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A WICK FUNCTIONAL LIMIT THEOREM
BY
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Abstract. We prove that weak convergence of multivariate discrete
Wiener integrals towards the continuous counterparts carries over to the
application of discrete and continuous Wick calculus. This is done by the
representation of arbitrary Wick products of Wiener integrals in terms of
generalized Hermite polynomials and a discrete analog of the Hermite re-
cursion. The result is a multivariate non-central limit theorem in the form of
a Wick functional limit theorem. As an application we give approximations
of multivariate processes based on fractional Brownian motions for arbitrary
Hurst parameters H ∈ (0, 1).
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1. INTRODUCTION

The Wick calculus on Wiener integrals I(f) is mainly based on the Hermite
expansion

(1.1) exp⋄
(
I(f)

)
=
∞∑
k=0

hk
(
I(f)

)
k!

=
∞∑
k=0

1

k!
I(f)⋄k,

where

(1.2) exp⋄
(
I(f)

)
:= exp

(
I(f)− 1

2

1∫
0

f2(s)ds

)
is the Wick exponential,

(1.3) hk(x) = hkσ2(x) := (−σ2)k exp(x2/2σ2)
dk

dxk
exp(−x2/2σ2)

is the Hermite polynomial of degree k with parameter σ2, and ⋄ denotes the Wick
product. We refer to the standard monographs [12], [10], and [13] for these ob-
jects from stochastic analysis and white noise theory. A brief introduction to Wick
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calculus is included in the next section. Here we assume that (Ω,F , P ) is a prob-
ability space which carries a Brownian motion (Bt)t∈[0,1] on the interval [0, 1] and
F is the σ-field generated by the Brownian motion. Then L2(Ω,F , P ) becomes a
Gaussian Hilbert space.

As a discrete counterpart we consider, for every n ∈ N, a binary random walk

Bn
t :=

1√
n

⌊nt⌋∑
i=1

ξni .

Here, (ξn1 , . . . , ξ
n
n) is an n-tuple of independent symmetric Bernoulli random vari-

ables with Pn(ξ
n
i = ±1) = 1/2 on a probability space (Ωn,Fn, Pn) and Fn is the

σ-field generated by the binary trials (ξn1 , . . . , ξ
n
n). Defining the discrete Wiener

integral via

In(fn) :=
1√
n

n∑
i=1

fn
i ξ

n
i ,

we have the following variant of the central limit theorem:

THEOREM 1.1. For all m-tuples of Wiener integrals
(
I(f1), . . . , I(fm)

)
and

discrete Wiener integrals
(
In(fn

1 ), . . . , I
n(fn

m)
)
, respectively, the following three

assertions are equivalent as n tends to infinity:
(a)

(
In(fn

1 ), . . . , I
n(fn

m)
) d→

(
I(f1), . . . , I(fm)

)
.

(b) For all l1, . . . , lk ∈ {1, . . . ,m}

E[In(fn
l1) . . . I

n(fn
lk
)]→ E[I(fl1) . . . I(flk)].

(c) lim
n→∞

max
l¬m

max
i¬n

1√
n
|fn

l,i| = 0 and, for all k, l,

1

n

n∑
i=1

(fn
k,i)(f

n
l,i)→

1∫
0

fk(u)fl(u)du.

For a proof we refer to Theorem 1.1 in [3].
Here we prove that the weak convergence in Theorem 1.1 carries over to appli-

cations of continuous and discrete Wick calculus. This is a multivariate extension
of results in [2] and [3] which leads to a multivariate Wick functional limit theorem.
We refer to [4] for an alternative approach to such strong convergence results by
Skorokhod embedding and the approximation of the S-transforms by the discrete
counterparts.

The paper is organized as follows:
In Section 2 we introduce the continuous Wick product and give analytic for-

mulas for Wick products of Wiener integrals by generalized Hermite polynomials
which have been introduced in [6].
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The discrete Wick calculus is introduced in Section 3. After some L2 formulas
and estimates on Wick products and Wiener integrals, we give a discrete analog of
the Hermite recursion for arbitrary Wick products of Wiener integrals. Then, based
on the weak convergence in Theorem 1.1, we conclude the weak convergence of
arbitrary multivariate Wick products in Theorem 3.1.

This convergence of arbitrary Wick products is extended in Section 4 to the
main result, the weak convergence of arbitrary Wick products of Wick analytic
functionals on the multivariate Wiener integrals in Theorem 1.1. Finally, we present
an application on fractional Brownian motion based on a fractional Donsker theo-
rem from [15].

The proofs are subsumed in the Appendix.

2. WICK CALCULUS AND GENERALIZED HERMITE POLYNOMIALS

The Wick exponential is closely related to the S-transform which plays an
important role in the white noise distribution theory. For every X ∈ L2(Ω,F , P )
and h ∈ L2([0, 1]), the S-transform of X at h is defined as

(SX)(h) := E
[
X exp⋄

(
I(h)

)]
.

Thanks to the injectivity ([12], Theorem 16.11), the S-transform can be applied to
characterize random variables. In particular, it leads to an elegant introduction of
the Wick product:

PROPOSITION 2.1. Define the Wick product by

(2.1) exp⋄
(
I(f)

)
⋄ exp⋄

(
I(g)

)
= exp⋄

(
I(f + g)

)
,

where I(f) and I(g) are two possibly correlated Wiener integrals. This is equiva-
lent to(

S exp⋄
(
I(f)

)
⋄ exp⋄

(
I(g)

))
(h) =

(
S exp⋄

(
I(f)

))
(h)

(
S exp⋄

(
I(g)

))
(h)

and we set

D :=
{
(X,Y ) ∈ L2(Ω)× L2(Ω) :

∃ZX,Y ∈ L2(Ω) ∀h ∈ L2(R) (SZX,Y )(h) = (SX)(h)(SY )(h)},

⋄ : D → L2(Ω), (X,Y ) 7→ ZX,Y .

ThenD is a dense subset of L2(Ω)×L2(Ω), the Wick product ⋄ is well-defined
(i.e., ZX,Y is uniquely determined), and the following properties hold true:

(a) For every f, g ∈ L2([0, 1]),
(
exp⋄

(
I(f)

)
, exp⋄

(
I(g)

))
∈ D and (2.1)

are valid.
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(b) The Wick product is bilinear.
(c) The Wick product is closed, i.e., if (Xk, Yk)k∈N ⊂ D, (Xk, Yk)→(X,Y )

in L2(Ω)×L2(Ω), and Xk⋄Yk→Z in L2(Ω), then (X,Y ) ∈ D and X ⋄ Y = Z.

For more details on Wick calculus we refer to [12] and [10]. Here we notice
the following generalization of a formula in [11]:

PROPOSITION 2.2. Suppose (X1, . . . , Xk) is jointly normal distributed and
(Y1, . . . , Yk) is an independent copy of (X1, . . . , Xk). Then

X1 ⋄ . . . ⋄Xk = E[(X1 + iY1) . . . (Xk + iYk)|X1, . . . , Xk].

P r o o f. The assertion follows by

exp⋄
( k∑
l=1

tlXl

)
= exp

( k∑
l=1

tlXl −
1

2
E
[( k∑

l=1

tlYl
)2])

= E
[
exp

( k∑
l=1

tl(Xl + iYl)
)∣∣X1, . . . , Xk

]
,

the Taylor expansion and identifying the coefficient terms for t1 . . . tk. �

By the definition via the S-transform or thanks to Proposition 2.2 we obtain

I(f) ⋄ I(g) = I(f)I(g)− ⟨f, g⟩,

I(f) ⋄ I(g) ⋄ I(h) = I(f)I(g)I(h)− ⟨f, g⟩I(h)− ⟨f, h⟩I(g)− ⟨g, h⟩I(f),
(2.2)

where ⟨f, g⟩ =
∫ 1

0
f(s)g(s)ds = E[I(f)I(g)]. In the following we generalize this

representation of the Wick product of Wiener integrals and illustrate the connection
to the Hermite polynomials (1.3). For these reasons we consider a generalization
of the Hermite polynomials to different variables as introduced in [6]. We define
for the symmetric constants σi,j = σj,i ∈ R+, i, j ∈ N, the following polynomials:

h1(x1) := x1, h2σ1,2
(x1, x2) := x1x2 − σ1,2,

and recursively

hn+1
σ (x1, . . . , xn+1) := xn+1h

n
σ(x1, . . . , xn)(2.3)

−
n∑

l=1

σl,n+1h
n−1
σ (x1, . . . , x̂l, . . . , xn),

where σ denotes the appropriate set of constants σ for all pairs of the variables
x1, . . . , xn and x̂ denotes the absence of the variable x. Thus we have, in particular,

h3σ(x1, x2, x3) = x1x2x3 − (x1σ2,3 + x2σ1,3 + x3σ1,2)(2.4)
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with σ = {σ1,2, σ1,3, σ2,3}. For completeness we define h0 := 1. For constant
σi,j = σ2 and xi = x for all i, j, we obtain the ordinary Hermite polynomials with
parameter σ2. This is a reformulation of the products of Hermite polynomials in
[10]. These polynomials are included in multivariate Appell polynomials in [7]. In
the following proposition we collect some properties of these polynomials related
to a Wick exponential representation as in (1.1).

PROPOSITION 2.3. The generalized Hermite polynomials have the following
properties:

(i) For all n ∈ N,

hnσ(x1, . . . , xn) =
∂n

∂t1 . . . ∂tn
exp⋄

( n∑
i=1

tixi
)∣∣

t1=...=tn=0
.

(ii) The generalized Hermite polynomials are symmetric if the constants σi,j
are interchanged in according terms. This means that if we interchange xi ↔ xj ,
then the interchange σi,m ↔ σj,m for all m holds true.

(iii) The derivative recursion formula

(2.5)
∂

∂xl
hnσ(x1, . . . , xn) = hn−1σ (x1, . . . , x̂l, . . . , xn)

for all n  1 and l = 1, . . . , n holds true.

The proof goes by induction and is omitted. We refer to the computations in [7]
and [1] for further details. Thus we conclude the following representation which
is implied by the diagram formulae for Gaussian random variables (cf. [7], Theo-
rem 4, or [12], Theorems 3.4 and 3.9).

LEMMA 2.1. (i) For all k ∈ N and f1, . . . , fk ∈ L2([0, 1]),

(2.6) I(f1) ⋄ . . . ⋄ I(fk) = hk{⟨fi,fj⟩,1¬i<j¬k}
(
I(f1), . . . , I(fk)

)
,

where I(fi) are standard Wiener integrals.
(ii) For all n,m ∈ N,

E
[(
I(f1) ⋄ . . . ⋄ I(fn)

)(
I(g1) ⋄ . . . ⋄ I(gm)

)]
= δn,m

∑
σ∈Sn

n∏
i=1

E[I(fi)I(gσ(i))],

where Sn denotes the group of permutations on {1, . . . , n}.

3. DISCRETE WICK CALCULUS AND A DISCRETE HERMITE RECURSION

Concerning the discrete setting, a discrete Wick exponential of the discrete
Wiener integral In(fn) is defined as

(3.1) exp⋄n
(
In(fn)

)
:=

n∏
i=1

(
1 +

1√
n
fn
i ξ

n
i

)
.
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Obviously, L2(Ωn,Fn, Pn) is a 2n-dimensional Hilbert space. A canonical
orthonormal basis of L2(Ωn,Fn, Pn) consists of the set{

Ξn
A :=

∏
i∈A

ξni , A ⊂ {1, . . . , n}
}
.

Every Xn ∈ L2(Ωn,Fn, Pn) has a unique expansion in terms of this basis, which
is called the Walsh decomposition,

Xn =
∑

A⊂{1,...,n}
Xn

AΞ
n
A,

where Xn
A ∈ R. It follows immediately that expectation and L2-inner product can

be computed in terms of the Walsh decomposition by the equalities E[Xn] = Xn
∅

and E [XnY n] =
∑

A⊂{1,...,n}X
n
AY

n
A . The discrete Wick exponential corresponds

to the terminal value of a discrete exponential martingale and was studied in [8] in
the context of discrete stochastic analysis.

Analogously to (2.1), for two, possibly correlated, discrete Wiener integrals
In(fn), In(gn) a discrete Wick product of the corresponding discrete Wick expo-
nentials is defined via the property

(3.2) exp⋄n
(
In(fn)

)
⋄n exp⋄n

(
In(gn)

)
= exp⋄n

(
In(fn + gn)

)
.

For the proof of the following result we refer to [3], Lemma 1.1:

LEMMA 3.1. The discrete Wick product in (3.2) is well-defined and equiva-
lent to the following characterization in terms of the canonical basis

{
Ξn
A, A ⊂

{1, . . . , n}
}

as introduced in [9]: For every A,B ⊂ {1, . . . , n},

Ξn
A ⋄n Ξn

B := Ξn
A∪B1A∩B=∅.

Moreover,
(
L2(Ωn,Fn, Pn),+, ⋄n

)
is a commutative ring.

EXAMPLE 3.1. Suppose fn, gn ∈ Rn. Then

In(fn)⋄nN = N !n−N/2 ∑
A⊂{1,...,n}
|A|=N

fn
AΞ

n
A.

Hence, for different discrete Wick powers (N,M ∈ N), we obtain

E[In(fn)⋄nNIn(gn)⋄nM ] = δN,M (N !)2n−N
∑

A⊂{1,...,n}
|A|=N

fn
Ag

n
A(3.3)

= 1{N,M¬n}δN,MN !E[In(fn)In(gn)]N ,
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which is the discrete counterpart of the continuous formula. Analogously to (1.1),
we obtain the Wick power series representation

(3.4) exp⋄n
(
In(fn)

)
=

∑
A⊂{1,...,n}

n−|A|/2fn
AΞ

n
A =

n∑
k=0

1

k!
In(fn)⋄nk.

In contrast to the continuous case, we have

In(fn
1 ) ⋄n In(fn

2 ) ⋄n In(fn
3 )

= h3{E[In(fn
i )In(fn

j )],1¬i<j¬3}
(
In(fn

1 ), I
n(fn

2 ), I
n(fn

3 )
)
+2

n∑
i=1

n−3/2fn
1,if

n
2,if

n
3,iξ

n
i .

Before stating the discrete analog of the Hermite recursion formula, we relate
the L2-norms of discrete Wick products to the continuous counterparts. The proofs
of the following statements are included in the Appendix.

PROPOSITION 3.1. (i) Suppose k1, . . . , km ∈ N,
∑m

i=1 ki ¬ n. Then

E
[(
In(fn

1 )
⋄nk1 ⋄n . . . ⋄n In(fn

m)⋄nkm
)2] ¬ m!

m∏
i=1

(ki)!E
[(
In(fn

i )
)2]ki .

(ii) Suppose
(
In(fn

1 ), . . . , I
n(fn

N ), In(gn1 ), . . . , I
n(gnN )

)
converges weakly to

the continuous counterpart. Then

lim
n→∞

E
[((

In(fn
1 ) ⋄n . . . ⋄n In(fn

N )
)
−

(
In(gn1 ) ⋄n . . . ⋄n In(gnN )

))2]
= E

[((
I(f1) ⋄ . . . ⋄ I(fN )

)
−

(
I(g1) ⋄ . . . ⋄ I(gN )

))2]
.

REMARK 3.1. (i) For all
(
In(fn), In(gn)

) d→
(
I(f), I(g)

)
, N,M ∈ N,

E[In(fn)⋄nNIn(gn)⋄nM ]→ E[I(f)⋄NI(g)⋄M ].

(ii) From Proposition 3.1 (ii) we infer that the assertion in Proposition 3.1 (i)
holds true for continuous Wiener integrals as well.

Now we can proceed with the derivation of the discrete analog of the Hermite
recursion.

LEMMA 3.2 (Discrete Hermite recursion). For all k ∈ N, fn
1 , f

n
2 , . . . , f

n
k ∈

Rn, we have

(3.5) In(fn
1 ) ⋄n . . . ⋄n In(fn

k )

=
(
In(fn

1 ) ⋄n . . . ⋄n In(fn
k−1)

)
In(fn

k )

−
k−1∑
l=1

E[In(fn
l )I

n(fn
k )]

(
In(fn

1 ) ⋄n . . . ⋄n În(fn
l ) ⋄n . . . ⋄n In(fn

k−1)
)

+Rk,n
(
In(fn

1 ), . . . , I
n(fn

k )
)
,
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and

(3.6) E
[(

Rk,n
(
In(fn

1 ), . . . , I
n(fn

k )
))2]

¬ (k − 1)!(k − 1)3max
l¬k

sup
i¬n

|fn
l,i|4

n2

(
max
l¬k

E
[(
In(fn

l )
)2])k−1

.

REMARK 3.2. This generalizes the discrete Hermite recursion formula for
Wick powers in Proposition 1.2 of [3] to arbitrary Wick products.

THEOREM 3.1. Suppose that
(
In(fn

1 ), . . . , I
n(fn

k )
) d→

(
I(f1), . . . , I(fk)

)
.

We define, for all N1, InN as the random vector of all discrete Wick products of
the components in the vector

(
In(fn

1 ), . . . , I
n(fn

k )
)

up to the order N such that it
contains for every A ⊂ {1, . . . , N} and m : A→ {1, . . . , k} the component

(♢n)i∈AI
n(fn

m(i)).

Analogously, for the random vector of Wiener integrals
(
I(f1), . . . , I(fk)

)
, we de-

fine IN as the continuous counterpart of InN in terms of continuous Wick products.
Then, for all N  1,

InN
d→ IN as n→∞.

4. A WICK FUNCTIONAL LIMIT THEOREM

By Theorem 3.1 we are able to extend the weak convergence of the Wiener
integrals in Theorem 1.1 to square integrable Wick analytic functionals.

THEOREM 4.1. Assume that
(
In(fn

1 ), . . . , I
n(fn

m)
) d→

(
I(f1), . . . , I(fm)

)
.

Additionally suppose that the coefficients in the Wick analytic functionals

F ⋄l (x) =
∞∑
k=0

alk
k!

x⋄k, F ⋄nl (x) =
n∑

k=0

aln,k
k!

x⋄nk, l ∈ {1, . . . ,m},

satisfy the following conditions:
(1) limn→∞ aln,k = alk exists for all k ∈ N and l = 1, . . . ,m.
(2) There exists a C ∈ R+ with |aln,k| ¬ Ck for all n, k ∈ N, l = 1, . . . ,m.

We define Fn
m as the random vector of all discrete Wick products of different com-

ponents in the vector
(
F ⋄n1

(
In(fn

1 )
)
, . . . , F ⋄nm

(
In(fn

m)
))

up to the order m such
that it contains for every A ⊂ {1, . . . ,m}, A ̸= ∅, the component

(♢n)i∈AF
⋄n
i

(
In(fn

i )
)
.

Analogously, we define the continuous counterpart Fm as the random vector of all
Wick products of different components in the vector

(
F ⋄1

(
I(f1)

)
, . . . , F ⋄m

(
I(fm)

))
.

Then it holds true that
Fn
m

d→ Fm as n→∞.
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REMARK 4.1. (i) For a simple case of the assertion (cf. the proof) a weaker
assumption on the coefficients is

(1) limn→∞ aln,k = alk exists for all k ∈ N and l = 1, . . . ,m.
(2*) For all l = 1, . . . ,m,

∞∑
k=0

1

k!
sup
n∈N

{
(aln,k)

2

(
1

n

n∑
i=1

(fn
l,i)

2

)k}
<∞.

For technical reasons in the following convergence results we deal with the
simpler assumption (2*). By the boundedness of 1

n

∑n
i=1(f

n
l,i)

2 for all l = 1, . . . ,m,
the assumption (2) in Theorem 4.1 implies (2*).

(ii) By Theorem 1.1, condition (2) implies that
∞∑
k=0

(alk)
2

k!

( 1∫
0

f2
l (s)ds

)k
<∞, l = 1, . . . ,m,

which is equivalent to the existence of F ⋄l
(
I(fl)

)
in the space L2(Ω,F , P ) for all

l = 1, . . . ,m. For further criteria for the existence in L2(Ω,F , P ) we refer to [11].
(iii) The existence of the component ♢i∈AF

⋄
i

(
I(fi)

)
in L2(Ω,F , P ) for some

A ⊂ {1, . . . ,m} follows by condition (2) as well.
(iv) The assumption on the convergence of the possibly correlated Wiener

integrals in Theorem 4.1 is based on the weak convergence of the underlying pro-
cesses

Bn d→ B.

This inspires us to speak about a Wick functional limit theorem.

EXAMPLE 4.1. The Molchan–Golosov representation of the fractional Brow-
nian motion is given by

BH
t =

t∫
0

zH(t, s)dBs, t ∈ [0, 1],

for some deterministic kernel zH(t, s) (see [14], Chapter 5). In [15] we prove the
following Donsker type theorem extending a result in [16]:

THEOREM 4.2. For every H ∈ (0, 1), we define the discrete Volterra inte-
grands as the pointwise approximation of the Molchan–Golosov kernel:

bH,n(l, i) := n
i/n∫

(i−1)/n
zH (l/n, s) ds1{i¬l}.

Then the sequence of processes (of discrete Wiener integrals)

(BH,n
t )t∈[0,1] := In

(
bH,n(⌊nt⌋ , ·)

)
t∈[0,1]

converges weakly to the fractional Brownian motion (BH
t )t∈[0,1] in the Skorokhod

space D([0, 1],R).
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Thus we obtain the following non-central limit theorems. Let H1, . . . ,Hk ∈
(0, 1). By the embedding methods in [4], we obtain, for all t1, . . . , tk ∈ [0, 1],

(BH1,n
t1

, . . . , BHk,n
tk

)
d→ (BH1

t1
, . . . , BHk

tk
).

Then, from Theorem 4.1 we infer that the random vector of all Wick products of
fractional geometric Brownian motions(

exp⋄(BH1
t1

), . . . , exp⋄(BH1
t1

+BH2
t2

), . . . , exp⋄(BH1
t1

+ . . .+BHk
tk

)
)

is approximated weakly by the discrete counterpart. We notice that the different
fractional Brownian motions are correlated by the same underlying Brownian mo-
tion. The tightness of such processes will be considered in an accompanying article.

5. APPENDIX

P r o o f o f P r o p o s i t i o n 3.1. (i) We observe that

(5.1) n−N
∑

σ∈SN

n∑
i1,...,iN=1

N∏
j=1

fn
j,ijg

n
j,iσ(j)

=
∑

σ∈SN

N∏
j=1

E[In(fn
j )I

n(gnσ(j))].

Here, the objects of interest have the form

In(fn
1 ) ⋄n . . . ⋄n In(fn

N ) = n−N/2
n∑

i1,...,iN=1
pairwise different

fn
1,i1 . . . f

n
N,iN

Ξn
{i1,...,iN}.

Then, by Ξn
{i1,...,iN}Ξ

n
{iσ(1),...,iσ(N)}

= 1 for all σ ∈ SN and interchanging sums,
we obtain

(5.2) E
[(
In(fn

1 ) ⋄n . . . ⋄n In(fn
N )

)(
In(gn1 ) ⋄n . . . ⋄n In(gnN )

)]
= n−N

∑
σ∈SN

n∑
i1,...,iN=1

pairwise different

fn
1,i1 . . . f

n
N,iN

gn1,iσ(1)
. . . gnN,iσ(N)

= n−N
∑

σ∈SN

( n∑
i1,...,iN=1

N∏
j=1

fn
j,ijg

n
j,iσ(j)

−
n∑

i1,...,iN=1
∃k,l:ik=il

N∏
j=1

fn
j,ijg

n
j,iσ(j)

)
=

∑
σ∈SN

N∏
j=1

E[In(fn
j )I

n(gnσ(j))]− n−N
n∑

i1,...,iN=1
∃k,l:ik=il

∑
σ∈SN

N∏
j=1

fn
j,ijg

n
j,iσ(j)

.

The remaining sum on the right-hand side in (5.2) allows for the following refor-
mulation:

(5.3) n−N
n∑

i1,...,iN=1
∃k,l:ik=il

∑
σ∈SN

N∏
j=1

fn
j,ijg

n
j,iσ(j)

= N !n−N
n∑

i1,...,iN=1
∃k,l:ik=il

(
1

N !

∑
σ∈SN

N∏
j=1

fn
j,iσ(j)

)(
1

N !

∑
σ∈SN

N∏
j=1

gnj,iσ(j)

)
.
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Therefore, we conclude that

(5.4)
1

N !

∑
σ∈SN

N∏
j=1

E[In(fn
j )I

n(fn
σ(j))] +

1

N !

∑
σ∈SN

N∏
j=1

E[In(gnj )In(gnσ(j))]

− 2
1

N !

∑
σ∈SN

N∏
j=1

E[In(fn
j )I

n(gnσ(j))]

− 1

N !
E
[((

In(fn
1 ) ⋄n . . . ⋄n In(fn

N )
)
−

(
In(gn1 ) ⋄n . . . ⋄n In(gnN )

))2]
= n−N

n∑
i1,...,iN=1
∃k,l:ik=il

(
1

N !

∑
σ∈SN

N∏
j=1

fn
j,iσ(j)

− 1

N !

∑
σ∈SN

N∏
j=1

gnj,iσ(j)

)2

 0.

By (5.4) for gni = 0, i = 1, . . . , N, and the Cauchy–Schwarz inequality, we obvi-
ously have

(5.5) E
[(
In(fn

1 ) ⋄n . . . ⋄n In(fn
N )

)2]
¬

∑
σ∈SN

N∏
j=1

E
[(
In(fn

j )
)2]1/2E[(In(fn

σ(j))
)2]1/2

.

Then, via (5.5) and the associativity of the discrete Wick product, we conclude the
assertion.

(ii) By (5.4) and Lemma 2.1 (ii), we obtain

(5.6) E
[((

In(fn
1 ) ⋄n . . . ⋄n In(fn

N )
)
−
(
In(gn1 ) ⋄n . . . ⋄n In(gnN )

))2]
− E

[((
I(f1) ⋄ . . . ⋄ I(fN )

)
−

(
I(g1) ⋄ . . . ⋄ I(gN )

))2]
=

∑
σ∈SN

( N∏
j=1

E[In(fn
j )I

n(fn
σ(j))]−

N∏
j=1

E[I(fj)I(fσ(j))]

+
N∏
j=1

E[In(gnj )In(gnσ(j))]−
N∏
j=1

E[I(gj)I(gσ(j))]

− 2
N∏
j=1

E[In(fn
j )I

n(gnσ(j))] + 2
N∏
j=1

E[I(fj)I(gσ(j))]
)

−N !n−N
n∑

i1,...,iN=1
∃k,l:ik=il

(
1

N !

∑
σ∈SN

N∏
j=1

fn
j,iσ(j)

− 1

N !

∑
σ∈SN

N∏
j=1

gnj,iσ(j)

)2

.

Now, for simplicity, we write

∑
(f, σ) := n−N

n∑
i1,...,iN=1
∃k,l:ik=il

N∏
j=1

(fn
iσ(j)

)2.
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Interchanging sums and using the Cauchy–Schwarz inequality we obtain

n−N
n∑

i1,...,iN=1
∃k,l:ik=il

(
1

N !

∑
σ∈SN

N∏
j=1

fn
j,iσ(j)

)2

¬ 1

(N !)2
∑

σ,σ′∈SN

∑
(fj , σ)

1/2 ∑
(fj , σ

′)1/2.

Here we notice
∑

(f, σ) ¬
(
N

2

)
sup
i¬n

|fn
i |2

n
n−(N−1)

n∑
i1,...,iN−1=1

(N−1∏
j=1

(fn
ij )

2
)

=

(
N

2

)
sup
i¬n

|fn
i |2

n
E
[(
In(fn)

)2]N−1
.

Thus we have

(5.7) n−N
n∑

i1,...,iN=1
∃k,l:ik=il

(
1

N !

∑
σ∈SN

N∏
j=1

fn
j,iσ(j)

)2

¬
(
N

2

)
max
l¬N

sup
i¬n

|fn
l,i|2

n

(
max
l¬N

E
[(
In(fn

l )
)2])N−1

,

and the analogous upper bound for gn1 , . . . , g
n
N , respectively. Hence, via (5.6), (5.7)

and applying the convergences in Theorem 1.1 (c), we obtain the assertion (iii). �

P r o o f o f L e m m a 3.2. For k ¬ 2 we have Rk,n = 0 and the formula
(3.5) is clear by Example 3.1 and In(fn)⋄n0 = 1. Moreover, we observe that the
first non-zero remaining term appears for k = 3 as

R3,n
(
In(fn

1 ), I
n(fn

2 ), I
n(fn

3 )
)

=
2∑

l=1

n−1/2
n∑

i{1,2}\{l}=1

fn
{1,2}\{l},i{1,2}\{l}ξ

n
{1,2}\{l}

(
n−1

∑
il∈{i{1,2}\{l}}

fn
l,il

fn
3,il

)
= 2n−3/2

n∑
i=1

fn
1,if

n
2,if

n
3,iξ

n
i .

This proves the assertion for k = 3. For k  3 we obtain

(5.8)
(
In(fn

1 ) ⋄n . . . ⋄n In(fn
k−1)

)
⋄n In(fn

k )

= n−(k−1)/2
n∑

i1,...,ik−1=1
pairwise different

fn
1,i1 . . . f

n
k−1,ik−1

Ξn
{i1,...,ik−1} ⋄n

(
n−1/2

n∑
ik=1

fn
k,ik

ξnik
)

=
(
In(fn

1 ) ⋄n . . . ⋄n In(fn
k−1)

)
In(fn

k )

− n−k/2
n∑

i1,...,ik−1=1
pairwise different

∑
ik∈{i1,...,ik−1}

fn
1,i1 . . . f

n
k−1,ik−1

fn
k,ik

Ξn
{i1,...,ik−1}ξ

n
ik
.
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Here we define the remaining term as

n−k/2
n∑

i1,...,ik−1=1
pairwise different

∑
ik∈{i1,...,ik−1}

fn
1,i1 . . . f

n
k−1,ik−1

fn
k,ik

Ξn
{i1,...,ik−1}ξ

n
ik

=
k−1∑
l=1

(
n−1

n∑
il=1

fn
l,il

fn
k,il

)
×
(
n−(k/2−1)

n∑
i1,...,îl,...,ik−1=1
pairwise different

fn
1,i1 . . . f̂

n
l,il

. . . fn
k−1,ik−1

Ξn
{i1,...,îl,...,ik−1}

)

−
k−1∑
l=1

n−(k/2−1)
n∑

i1,...,îl,...,ik−1=1
pairwise different

fn
1,i1 . . . f̂

n
l,il

. . . fn
k−1,ik−1

Ξn
{i1,...,îl,...,ik−1}

×
(
n−1

∑
il∈{i1,...,îl,...,ik−1}

fn
l,il

fn
k,il

)
=

k−1∑
l=1

E [In(fn
l )I

n(fn
k )]

(
In(fn

1 ) ⋄n . . . ⋄n În(fn
l ) ⋄n . . . ⋄n In(fn

k−1)
)

−Rk,n
(
In(fn

1 ), . . . , I
n(fn

k )
)
.

For the estimate (3.6), due to the orthogonality of Ξn
A, A ⊂ {1, . . . , n}, we

observe that

0 ¬ E
[(

Rk,n
(
In(fn

1 ), . . . , I
n(fn

k )
))2]

=
k−1∑
l,l′=1

n−(k−2)
∑

σ∈Sk−2

n∑
i1,...,îl,...,ik−1=1
pairwise different

(i′1,...,î
′
l,...,i

′
k−1)=σ(i1,...,îl,...,ik−1)

( n∏
j=1
j ̸=l

fn
j,ij

)( n∏
j=1
j ̸=l′

fn
j,i′j

)

×
(
n−1

∑
il∈{i1,...,îl,...,ik−1}

fn
l,il

fn
k,il

)(
n−1

∑
i′
l′∈{i

′
1,...,î

′
l,...,i

′
k−1}

fn
l′,il′

fn
k,il′

)
,

where Sk−2 is the group of permutations on k − 2 elements. Clearly, we have

(
n−1

∑
il∈{i1,...,îl,...,ik−1}

fn
l,il

fn
k,il

)
¬ (k − 2)max

l¬k
sup
i¬n

|fn
l,i|2

n
.

Moreover, by the Cauchy–Schwarz inequality, for all l, l′ ∈ {1, . . . , k − 1} and
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every fixed permutation σ ∈ Sk−2, we get

n−(k−2)
n∑

i1,...,îl,...,ik−1=1
pairwise different

(i′1,...,î
′
l,...,i

′
k−1)=σ(i1,...,îl,...,ik−1)

( n∏
j=1
j ̸=l

fn
j,ij

)( n∏
j=1
j ̸=l′

fn
j,i′j

)

¬
k−1∏

j=1,j ̸=l

(
n−1

n∑
i=1

(fn
j,i)

2
)1/2 k−1∏

j=1,j ̸=l′

(
n−1

n∑
i=1

(fn
j,i)

2
)1/2

¬
(
max
l¬k

E
[(
In(fn

l )
)2])k−1

.

Hence, by |Sk−2| = (k − 2)!, we conclude the asserted estimate (3.6). �

P r o o f o f T h e o r e m 3.1. The proof goes by induction on N . The weak
convergence of InN to IN in the case N = 1 equals the assumption on the weak con-
vergence of the Wiener integrals. Suppose the convergence is already proved for
N  1. Making use of the assumption and Theorem 1.1, we see that the conver-
gence of the deterministic terms limn→∞ E[In(fn

i )I
n(fn

j )] = E[I(fi)I(fj)] holds
true for all i, j ∈ {1, . . . , k}. Hence, from the Cramér–Wold device, we infer that
the extension of InN by these deterministic components to the random vector InN,E

defined as(
1, In(fn

1 ), . . .︸ ︷︷ ︸
all components of InN

,E[In(fn
1 )I

n(fn
1 )], . . . ,E[In(fn

k−1)I
n(fn

k )]︸ ︷︷ ︸
E[In(fn

i )In(fn
j )] for all i,j∈{1,...,k}

)
converges weakly to the continuous counterpart IN,E . Moreover, we build from
InN+1 the random vector InN+1,H of the same dimension in the following two steps:

1. Take a copy of IN,E .
2. Every discrete Wick product of N + 1 Wiener integrals,

In(fn
i1) ⋄n . . . ⋄n In(fn

iN+1
), i1, . . . , iN+1 ∈ {1, . . . , k},

is replaced by

In(fn
iN+1

)
(
In(fn

i1) ⋄n . . . ⋄n In(fn
iN
)
)

−
N∑
j=1

E[In(fn
ij )I

n(fn
iN+1

)]
(
In(fn

i1) ⋄n . . . ⋄n În(fn
ij
) ⋄n . . . ⋄n In(fn

iN
)
)

on the right-hand side in the Hermite recursion formula (3.5). Hence, InN+1,H is
a continuous function of InN,E . Moreover, by (3.5), all components of the random
vector

InN+1,R := InN+1 − InN+1,H



A Wick functional limit theorem 141

are equal to zero or equal to some

RN+1,n
(
In(fn

i1), . . . , I
n(fn

iN+1
)
)
, i1, . . . , iN+1 ∈ {1, . . . , k},

in (3.5). By Lemma 1.1 and the estimate (3.6) in Lemma 3.2, we obtain

lim
n→∞

E[∥InN+1,R∥2Rd(N+1) ] = 0,(5.9)

where ∥·∥RK denotes the Euclidean norm on RK and d(N +1) is the dimension of
InN+1. Since InN+1,H is a continuous function of InN,E , by the induction hypothesis,
the Hermite recursion formula (2.3), and the continuous mapping theorem we get

InN+1,H
d→ IN+1.(5.10)

Hence, by (5.9), (5.10), and Slutsky’s theorem we obtain the asserted convergence
for N + 1. �

P r o o f o f T h e o r e m 4.1. Firstly we prove the simple case, i.e.,

(5.11)
(
F ⋄n1

(
In(fn

1 )
)
, . . . , F ⋄nm

(
In(fn

m)
)) d→

(
F ⋄1

(
I(f1)

)
, . . . , F ⋄m

(
I(fm)

))
as n tends to infinity. Here, we assume the weaker conditions on the coefficients,
that is, (1) and (2*) in Remark 4.1 (i). By [5], Theorem 4.2, it is sufficient to show
that the following three conditions are satisfied:

(5.12) ∀N ∈ N,(
FN,⋄n
1

(
In(fn

1 )
)
, . . . , FN,⋄n

m

(
In(fn

m)
)) d→

(
FN,⋄
1

(
I(f1)

)
, . . . , FN,⋄

m

(
I(fm)

))
,

∀l ¬ m, lim
N→∞

lim sup
n→∞

E
[(

F ⋄nl

(
In(fn

l )
)
− FN,⋄n

l

(
In(fn

l )
))2]

= 0,(5.13)

∀l ¬ m, lim
N→∞

E
[(

F ⋄l
(
I(fl)

)
− FN,⋄

l

(
I(fl)

))2]
= 0.(5.14)

Here FN,⋄ and FN,⋄n denote the partial sums of the Wick analytic functionals.
Condition (5.12) is a consequence of the generalized continuous mapping theo-
rem ([5], Theorem 5.5) and Theorem 3.1. Condition (5.14) follows directly by Re-
mark 4.1 (ii) and due to the orthogonality of different Wick powers of Wiener in-
tegrals in (3.3) of Example 3.1. Finally, thanks to the orthogonality of the different
discrete Wick powers of discrete Wiener integrals, we obtain, for the inner limit
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superior in condition (5.13),

lim sup
n→∞

E
[(

F ⋄nl

(
In(fn

l )
)
− FN,⋄n

l

(
In(fn

l )
))2]

= lim sup
n→∞

n∑
k=N+1

(aln,k)
2

(k!)2
E
[∣∣(In(fn

l )
)⋄nk∣∣2]

=
∞∑

k=N+1

(alk)
2

(k!)2
E
[∣∣(I(fl))⋄k∣∣2] = E

[(
F ⋄l

(
I(fl)

)
− FN,⋄

l

(
I(fl)

))2]
,

where we are making use of the convergence in Remark 3.1 (i), assumption (2*)
and, hence, by Fatou’s lemma for sums for introducing the limit superior under the
series. Thus, (5.13) follows from (5.14) and we conclude the simple case (5.11).

The proof of the convergence of the assertion in Theorem 4.1 proceeds simi-
larly. Thus, by Theorem 4.2 in [5], it is sufficient to show that the following three
conditions are satisfied:

(5.15) ∀N ∈ N,(
FN,⋄n
1

(
In(fn

1 )
)
, . . . , FN,⋄n

1

(
In(fn

1 )
)
⋄n . . . ⋄n FN,⋄n

m

(
In(fn

m)
))

d→
(
FN,⋄
1

(
I(f1)

)
, . . . , FN,⋄

1

(
I(f1)

)
⋄ . . . ⋄ FN,⋄

m

(
I(fm)

))
,

(5.16) ∀A ⊂ {1, . . . ,m}, A ̸= ∅,

lim
N→∞

lim sup
n→∞

E
[(

(♢n)i∈AF
⋄n
i

(
In(fn

i )
)
− (♢n)i∈AF

N,⋄n
i

(
In(fn

i )
))2]

= 0,

(5.17) ∀A ⊂ {1, . . . ,m}, A ̸= ∅,

lim
N→∞

E
[(

♢i∈AF
⋄
i

(
I(fi)

)
− ♢i∈AF

N,⋄
i

(
I(fi)

))2]
= 0.

Condition (5.15) is a consequence of the generalized continuous mapping theorem
([5], Theorem 5.5) and Theorem 3.1.

Suppose A ⊂ {1, . . . ,m}. Then we have

(5.18) ♢i∈AF
⋄
i

(
I(fi)

)
− ♢i∈AF

N,⋄
i

(
I(fi)

)
=

∞∑
kl=0,l∈A

( ∏
l∈A

alkl
(kl)!

)(
♢l∈A

(
I(fl)

)⋄kl)
−

N∑
kl=0,l∈A

( ∏
l∈A

alkl
(kl)!

)(
♢l∈A

(
I(fl)

)⋄kl)
=

∞∑
kl=0,l∈A
max
l∈A

kl>N

( ∏
l∈A

alkl
(kl)!

)(
♢l∈A

(
I(fl)

)⋄kl).
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Thus, by the Cauchy–Schwarz inequality and Remark 3.1 (ii), we obtain

(5.19) E
[(

♢i∈AF
⋄
i

(
I(fi)

)
− ♢i∈AF

N,⋄
i

(
I(fi)

))2]
=

∞∑
kl=0,l∈A
k′l=0,l∈A

max
l∈A

kl,max
l∈A

k′l>N

( ∏
l∈A

alkl
(kl)!

alk′l
(k′l)!

)
E
[(

♢l∈A
(
I(fl)

)⋄kl)(♢l∈A
(
I(fl)

)⋄k′l)]

¬
∞∑

kl=0,l∈A
k′l=0,l∈A

max
l∈A

kl,max
l∈A

k′l>N

|A|!
∏
l∈A

|alkl |√
(kl)!

|alk′l |√
(k′l)!

E
[(
I(fl)

)2]kl/2E[(I(fl))2]k′l/2

= |A|!
( ∞∑

kl=0,l∈A
max
l∈A

kl>N

∏
l∈A

|alkl |√
(kl)!

E
[(
I(fl)

)2]kl/2)2

.

By the assumptions on the coefficients and by the condition

max
l=1,...,m

E[I(fl)2] ¬ L <∞,

we have

(5.20)
∞∑

kl=0,l∈A
max
l∈A

kl>N

∏
l∈A

|alkl |√
(kl)!

E
[(
I(fl)

)2]kl/2 ¬ ∞∑
kl=0,l∈A
max
l∈A

kl>N

∏
l∈A

Ckl√
(kl)!

Lkl/2

¬
∑
q∈A

( ∞∑
kq=N+1

Ckq√
kq!

Lkq/2

)( ∏
l∈A\{q}

( ∞∑
kl=0

Ckl
√
kl!

Lkl/2

))

= |A|
( ∞∑

k=N+1

Ck

√
k!
Lk/2

)( ∞∑
k=0

Ck

√
k!
Lk/2

)|A|−1
.

Hence, via
∞∑
k=0

Ck

√
k!
Lk/2 <∞,

we conclude that

∞∑
kl=0,l∈A
max
l∈A

kl>N

∏
l∈A

alkl√
(kl)!

E
[(
I(fl)

)2]kl/2 → 0 as N →∞.

Thus, due to (5.19), the condition (5.17) is satisfied.
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Analogously to (5.18) and (5.19), we obtain for the discrete counterpart

E
[(

(♢n)i∈AF
⋄n
i

(
In(fn

i )
)
− (♢n)i∈AF

N,⋄n
i

(
In(fn

i )
))2]

¬ |A|!
( n∑

kl=0,l∈A
max
l∈A

kl>N

∏
l∈A

aln,kl√
(kl)!

E
[(
In(fn

l )
)2]kl/2)2

.

Hence, by (5.20) and the assumptions on the coefficients, we conclude condition
(5.16). �
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