ + o(Nβ), a > 0, β ¬ α/2;

(B3b) s− r = o(Nα) = a Nβ + o(Nβ), a > 0, β > α/2.
Now, in view of (3.8) we get, after some simple calculations,

λr+τrT∫
1−Fm+1(ỹn)

λs+τsT∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw

¬
λs+τsT∫

0

λs+τsT∫
z

φd(m,k)
r,s:n (w, z)dwdz

¬
λs+τsT∫

0

w∫
0

φd(m,k)
r,s:n (w, z)dzdw

=
Γ(N + 1)

Γ(N − r + 1)Γ(r)

λs+τsT∫
0

wr−1(1− w)N−rdw

¬ Γ(N + 1)

Γ(N − r + 1)Γ(r)

1∫
0

(w − λs)
2

τ2s T
2

wr−1(1− w)N−rdw

=
1

τ2s T
2

{
r(r + 1)

(N + 1)(N + 2)
+λ2

s−
2rλs

N + 1

}
=

1

T 2

{
(s− r)2

s(1−λs)
+
(N + 1)

(N + 2)

(1−λr)

(1−λs)

r

s

}
.

Since
(N + 1)

(N + 2)

(1− λr)

(1− λs)

r

s
−→n 1

and

(s− r)2

s(1− λs)
−→n


0 in the case (A),
0 in the case (B3a), β < α/2,

a2/l2 in the case (B3a), β = α/2,

we get

λr+τrT∫
1−Fm+1(ỹn)

λs+τsT∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw < ϵ

(
1 +

a2

l2
+ 2ϵ

)
.
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On the other hand, since under the conditions (A) and (B3a) we have Rrs −→n 1, it
follows that

U
d(1)
n (y)∫
−T

U
d(2)
n (x)∫
−T

Wr,s(ξ, η)dξdη

¬ 1

2π
√

1−R2
rs

T∫
−T

T∫
−T

exp

(
−ξ2+η2 − 2ξηRrs

2(1−R2
rs)

)
dξdη −→n 0.

Therefore, we get

∣∣Φd(m,k)
r,s:n (x̃n, ỹn)−

U
d(1)
n (y)∫
−∞

U
d(2)
n (x)∫
−∞

Wr,s(ξ, η)dξdη
∣∣ < ϵ

(
6 +

a2

l2
+ 2ϵ

)
,

which completes the proof of the lemma in the cases (A) and (B3a). It remains to
prove the case (B3b). By using the transformation z = λr − ξτr, w = λs − ητs,
the third integral takes the form

λr+τrT∫
1−Fm+1(ỹn)

λs+τsT∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw=Ar,s:n

U
d(1)
n (y)∫
−T

U
d(2)
n (x)∫
−T

g(d)r,s:n(ξ, η)dηdξ,

where

Ar,s:n =
Γ(N + 1)τrτsλ

r−1
r νN−ss (λs − λr)

s−r−1

Γ(N − s+ 1)(r − 1)!(s− r − 1)!

and

(3.9) g(d)r,s:n(ξ, η) =

(
1− ξτr

λr

)r−1(
1− ητs − ξτr

λs − λr

)s−r−1(
1 +

ητs
νs

)N−s
.

Therefore, using Stirling’s formula we get Ar,s:n =
(
1 + o(1)

)
/(2π

√
1−R2

rs).
Furthermore,

g(d)r,s:n(ξ, η) =

(
1− ξτr

λr

)r(
1− ητs − ξτr

λs − λr

)s−r(
1 +

ητs
νs

)N−s(
1 + ρn(ξ, η)

)
,

where ρn(ξ, η) −→n 0. On the other hand, it can be shown that

ητs − ξτr
λs − λr

=
η
√

λs(1− λs)/(N + 1)

(s− r)/(N + 1)
−

ξ
√

λr(1− λr)/(N + 1)

(s− r)/(N + 1)

=
s1/2

s− r
η(1− λs)

1/2 − r1/2

s− r
ξ(1− λr)

1/2 −→n 0,
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(3.10) r ln

(
1− ξτr

λr

)
= −ξτr(N + 1)− ξ2νr

2
+ o

(
T 3

√
r

)
,

(3.11) (s − r) ln

(
1− ητs + ξτr

λs − λr

)
= −(s − r)

[
ητs − ξτr
λs − λr

+
1

2

(
ητs − ξτr
λs − λr

)2

+
1

3

(
ητs − ξτr
λs − λr

)3

+ . . .

]
= −(ητs − ξτr)(N + 1)− 1

2

(ητs − ξτr)
2

λs − λr
(N + 1)

− (η − ξ)3l3

3a2
N (3α)/2−2β(1 + o(1)

)
and

(3.12) (N − s) ln

(
1 +

ητs
νs

)
= ητs(N + 1)− 1

2
η2λs + o

(
λ
3/2
s T 3

√
N

)
.

Therefore, combining the relations (3.9)–(3.12), we get

g(d)r,s:n(ξ, η) = exp

(
− ξ2 + η2 − 2ξηRrs

2(1−R2
rs)

×
(
1 +

2(ξ − η)3l

3a(ξ2 + η2 − 2ξηRrs)
Nα/2−β(1 + o(1)

)))(
1 + o(1)

)
−→n 0

since Rrs −→n 1. Thus, we have

(3.13)
λr+τrT∫

1−Fm+1(ỹn)

λs+τsT∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw −→n 0.

On the other hand, we obtain

(3.14)
λr+τrT∫

1−Fm+1(ỹn)

λs+τsT∫
1−Fm+1(x̃n)

φd(m,k)
r,s:n (w, z)dzdw <

T∫
−T

T∫
−T

Wr,s(ξ, η)dξdη −→n 0

since Rrs −→n 1. The relations (3.13) and (3.14) prove that the third integral in (3.5)
converges to zero. This completes the proof of Lemma 3.2. �

The following theorem characterizes the possible limit laws of the df of the
bivariate intermediate m-dgos.

THEOREM 3.1. Let r/n, s/n −→n 0, r/s −→n R, and Rrs −→n
√
R, 0 ¬ R ¬ 1.

Then the convergence of two marginals Φ
d(m,k)
r:n (ỹn)

w−→n Φd(m,k)(y) = N
(
H̃(y)

)
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and Φ
d(m,k)
s:n (x̃n)

w−→n Φd(m,k)(x) = N
(
H(x)

)
, where N

(
H(x)

)
and N

(
H̃(y)

)
are nondegenerate df’s, is a necessary and sufficient condition for the convergence
of the joint df Φd(m,k)

r,s:n (x̃n, ỹn) to the nondegenerate limit

Φd(m,k)
r,s:n (x̃n, ỹn)

w−→n
1

2π
√
1−R

H̃(y)∫
−∞

H(x)∫
−∞

exp

(
−ξ2 + η2 − 2ξη

√
R

2(1−R)

)
dξdη.

Moreover, the convergence of the bivariate df Φd(m,k)
r,s:n (x̃n, ỹn), as well as the con-

vergence of two marginals Φd(m,k)
r:n (ỹn) and Φ

d(m,k)
s:n (x̃n), occurs if and only if there

are normalizing constants α̃n, γ̃n > 0 and β̃n, δ̃n for which

Φ
d(0,1)
r∗
n
:n (α̃ny + β̃n)(= Φ

(0,1)
n−r∗n+1:n(α̃ny + β̃n))

w−→n Φd(0,1)(y) = N
(
Vj(y)

)
and

Φ
d(0,1)
s∗n:n

(γ̃nx+ δ̃n)
w−→n Φd(0,1)(x) = N

(
Vi(x)

)
for some i, j ∈ {1, 2, 3}, where r∗n=rθ−1(N), s

∗
n=sθ−1(N), and θ(n)=(m+1)N.

In this case, we can take ãn = α̃θ(n), c̃n = γ̃θ(n), b̃n = β̃θ(n) and d̃n = δ̃θ(n).

Moreover, H(x)=Vi(x) and H̃(y)=Vj(y). Finally, the two marginals are asymp-
totically independent if and only if r/s −→n 0, i.e., R = 0.
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