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Abstract. In the paper we investigate some extremal properties of
intervals for the one-dimensional Cauchy measure, related to isoperimet-
ric inequalities. We also consider the analogous properties for the one-
dimensional sections of the multidimensional isotropic Cauchy measure. In
particular, among intervals with the fixed measure we find the ones with the
extremal measure of the boundary. It turns out that, contrary to the Gaussian
case, the type of extremal set depends on the value of the measure.

2010 AMS Mathematics Subject Classification: Primary: 60E05;
Secondary: 60E07.

Key words and phrases: Cauchy distribution, isoperimetry.

1. INTRODUCTION

The classical isoperimetric theorem on the plane states that among all Borel
sets with the fixed measure the circle has the smallest perimeter. The multidimen-
sional version of the theorem states that in any dimension there exists a set with
the smallest measure of the boundary and this minimum is attained for a ball.

When considering a probability measure µ on Rn we restrict our consideration
to convex Borel sets and for such a set A we put Ah = {x ∈ Rn : dist(x,A) < h}
and introduce its perimeter by the formula

per(A) = lim sup
h→0+

µ(Ah)− µ(A)

h
.

The isoperimetric theorems for Gaussian distributions were investigated first in the
papers [4] and [1]. It turns out that among all convex Borel sets in Rn with the
same fixed measure the half-space, i.e. {x ∈ Rn : xn > a}, has the smallest Gaus-
sian perimeter. The most complete approach to the Gaussian isoperimetric theory
was presented in the paper by Ehrhard [2]. He adapted Steiner’s symmetrization
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method [3] by constructing a family of the so-called (Gaussian) k-symmetrizations
in the Rn space, 1 ¬ k ¬ n, equipped with the standard n-dimensional Gaussian
distribution γn. To define such a symmetrization, let T be a vector subspace of
dimension n − k, 1 ¬ k ¬ n, and let u ∈ Rn, ∥u∥ = 1, be orthogonal to T . By
H(u, a) = {x ∈ Rn : (u,x) > a} we denote an open half-space in Rn. Let us
denote by B a Borel subset of Rn. For every x ∈ T we put a = a(x) such that
γk
(
B ∩ (x + T⊥)

)
= γk

(
H
(
u, a(x)

)
∩ (x + T⊥)

)
. If the measure is zero, we

put a(x) =∞; if the measure is one, we put a(x) = −∞. Here γk denotes the k-
dimensional standard Gaussian distribution in Rk. The Gaussian k-symmetrization
of the set B (in the direction u) is now defined as

S(k)(A) =
∪
x∈T

(
H
(
u, a(x)

)
∩ ({x}+ T⊥)

)
.

From the construction it follows that the operation S(k) preserves the measure γn
and does not increase the perimeter.

Another important distribution in Rn is the rotationally invariant Cauchy mea-
sure with the density function

fn(x1, . . . , xn) =
An

(1 + x21 + x22 + . . .+ x2n)
(n+1)/2

, (x1, x2, . . . , xn) ∈ Rn,

where An = Γ
(
n+1
2

)
/π(n+1)/2. When extending the symmetrization procedure for

this distribution we have to consider its k-dimensional sections, that is, the follow-
ing family of k-dimensional densities, 1 ¬ k ¬ n− 1:

fα,n(xn−k+1, . . . , xn) =
Aα,n,k

(1 + α2 + x2n−k+1 + . . .+ x2n)
(n+1)/2

,

where α  0, xi ∈ R and Aα,n,k is an appropriate constant. We call these distribu-
tions Cauchy-type measures. Note that for k = 1 we deal with the so-called Stu-
dent’s t-distribution. For n = 1 and α = 0 we obtain the standard one-dimensional
Cauchy distribution.

In the present paper we deal only with the case k = 1, that is, with the dis-
tributions which appear in the case of one-symmetrization. The purpose of the
paper is to examine what kind of one-dimensional convex sets (that is, intervals or
half-lines) has minimal perimeter when the measure is fixed. And it turns out that
the situation is different than that in the case of Gaussian distribution, namely the
answer does depend on the measure of the set.

Section 2 is devoted to the case of n = 1, that is, when we consider the stan-
dard Cauchy distribution on the real line. The situation is then the most transparent
one: for intervals (a, b) with the measure greater than 1/2 the minimal perimeter
is attained by the symmetric interval, while for the measure less than 1/2 it is the
half-line which has the minimal perimeter.
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In Section 3, to avoid repetitions, we provide a very short proof, by the La-
grange multipliers, that only symmetric intervals (−c, c) or of kind (−1/d, d) and
half-lines (−∞, g) may be extremal (maximal or minimal) among all convex sets
with a fixed measure with the density fα,n for every n.

In Section 4 we show that indeed, for n = 2, we encounter all three kinds
of sets as extremal (minimal or maximal) depending on the measure. At the same
time, dimension two is quite easily accessible in computational sense: there are
relatively simple formulas for the measure of intervals or half-lines as well as for
their perimeters. All essential quantities can be directly computed. In particular,
we know exactly when (for what value of the measure) the extremal character of
symmetric intervals and half-lines interchanges.

In Section 5, for n > 2, we have the same situation regarding convex extremal
sets but this time computations are much more complicated. We also have three
kinds of extremal intervals (including half-lines), but this time the critical param-
eter, when the interchange of extremal character of symmetric intervals and half-
lines takes place, is given only in a form of a solution of an equation.

2. CONVEX EXTREMAL SETS FOR THE CAUCHY MEASURE ON THE REAL LINE

Let µ be the standard Cauchy measure on the real line. When dealing with
intervals (a, b) we adopt the convention that −∞ < a < b <∞. Let us compute
the perimeter of the interval (a, b). We have

per(a, b) = lim sup
h→0+

µ
(
(a− h, b+ h)

)
− µ

(
(a, b)

)
h

=

lim sup
h→0+

1

h

( a∫
a−h

1

π(1 + x2)
dx+

b+h∫
b

1

π(1 + x2)
dx

)
=

1

π(1 + a2)
+

1

π(1 + b2)
.

For the half-line (−∞, g) we get

per(−∞, g) = lim sup
h→0+

1

h

g+h∫
g

1

π(1 + x2)
dx =

1

π(1 + g2)
.

Define g := g(a, b) by the equality

(2.1) µ(−∞, g) = µ(a, b);

g∗ := g∗(a, b) is defined by the similar identity, i.e.,

(2.2) µ(−g∗, g∗) = µ(a, b).

We have the following
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THEOREM 2.1. Let −∞ < a < b <∞. Then:
• If µ(a, b) > 1/2, then per(−g∗, g∗) < per(a, b) < per(−∞, g).
• If µ(a, b) < 1/2, then per(−∞, g) < per(a, b) < per(−g∗, g∗).
• If µ(a, b) = 1/2, then per(−∞, 0) = per(−1/b, b) = per(−1, 1) = 1/π.

We will prove Theorem 2.1 in a series of lemmas. First we compute the
Cauchy measure of (a, b):

(2.3) µ
(
(a, b)

)
=

b∫
a

1

π(1 + x2)
dx =

1

π
(arctan b− arctan a).

Let us compare the perimeters of intervals (a, b) and half-lines (−∞, g) with the
fixed measure A ∈ (0, 1).

LEMMA 2.1. Let

FA =
{
(a, b), a < b, (−∞, g), g ∈ R : µ

(
(a, b)

)
= µ

(
(−∞, g)

)
= A

}
.

If an interval (a, b) ∈ FA has an extremal perimeter, then a = −b or a = −1/b.

P r o o f. We use the Lagrange method to find extrema of the function h(a, b)
= 1/(1+ a2) + 1/(1+ b2), a < b, under the condition arctan b− arctan a = πA.
Let

F (a, b) =
1

1 + a2
+

1

1 + b2
+ λ(arctan b− arctan a).

Then the following conditions for extrema must be fulfilled:

∂F

da
=
−2a

(1 + a2)2
− λ

1 + a2
= 0 and

∂F

db
=
−2b

(1 + b2)2
+

λ

1 + b2
= 0.

Consequently, −a/(1 + a2) = b/(1 + b2) and this immediately gives a = −b or
a = −1/b. �

To compute g as a function of a and b we apply the trigonometric identity

tan(α− β) =
tanα− tanβ

1 + tanα tanβ

to both sides of the equality arctan b− arctan a = π
2 + arctan g, and obtain

(2.4) g(a, b) = − 1 + ab

b− a
.

Now, the measures of the interval (a, b) and of the half-line
(
−∞,− 1+ab

b−a
)

are
equal and their perimeters are as follows:

per(a, b) =
1

π(1 + a2)
+

1

π(1 + b2)
and per(−∞, g) =

1

π
(
1 + g2(a, b)

) .
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LEMMA 2.2. For a < b the inequality

(2.5)
1

1 + a2
+

1

1 + b2
¬ 1

1 +
(
1+ab
b−a

)2
holds if and only if ab ¬ −1.

P r o o f. The left-hand side of the above inequality is equal to

(1 + a2) + (1 + b2)

(1 + a2)(1 + b2)
=

2 + a2 + b2

(1 + a2)(1 + b2)
,

while the right-hand side equals

(b− a)2

1 + a2 + b2 + a2b2
=

(b− a)2

(1 + a2)(1 + b2)
.

Hence (2.5) is equivalent to the inequality 2 + a2 + b2 ¬ (b − a)2, which holds
if and only if ab ¬ −1. Observe also that the equality in (2.5) holds if and only if
ab = −1. �

LEMMA 2.3. The following condition holds:

(2.6) µ
(
(a, b)

)
>

1

2
if and only if ab < −1.

P r o o f. We know that

tan
(
πµ(a, b)

)
= tan(arctan b− arctan a) =

b− a

1 + ab
.

Hence the condition ab < −1 is equivalent to tan
(
πµ(a, b)

)
< 0, and this means

that µ(a, b) > 1
2 . The condition ab > −1 is equivalent to µ(a, b) < 1

2 . By continu-
ity, the condition ab = −1 implies µ(a, b) = 1

2 . �

LEMMA 2.4. Let g∗ := g∗(a, b) be defined by (2.2). Then

(2.7) g∗ =
√

g2 + 1 + g,

where g := g(a, b) = −(1 + ab)/(b− a).

P r o o f. From the condition µ(−g∗, g∗) = µ(a, b) = µ(−∞, g) we obtain
2 arctan g∗ = π

2 + arctan g. Thus we get the equality

2g∗

1− (g∗)2
= −1

g
,

which gives the assertion. �
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LEMMA 2.5. Let g∗ := g∗(a, b) be given by (2.2). The inequality per(a, b) >
per(−g∗, g∗) holds if and only if ab < −1.

P r o o f. We have to check when the inequality

1

1 + a2
+

1

1 + b2
>

2

1 + (g∗)2

holds. Taking into account the form of g = g(a, b) and g∗ = g∗(a, b) we obtain the
following equivalent form of the above inequality:

(1 + a2) + (1 + b2)

(1 + a2)(1 + b2)
>

(b− a)2√
1 + a2

√
1 + b2

1√
1 + a2

√
1 + b2 − 1− ab

.

This is equivalent to

2(1 + ab)
√

1 + a2
√

1 + b2 > (1 + ab)(2 + a2 + b2),

which finally gives the conclusion. �

P r o o f o f T h e o r e m 2.1. Lemmas 2.1–2.5 provide the proof of Theo-
rem 2.1. �

3. THREE TYPES OF CONVEX EXTREMAL SETS FOR να,n

Let να,n be the probability measure with the density fα,n. Let (a, b) be any
interval and (−∞, g) any half-line. Computing exactly as in the case when n = 1,
we get perimeters of the interval (a, b) in the form

per(a, b) =
Aα,n

(1 + α2 + a2)(n+1)/2
+

Aα,n

(1 + α2 + b2)(n+1)/2

and those of the half-line (−∞, g) in the form

per(−∞, g) =
Aα,n

(1 + α2 + g2)(n+1)/2
.

First, as for n = 1, we will compute the possible form of extremal sets. For sim-
plicity, we drop the constant Aα,n in the density fα,n and use the notation Γ(a, b)
instead of per(a, b).

LEMMA 3.1. Consider a family of intervals (a, b), a < b, with a fixed mea-
sure ν, that is, with

b∫
a

1

(1 + α2 + x2)(n+1)/2
dx = C.
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Then for a < b the function

Γ(a, b) =
1

(1 + α2 + a2)(n+1)/2
+

1

(1 + α2 + b2)(n+1)/2

can attain its extrema only if a+ b = 0 or if ab = −(1 + α2).

P r o o f. We use again the Lagrange method and for a < b consider

F (a, b) =

=
1

(1 + α2 + a2)(n+1)/2
+

1

(1 + α2 + b2)(n+1)/2
+λ

b∫
a

dx

(1 + α2 + x2)(n+1)/2
.

We have

∂F

∂a
(a, b) =

−(n+ 1)a

(1 + α2 + a2)(n+3)/2
− λ

(1 + α2 + a2)(n+1)/2
= 0

and

∂F

∂b
(a, b) =

−(n+ 1)b

(1 + α2 + b2)(n+3)/2
+

λ

(1 + α2 + b2)(n+1)/2
= 0,

which, after simplification, gives the following system:

λ(1 + α2 + a2) = −(n+ 1)a,

λ(1 + α2 + b2) = (n+ 1)b.

Dividing the first equation by the second, we get the equality

1 + α2 + a2

1 + α2 + b2
= −a

b
.

Cross multiplication gives (1 + α2)b+ a2b = −(1 + α2)a− ab2, which is equiv-
alent to (1 + α2)(a + b) = −ab(a + b). We see that F (a, b) can attain extremal
values within the family of intervals {(a, b) : a < b} only if a + b = 0 or if
ab = −(1 + α2). These conditions describe two types of intervals: (−c, c), c > 0,
and

(
− (1 + α2)/d, d

)
with d > 0. Observe that for c = d =

√
1 + α2 both inter-

vals (−c, c) and
(
− (1 + α2)/d, d

)
are equal. �

COROLLARY 3.1. Since the function F (a, b) is continuously differentiable,
its maximal and minimal values can be attained only at stationary points or at the
boundaries of its domain.
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4. CONVEX EXTREMAL SETS FOR THE MEASURE WITH DENSITY f0,2

Before resolving the general case we consider the measure ν = ν0,2 with the
density f0,2(x) = 1/

(
2(1 + x2)3/2

)
and find sets with the smallest perimeter. In

the case of n > 2 we encounter the same kind of behavior but in the present case
we are still able to perform direct calculations and find out the critical value at
which intervals change their extremal character.

Fix a number A ∈ (0, 1) and consider, as before, a family of intervals (a, b)
and half-lines (−∞, g), all with the measure equal to A:

FA = {(a, b), a < b, (−∞, g), g ∈ R : ν(a, b) = ν(−∞, g) = A}.

By Corollary 3.1, the smallest perimeter can be attained only for intervals (−c, c)
or (−1/d, d) or for the half-line (−∞, g). Observe that∫ 1

(1 + x2)3/2
dx =

x√
1 + x2

,

so, from the equality ν(−c, c) = ν(−∞, g) we obtain

c∫
−c

1

2(1 + x2)3/2
dx =

c√
1 + c2

=
g∫
−∞

1

2(1 + x2)3/2
dx =

1

2

(
1− g√

1 + g2

)
.

After elementary calculations this gives per(−c, c) < per(−∞, g) if and only
if 2

(
c +
√
1 + c2

)3/2
< (4c)3/2, which is equivalent to the following: c > c∗ =

1/
√

(24/3 − 1)2 − 1 ≈ 0.873731. It is easy to compute the measure of (−c∗, c∗):

c∗∫
−c∗

1

2(1 + x2)3/2
dx =

1

24/3 − 1
≈ 0.657963.

We have just proved the following:

LEMMA 4.1. Let ν(−c, c) = ν(−∞, g) and c∗ = 1/
√

(24/3 − 1)2 − 1. Then

per(−c, c) < per(−∞, g) iff c > c∗ iff ν(−c, c) > 1

24/3 − 1
.

Now we will compare perimeters of the half-line (−∞, g) and of the inter-
val (−1/d, d). Observe that by the symmetry of ν it is enough to consider only
d ∈ (0, 1). We have

ν(−1/d, d) =
d∫
−1/d

1

2(1 + x2)3/2
dx =

1 + d

2
√
1 + d2

= A
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and notice that for d ∈ (0, 1)

(4.1)
(

1 + d√
1 + d2

)2

= 1 +
2d

1 + d2
∈ (1, 2),

so that the values of (1+ d)/(2
√
1 + d2) are contained in the interval

(
1/2, 1/

√
2
)
.

In the case of a half-line, we have

ν(−∞, g) =
g∫
−∞

1

2(1 + x2)3/2
dx =

1

2

(
1− g√

1 + g2

)
= A,

and hence h(d) := g(−1/d, d) solves the equation

1 + d√
1 + d2

= 1− h√
1 + h2

.

We obtain
(4.2)

1

1 + h2
= 1− h2

1 + h2
= 1−

(
1− 1 + d√

1 + d2

)2

=
1 + d

1 + d2
(
2
√

1 + d2− (1+ d)
)
.

LEMMA 4.2. Let A ∈
(
1/2, 1/

√
2
)

and ν(−1/d, d) = ν
(
−∞, h(d)

)
= A.

Then for all d ∈ (0, 1)

per(−1/d, d) < per
(
−∞, h(d)

)
.

P r o o f. We compare the following perimeters:

per(−1/d, d) = 1 + d3

2(1 + d2)3/2
and per

(
−∞, h(d)

)
=

1

2
(
1 + h2(d)

)3/2 .
Taking into account (4.2), we show that for all d ∈ (0, 1)

1 + d3

(1 + d2)3/2
<

1

(1 + h2)3/2
=

(1 + d)3/2

(1 + d2)3/2
(
2
√

1 + d2 − (1 + d)
)3/2

.

Simplifying, we obtain the following equivalent form of the above inequality:

(4.3)
(1 + d3)2/3

(1 + d)2
< 2

√
1 + d2

1 + d
− 1.

Denote by f and k, respectively, the left-hand side and the right-hand side of the
inequality (4.3). We infer that the inequality f ′(d) < k′(d) holds for 0 < d < 1 if
and only if the inequality

(1 + d3)1/3 < (1 + d2)1/2

holds, which is obviously true for 0 < d < 1. This together with the fact that
f(0) = 1 = k(0) completes the proof of (4.3). �
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We now complete the results of this section. Let us recall that we have c∗ =

1/
√

(24/3 − 1)2 − 1 and h(c) is determined by ν
(
−∞, h(c)

)
= ν(−c, c).

THEOREM 4.1. Assume that ν has the density f0,2(x) = 1/
(
2(1 + x2)3/2

)
.

Then:
• Among all convex sets with fixed measure ν only intervals (−c, c), (−1/d, d)

or half-lines (−∞, g) are of extremal perimeter.
• For all d > 0 we have 1/2<ν(−1/d, d)¬1/

√
2 and the interval (−1/d, d)

is of minimal perimeter among all intervals (a, b) and half-lines (−∞, g) with fixed
ν-measure A ∈ (1/2, 1/

√
2].

• If ν(−c, c) = ν
(
−∞, h(c)

)
, then for 0 < c < c∗ = 1/

√
(24/3 − 1)2 − 1

we have
per

(
−∞, h(c)

)
< per(−c, c),

while for c > c∗ we have the reverse inequality

per
(
−∞, h(c)

)
> per(−c, c).

P r o o f. The first statement is a direct consequence of the results in Section 3.
The first part of the next statement is justified in calculations below Lemma 4.1 –
see (4.1). Furthermore, Lemma 4.2 gives per(−1/d, d) < per

(
−∞, h(d)

)
for all

d > 0.
Assume now that ν(−1/d, d) = ν(−c, c). Then we have

ν(−c, c) = c√
1 + c2

=
1 + d

2
√
1 + d2

= ν(−1/d, d),

which, in turn, shows that

1 + c2 =
4(1 + d2)

3(1− d)2 + 4d
.

We show that the assumption ν(−1/d, d) = ν(−c, c) implies

(4.4) per(−1/d, d) = 1 + d3

2(1 + d2)3/2
¬ per(−c, c) = 1

(1 + c2)3/2
.

Indeed, taking into account the previous formula, we see that (4.4) reduces to the
following inequality:

(3d2 − 2d+ 3)3  42(1 + d3)2.

But (3d2 − 2d + 3)3 − 42(1 + d3)2 = (d − 1)4(11d2 − 10d + 11)  0, which
justifies our claim (4.4) and completes the proof of the second statement of the
theorem.

The last statement of the theorem is contained in Lemma 4.1. Thus the proof
of Theorem 4.1 is complete. �
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Now, we can deduce the following corollary.

COROLLARY 4.1. We have the following four cases:
• Let ν(−c, c) = ν

(
−∞, h(c)

)
. If c < 1/

√
3, then ν

(
−∞, h(c)

)
< 1/2

and per
(
−∞, h(c)

)
< per(−c, c).

• If we have 1/
√
3 < c < c∗ = 1/

√
(24/3 − 1)2 − 1 and d ∈ (0, 1) is such

that ν(−1/d, d) = ν(−c, c), then ν
(
−∞, h(c)

)
< 1/(24/3 − 1) and

per(−1/d, d) < per
(
−∞, h(c)

)
< per(−c, c).

• If c∗ < c < 1 and d ∈ (0, 1) is such that ν(−1/d, d) = ν(−c, c), then we
have 1/(24/3 − 1) < ν(−c, c) = ν

(
−∞, h(c)

)
< 1/
√
2 and

per(−1/d, d) < per(−c, c) < per
(
−∞, h(c)

)
.

• Finally, for c > 1 we have 1/
√
2 < ν(−c, c) = ν

(
−∞, h(c)

)
and

per(−c, c) < per
(
−∞, h(c)

)
.

P r o o f. Almost all assertions follow from Theorem 4.1. We only remark that
if d ∈ (0, 1], then ν(−1/d, d) = (1 + d)/(2

√
1 + d2) ∈

(
1/2, 1/

√
2
]

and there
exists a unique interval (−c, c) with ν(−c, c) = ν(−1/d, d). Since

ν(−c, c) = c√
1 + c2

,

we have
1

2
= ν(−c, c) = c√

1 + c2
iff c =

1√
3

and
1√
2
= ν(−c, c) = c√

1 + c2
iff c = 1.

Therefore, for c ∈
(
1/
√
3, c∗

)
we have three types of intervals with the same mea-

sure ν to check their perimeters: (−c, c), (−1/d, d), and
(
−∞, h(c)

)
. Otherwise,

we have only intervals (−c, c) and
(
−∞, h(c)

)
. What happens in each case is

settled by Theorem 4.1. �

REMARK 4.1. The above theorem and corollary hold, after obvious modifica-
tions, for measures with densities fα,2. Indeed, changing variables in the integral
we obtain

να,2(−c, c) =
c∫
−c

(1 + α2)/2

(1 + α2 + x2)3/2
dx =

c/
√
1+α2∫

−c/
√
1+α2

1/2

(1 + u2)3/2
du.

This shows a kind of homogeneity of such integrals with respect to the transforma-
tion c → c/

√
1 + α2, which gives appropriate versions of all the above results

for α > 0.
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5. EXTREMAL CONVEX SETS FOR THE MEASURE WITH DENSITY fα,n

In this general case the situation is similar to that for f0,2 but computations are
much more difficult. We also use the above-mentioned homogeneity and the exact
value of Aα,n = (1 + α2)n/2Γ

(
n+1
2

)
/
(√

πΓ
(
n
2

))
.

LEMMA 5.1. For every d > 0 the following inequality holds:

d
√
1+α2∫

(−1/d)
√
1+α2

Aα,n

(1 + α2 + x2)(n+1)/2
dx 

0∫
−∞

Aα,n

(1 + α2 + x2)(n+1)/2
dx =

1

2

for all α  0 and n = 1, 2, . . .

P r o o f. Let us start with some simplification:

d
√
1+α2∫

(−1/d)
√
1+α2

1

(1 + α2 + x2)(n+1)/2
dx =

1

(1 + α2)n/2

d∫
−1/d

1

(1 + u2)(n+1)/2
du.

In the same way we obtain

0∫
−∞

1

(1 + α2 + x2)(n+1)/2
dx =

1

(1 + α2)n/2

0∫
−∞

1

(1 + u2)(n+1)/2
du,

so that it is enough to prove the following: for all d > 0 and any n = 1, 2, 3, . . .

d∫
−1/d

1

(1 + u2)(n+1)/2
du 

0∫
−∞

1

(1 + u2)(n+1)/2
du.

Consider the following function: for x > 0 and n = 1, 2, 3, . . .

hn(x) =
x∫
−1/x

1

(1 + u2)(n+1)/2
du.

Observe that

lim
x→0+

hn(x) = lim
x→∞

hn(x) =
0∫
−∞

1

(1 + u2)(n+1)/2
du.

We will show that h′n(x) is positive on (0, 1) and negative on (1, ∞), which im-
plies that h is always greater than its limit at zero and infinity. Indeed,

h′n(x) =
1

(1 + x2)(n+1)/2
− 1/x2

(1 + 1/x2)(n+1)/2
=

1− xn−1

(1 + x2)(n+1)/2
,

and hence this derivative is positive on (0, ∞) if and only if x < 1. This proves
the lemma. �
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Observe that we have also proved that hn(x) has its maximum at x = 1, so the
maximal value of να,n(−1/d, d) is attained for d =

√
1 + α2 or, by the symmetry

of the measure να,n, for d = 1/
√
1 + α2.

LEMMA 5.2. For any α  0 and n = 1, 2, . . . let να,n(−c, c) = να,n(−∞, g)
= A ¬ 1

2 . Then per(−∞, g) ¬ per(−c, c).

P r o o f. We must compare the perimeters

per(−c, c) = 2Aα,n

(1 + α2 + c2)(n+1)/2
and per(g, ∞) =

Aα,n

(1 + α2 + g2)(n+1)/2
.

We will show this in two steps. First we show that there exists cα,n such that for all
c ∈ (0, cα,n) it follows that

2Aα,n

(1 + α2 + c2)(n+1)/2
>

Aα,n

(1 + α2)(n+1)/2
,

where the right-hand side is the largest perimeter of any half-line. Next we will
show that for c > cα,n the measure of (−c, c) is greater than or equal to 1

2 .
The first step is easy: we simply solve the equation

2

(1 + α2 + c2)(n+1)/2
=

1

(1 + α2)(n+1)/2
,

which gives c2 = (22/(n+1) − 1)(1 + α2), and we put

cα,n =
√

(22/(n+1) − 1)(1 + α2).

Now we will show that

cα,n∫
−cα,n

Aα,n

(1 + α2 + x2)(n+1)/2
dx  1

2
.

Since Aα,n = (1 + α2)n/2Γ
(
n+1
2

)
/
(√

πΓ
(
n
2

))
, we have

cα,n∫
−cα,n

Aα,n

(1 + α2 + x2)(n+1)/2
dx =

Γ
(
n+1
2

)
√
πΓ

(
n
2

) √22/(n+1)−1∫
−
√

22/(n+1)−1

1

(1 + u2)(n+1)/2
du.

Now it is enough to show that for all n = 1, 2, 3, . . .

(5.1)
2Γ

(
n+1
2

)
√
πΓ

(
n
2

) √22/(n+1)−1∫
0

1

(1 + u2)(n+1)/2
du  1

2
.
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One can easily compute the left-hand side of (5.1) for n = 1, 2, 3, 4. It is

equal to, respectively, 1
2 ,

√
1− 1

22/3
,
(√

2
(√

2− 1
)
+ 2arctan

(√√
2− 1

))
/π,√

22/5 − 1(27/5 + 1)/28/5. All these numbers are greater than or equal to 1
2 . Thus

we will prove (5.1) only for n  5.
For n  1 it follows that√

22/(n+1) − 1 >
1√
2 + n

.

Since f(x)=1/(1 + x2)(n+1)/2 is concave on
(
0, 1√

2+n

)
, the integral of f over(

0,
√

22/(n+1) − 1
)

is greater than the area of the trapezoid with vertices (0, 0),
(0, 1),

(
1√
2+n

, 0
)
,
(

1√
2+n

, f
(

1√
2+n

))
and this area is equal to

1 + f
(

1√
2+n

)
2

· 1√
2 + n

=
1 +

(
1 + 1

n+2

)−(n+1)/2

2
· 1√

2 + n
.

The sequence
(
1+ 1

n+2

)(n+2)/2 is increasing to
√
e, so 1

2

(
1+

(
1+ 1

n+2

)−(n+1)/2)
is decreasing and has the limit 1

2

(
1 + 1√

e

)
. This implies that for every n  1

√
22/(n+1)−1∫

0

1

(1 + u2)(n+1)/2
du 

1 + f
(

1√
2+n

)
2

· 1√
2 + n

 1

2

(
1 +

1√
e

)
· 1√

2 + n
.

We will show that for n  5 the following inequality holds:

2Γ
(
n+1
2

)
√
πΓ

(
n
2

) 1√
n+ 2

1 + 1√
e

2
 1

2
.

If we put

Bn :=
2Γ

(
n+1
2

)
√
πΓ

(
n
2

) 1√
n+ 2

,

we only need to show that for n  5

Bn 
√
e√

e+ 1
≈ 0.622459.

But we can easily see that B2k+2/B2k > 1 and B2k+1/B2k−1 > 1 for all k  1,
so it is enough to check that

B5 =
2Γ(3)√
πΓ(5/2)

1√
7
=

16
√
7

21π
≈ 0.64 >

√
e√

e+ 1
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and

B6 =
2Γ(7/2)√
πΓ(3)

1√
8
=

15
√
2

32
≈ 0.66 >

√
e√

e+ 1
,

which completes the proof. �

Now we will show that, for ν = ν0,n, if ν(−1/d, d) = ν
(
−∞, h(d)

)
, then

per(−1/d, d) ¬ per
(
−∞, h(d)

)
.

LEMMA 5.3. For d > 0 we have the following inequality:

(5.2) per(−1/d, d) ¬ per
(
−∞, h(d)

)
if

(5.3)
h(d)∫
−∞

dx

(1 + x2)(n+1)/2
=

d∫
−1/d

dx

(1 + x2)(n+1)/2
.

P r o o f. The inequality (5.2) reduces to the following:

1 + dn+1

(1 + d2)(n+1)/2
¬ 1(

1 + h2(d)
)(n+1)/2

.

The left-hand side of the above inequality is not greater than 1, so we may introduce
x(d)  0 such that

1 + dn+1

(1 + d2)(n+1)/2
=

1(
1 + x2(d)

)(n+1)/2

or, equivalently, (1 + dn+1)
(
1 + x2(d)

)(n+1)/2
= (1 + d2)(n+1)/2. Taking deriva-

tives, we obtain for n > 1:

x′(d) =
1 + x2(d)

1 + d2
d

x(d)

1− dn−1

1 + dn+1
.

Taking the derivatives of each of the sides of (5.3), we now obtain

h′(d)(
1 + h2(d)

)(n+1)/2
=

1− dn−1

(1 + d2)(n+1)/2
.

We have[ h(d)∫
−∞

dx

(1 + x2)(n+1)/2
−

x(d)∫
−∞

dx

(1 + x2)(n+1)/2

]′
=

h′(d)(
1 + h2(d)

)(n+1)/2
− x′(d)(

1 + x2(d)
)(n+1)/2

=
1− dn−1

(1 + d2)(n+1)/2
− 1 + dn+1

(1 + d2)(n+1)/2
x′(d)

=
d(1− dn−1)

(
x(d)− d

)(
1− dx(d)

)
(1 + d2)(1 + d2)(n+1)/2

< 0
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for d < 1. Indeed, it follows that(
1 + d2

1 + x2(d)

)(n+1)/2

= 1 + dn+1 > 1 implies x(d) < d.

Since h(∞) = h(0) = 0 = x(0) = x(∞), we obtain

h(d)∫
−∞

dx

(1 + x2)(n+1)/2
¬

x(d)∫
−∞

dx

(1 + x2)(n+1)/2
,

so that h(d) ¬ x(d) for d < 1. Moreover, from Lemma 5.1 we infer that h(d)  0.
Thus, we obtain finally

1 + dn+1

(1 + d2)(n+1)/2
=

1(
1 + x2(d)

)(n+1)/2
¬ 1(

1 + h2(d)
)(n+1)/2

.

Since our inequality is invariant under the transformation d → 1/d, the proof is
complete. �

The next result is also of universal kind (that is, it does not depend on the
value of the measure of intervals considered). We compare perimeters of (−c, c)
and (−1/d, d) and show that if ν(−c, c) = ν(−1/d, d), then

per(−1/d, d) ¬ per(−c, c).

LEMMA 5.4. For d > 0 we have

(5.4) per(−1/d, d) ¬ per(−c, c),

where c = c(d) is determined by the condition

2
c(d)∫
0

dx

(1 + x2)(n+1)/2
=

d∫
−1/d

dx

(1 + x2)(n+1)/2
.

P r o o f. We apply a similar technique to that in the previous proof. Let us put
y = y(d) such that

1 + dn+1

(1 + d2)(n+1)/2
=

2(
1 + y2(d)

)(n+1)/2

with d > 0 and y(d) > 0. Equivalently,

(1 + dn+1)
(
1 + y2(d)

)(n+1)/2
= 2(1 + d2)(n+1)/2.
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Taking derivatives, we obtain

y(d)y′(d) =
1 + y2(d)

1 + dn+1

d(1− dn−1)

1 + d2
.

From the definition of c = c(d) we get

c′(d)(
1 + c2(d)

)(n+1)/2
=

1

2

1− dn−1

(1 + d2)(n+1)/2
.

For 0 < d < 1 we have[ c(d)∫
0

dx

(1 + x2)(n+1)/2
−

y(d)∫
0

dx

(1 + x2)(n+1)/2

]′
=

c′(d)(
1 + c2(d)

)(n+1)/2
− y′(d)(

1 + y2(d)
)(n+1)/2

=
1− dn−1

2(1 + d2)(n+1)/2
− 1 + dn+1

2(1 + d2)(n+1)/2
y′(d)

=
1

2

1

(1 + d2)(n+1)/2
[1− dn−1 − (1 + dn+1)y′(d)]

=
1

2

1

(1 + d2)(n+1)/2

[
1− dn−1 − (1 + dn+1)

1 + y2(d)

1 + dn+1

d

y(d)

1− dn−1

1 + d2

]
=

1

2

1− dn−1

(1 + d2)(n+1)/2

[
1− 1 + y2(d)

1 + d2
d

y(d)

]
=

1

2

(1− dn−1)
(
y(d)− d

)(
1− dy(d)

)
(1 + d2)(n+1)/2y(d)(1 + d2)

> 0

since y(0) = 22/(n+1)− 1 < 1 for n > 1, y(1) = 1, and for 0 < d < 1 the function
y(d) is increasing, so that y(d) < 1 for 0 < d < 1. Moreover, for 0 < d < 1 we
have

1 + dn+1

(1 + d2)(n+1)/2
=

1 + 1(
1 + y2(d)

)(n+1)/2
,

and hence
1 + dn+1

1 + 1
=

(
1 + d2

1 + y(d)2

)(n+1)/2

< 1,

which implies that y(d) > d for 0 < d < 1, and this justifies the claim that the
derivative above is positive for 0 < d < 1. Since c(1) = y(1) = 1, we obtain

c(d)∫
0

dx

(1 + x2)(n+1)/2
¬

y(d)∫
0

dx

(1 + x2)(n+1)/2
,
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which implies that for d ∈ (0, 1) the inequality c(d) ¬ y(d) holds true. This, how-
ever, means that for 0 ¬ d ¬ 1

1 + dn+1

(1 + d2)(n+1)/2
=

2(
1 + y2(d)

)(n+1)/2
¬ 2(

1 + c2(d)
)(n+1)/2

,

which completes the proof. �

The comparison of the perimeters of (−c, c) and
(
−∞, g(−c, c)

)
is a much

more difficult problem. We state the corresponding result in the next lemma.

LEMMA 5.5. Suppose that ν(−c, c) = ν
(
−∞, h(c)

)
with h(c) = g(−c, c).

Then for c < c0 =
√

22/(n+1) − 1 we have

(5.5) per
(
−∞, h(c)

)
< per(−c, c),

while for c > c1 = 21/(n+1) the reverse inequality holds. The change of the relation
between perimeters occurs at the unique point c∗ ∈ [c0, c1), being a solution of the
following equation:

(5.6) h2(c) + 1 = 2−2/(n+1) (c2 + 1).

P r o o f. Observe that if c < c0 with c20 + 1 = 22/(n+1), then for c < c0 we
obtain

(5.7)
1(

1 + h2(c)
)(n+1)/2

< 1 <
2

(1 + c2)(n+1)/2
.

Thus, for c < c0 the relation (5.5) is satisfied.
We now define for c  c0 an auxiliary function z := z(c)  0 by the equation

(5.8)
2

(1 + c2)(n+1)/2
=

1(
1 + z(c)2

)(n+1)/2
.

We obtain

(5.9) z′(c) =
c

z(c)

1 + z2(c)

1 + c2
,

h′(c)(
1 + h2(c)

)(n+1)/2
=

2

(1 + c2)(n+1)/2
.

Define

κ(c) =
h(c)∫
−∞

dx

(1 + x2)(n+1)/2
−

z(c)∫
−∞

dx

(1 + x2)(n+1)/2
.



Extremal properties of Cauchy measures 265

We have

κ′(c) =
2

(1 + c2)(n+1)/2
− 2

(1 + c2)(n+1)/2
z′(c)

=
2

(1 + c2)(n+1)/2

(
z(c)− c

)(
1− cz(c)

)
z(c)(1 + c2)

and the above expression is positive iff c > c1 = 21/(n+1). Indeed, by the definition
of the function z(c) we obtain

z2(c)− c2 = −(22/(n+1) − 1)
(
z2(c) + 1

)
< 0,

so z = z(c) < c. Furthermore,

22/(n+1)
(
z2(c)c2 − 1

)
= c4 + (1− 22/(n+1))c2 − 22/(n+1),

so z2(c)c2 − 1 > 0 iff c > c1 = 21/(n+1) and the function κ(c) is increasing for
c > c1 and decreasing for c0 < c < c1. Since limc→∞ h(c) =∞ = limc→∞ z(c),
we have limc→∞ κ(c) = 0, so κ(c) < 0 for c  c1 and h(c) < z(c) for c  c1.
Since c1 > 1, by Lemma 5.1 we have h(c1) > 0, so we obtain for c > c1:

1(
1 + h(c)2

)(n+1)/2
>

1(
1 + z(c)2

)(n+1)/2
=

2

(1 + c2)(n+1)/2
.

We have to consider two cases. Assume first that h(c0)  0. Since z(c0) = 0,
we have κ(c0)  0. On the other hand, we have shown that κ(c1) < 0. Since the
function κ(c) is monotonic on the interval (c0, c1), there is a unique point c∗ ∈
[c0, c1) at which κ(c∗) = 0. But this means that h(c∗) = z(c∗) and this point is
unique in [c0,∞) since κ is negative in (c1,∞). The equation h(c∗) = z(c∗) shows
that c∗ is a solution of the equation (5.6), so the proof of this case is complete.

Now, let h(c0) < 0 and let c̃ be such that h(c̃) = 0. Then |h(c̃)| decreases
monotonically to zero as c → c̃, c ∈ (c0, c̃). Therefore,

(
1 + h2(c)

)−(n+1)/2 in-

creases to one while the expression
(
1 + z2(c)

)−(n+1)/2 decreases with the value
at c = c0 equal to one. Hence, there is a unique c∗ ∈ (c0, c̃) such that |h(c∗)| =
z(c∗). For c ∈ (c0, c

∗) we obtain

1(
1 + h2(c)

)(n+1)/2
<

1(
1 + z2(c)

)(n+1)/2
=

2

(1 + c2)(n+1)/2
,

while for c ∈ (c∗, c̃) we obtain the reverse inequality. Moreover, κ(c̃) < 0 and
κ′(c) < 0 for c ∈ (c0, c1), so κ(c) < 0 for all c ∈ (c̃, c1), hence also for c ∈ (c̃,∞).
But this proves that the point c∗ is unique and that it has all the required properties,
which completes the proof. �
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We now summarize the results of this section in the following theorem:

THEOREM 5.1. Let ν have the density f(x) = Aα,n/(1 + α2 + x2)(n+1)/2.
Then:

• Among all convex sets with fixed measure ν only intervals (−c, c), (−1/d, d)
or half-lines (−∞, g) are of extremal perimeter.

• We have ν(−1/d, d) > 1/2 for all d > 0 and the interval (−1/d, d) is of
minimal perimeter among all intervals (a, b) and half-lines (−∞, g) with fixed
measure ν greater than 1/2.

• If ν(−c, c) = ν
(
−∞, h(c)

)
, then for 0 < c < c∗, with c∗ defined by the

equation (5.6), we have

per
(
−∞, h(c)

)
< per(−c, c),

while for c > c∗ we have the reverse inequality

per
(
−∞, h(c)

)
> per(−c, c).
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Institute of Mathematics and Computer Science

Wrocław University of Technology
Wybrzeże Wyspiańskiego 27
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