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Abstract. Suppose that n individuals are scrutinized in an experiment.
Each failure is accompanied by a fixed number of removals. The experiment
terminates after r (¬ n) failures. An explicit expression for the likelihood
function of the available progressive sequential order statistics (PSOS) data
is proposed. Under the conditional proportional hazard rate (CPHR) model,
the maximum likelihood (ML) estimates of parameters are derived. Under
the CPHR model and the assumption that the baseline distribution belongs
to the Weibull family of distributions, the existence and uniqueness of the
ML estimates are investigated. Moreover, two general classes of lifetime
distributions, as an extension of the Weibull distribution, are studied in more
detail. An algorithm for generating PSOS data under the CPHR model is
proposed. Finally, some concluding remarks are given.
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1. INTRODUCTION

Suppose that n individuals with lifetimes X1, . . . , Xn, respectively, are scruti-
nized in an experiment and X1:n ¬ . . . ¬ Xn:n denote arranged lifetimes in order
of magnitude. It is usually assumed that X1, . . . , Xn are independent and identi-
cally distributed (iid) random variables, and so the theory of ordinary order statis-
tics (OS) may be applied for modeling purposes. Kamps [14] introduced the con-
cept of sequential order statistics (SOS) as an extension of the OS for modeling
experiments in which failing an individual may change the distribution of the sur-
viving individuals. For more details, see [14], [15], [8]–[11], and [5].

In this paper, we extend the concept of SOS and assume that each failure is
accompanied by a fixed number of removals and the experiment terminates after
r (¬ n) failures. Therefore, the rest of the paper is organized as follows. In Sec-
tion 2, the concept of progressive sequential order statistics (PSOS) and the as-
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sociated likelihood function (LF) of a given PSOS data are presented. The PSOS
data is investigated in Subsection 2.3 under a special model known as a conditional
proportional hazard rate (CPHR) model. In Section 3, the problem of a maximum
likelihood (ML) estimation of parameters on the basis of the available PSOS data
under the CPHR model is considered. In Section 4, we obtain the ML estimates of
parameters for some parametric families of lifetime distributions based on PSOS
data under the CPHR model. Section 5 points out an algorithm generating a PSOS
sample. Some proofs are given in the Appendix.

2. PSOS SAMPLE

2.1. Scheme of PSOS. Suppose that n individuals are scrutinized in an ex-
periment. Each failure is accompanied by a fixed number of removals. The ex-
periment terminates after r (¬ n) failures. We assume that the common lifetime
distribution of the surviving individuals in the experiment changes at the moment
of failure. More precisely, let Fj be the common lifetime cdf of the units when
n − j + 1 −

∑j−1
i=1 Ri units are tested. Thus, all n units put under test with the

common cdf F1 at time zero. Following immediately the first failure at time x1, R1

units are randomly selected and removed. The remaining n− 1−R1 units continue
to work with the common cdf F2. Following the second failure at time x2, R2 units
are randomly selected and removed, and then the remaining n− 2−R1−R2 units
continue to work with the common cdf F3. This process continues until the r-th
failure observed at time xr, the remaining Rr = n − r − R1 − . . . − Rr−1 units
are removed, and then the experiment terminates. Figure 1 shows a perspective for
a PSOS censored Type-II sample.
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Figure 1. A perspective for a PSOS data

2.2. The LF of the PSOS sample. Let x = (x1, . . . , xr) be a PSOS sample of
size r. The associated LF is
(2.1) L(F1, . . . , Fr;x)

=

(
n

1

)
f∗1 (x1)[F̄

∗
1 (x1)]

n−1
(
n− 1−R1

1

)
f∗2 (x2)[F̄

∗
2 (x2)]

n−2−R1 × . . .

×
(
n− r + 1−R1 − . . .−Rr−1

1

)
f∗r (xr)[F̄

∗
r (xr)]

n−r−R1−...−Rr−1

= cp
r∏

j=1

{f∗j (xj)[F̄ ∗j (xj)]mj}, x1 < . . . < xr,
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where, by convention, R0 ≡ 0, and

(2.2) mj = n− j −R0 − . . .−Rj−1,

F ∗j (xj) =
Fj(xj)− Fj(xj−1)

1− Fj(xj−1)
and f∗j (xj) =

fj(xj)

1− Fj(xj−1)

for 1 ¬ j ¬ r. If F1(x0) = 0, the LF in (2.1) takes the form

(2.3) L(F1, . . . , Fr;x) =

= cp
r−1∏
j=1

{
fj(xj)

[1− Fj(xj)]
mj

[1− Fj+1(xj)]
1+mj+1

}
fr(xr) [1− Fr(xr)]

mr .

REMARK 2.1. If Rj = 0, j = 1, . . . , r− 1, and Rr = n− r, then mj = n− j
and 1+mj+1 = n− j for j = 1, . . . , r. In this case, the PSOS reduces to the SOS.

REMARK 2.2. If F1 = . . . = Fn = F, the PSOS data is reduced to the pro-
gressive censored Type-II data (POS). (For more details see [1].)

2.3. Conditional proportional hazard rate model. In the sequel, we assume
that the cdfs Fj in equation (2.3) satisfy

(2.4) Fj(t) = 1− [1− F0(t)]
αj , j = 1, . . . , r,

where F0 is the baseline cdf. This model is known as the conditional proportional
hazard rate (CPHR) model. Under the CPHR model, the hazard rate function of
the cdf Fj is proportional to the hazard rate function of the baseline cdf F0. More
precisely, let hj(t) = fj(t)/F̄j(t) for j = 0, . . . , n. Then, for t > 0, we have

(2.5) hj(t) = αjh0(t), j = 1, . . . , n.

For more details, see [13].
Under the CPHR model, the LF is

(2.6) L(α, F0;x) = cp
r∏

j=1

{αjf0(xj)[F̄0(xj)]
αj(1+mj)−αj+1(1+mj+1)−1},

where, by convention, αr+1 ≡ 0, α = (α1, . . . , αr) and mj is given by (2.2).
The joint pdf (2.6) may be written as an exponential family structure, i.e.,

L(α, F0;x) = g(α)q1(x) exp
[ r∑
j=1

αjTj(x)
]
,

where q1(x) =
∏r

j=1 f0(xj)/F̄0(xj), Tj(x) = (mj + 1) ln[F̄0(xj)/F̄0(xj−1)],
and g(α) = cp

(∏r
j=1 αj

)
. If the baseline cdf F0(t) is free of any unknown param-

eters, then the statistic T = (T1, . . . , Tr) is complete and sufficient for the vector
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parameter α. If F0(t) depends on some unknown parameters, say θ, one cannot
estimate both parameters θ and α based on only one PSOS sample. For example,
Cramer and Kamps [8] proved that the ML estimate of the shape parameter of the
two-parameter Weibull distribution on the basis of a single SOS sample does not
exist. However, with at least two independent SOS data, the ML estimates exist.
Similarly, we show that this statement holds for PSOS data.

3. ML ESTIMATION BASED ON THE PSOS DATA UNDER THE CPHR MODEL

Suppose that we observe s independent PSOS samples each of size r. The
available data may be represented as

(3.1) x =

 x∗11 x∗12 . . . x∗1r
. . . . . . . . . . . . . . . . . .
x∗s1 x∗s2 . . . x∗sr

,
where each row of x is a PSOS sample. The LF of x, as an extension of (2.3), is

(3.2) L(F1, . . . , Fr;x) =

= csp

(
s∏

i=1

r−1∏
j=1

{
fj(xij)

[1− Fj(xij)]
mj

[1− Fj+1(xij)]
1+mj+1

})( s∏
i=1

fr(xir) [1− Fr(xir)]
mr

)
,

and under the CPHR model, the LF (3.2) reduces to

(3.3) L(α, F0;x) = csp
s∏

i=1

r∏
j=1

{αjf0(xij)[F̄0(xij)]
αj(1+mj)−αj+1(1+mj+1)−1}.

The LF (3.3) may be written as an exponential family structure, i.e.

L(α, F0;x) = gs(α)q2(x) exp
[ r∑
j=1

αjT
∗
j (x)

]
,

where

q2(x) =
s∏

i=1

r∏
j=1

f0(xij)

F̄0(xij)
, T ∗j (x) =

s∑
i=1

(mj + 1) ln

[
F̄0(xij)

F̄0(xi,j−1)

]
,

and mj is given by (2.2). If the baseline cdf F0(t) is free of any unknown parame-
ters, then the statistic T∗ = (T ∗1 , . . . , T

∗
r ) is complete and sufficient for the vector

parameter α.
In the sequel, we consider the problem of estimating unknown parameters

based on PSOS data from the baseline cdf F0 under the CPHR model in two cases
separately.

C a s e I. The baseline cdf F0(t) is known.

PROPOSITION 3.1. If the baseline cdf F0(t) is known, the ML estimates of αj

for 1 ¬ j ¬ r, based on PSOS data, exist and are unique.
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P r o o f. By (3.3), the log-likelihood function (LLF), denoted by ℓ, reads

ℓ = s ln cp + s
r∑

j=1

lnαj +
r∑

j=1

s∑
i=1

ln
f0(xij)

F̄0(xij)
(3.4)

+
r∑

j=1

αj(1 +mj)
s∑

i=1

[ln F̄0(xij)− ln F̄0(xi,j−1)],

where, by convention, xi,0 ≡ 0 for 1 ¬ i ¬ s. By setting H0(t) = − ln F̄0(t), the
LLF (3.4) is summarized to

(3.5) ℓ = s ln cp + s
r∑

j=1

lnαj +
r∑

j=1

s∑
i=1

lnh0(xij)−
r∑

j=1

αj(1 +mj)Aj ,

where Aj =
∑s

i=1 [H0(xij)−H0(xi,j−1)], 1 ¬ j ¬ r. Hence, the likelihood equa-
tions for the vector parameter α yield

(3.6) α∗j =
s

(1 +mj)Aj
= − s

1 +mj

(
ln

s∏
i=1

F̄0(xij)

F̄0(xi,j−1)

)−1
, 1 ¬ j ¬ r.

The ML estimates of αj (1 ¬ j ¬ r) in (3.6) are unique since the correspond-
ing Hessian matrix [∂2l/∂αiαj ] = diag[−s/α2

i ] is strictly negative definite, which
means that (α∗1, . . . , α

∗
r) is the unique local and global maximum point of the

LLF (3.5). �

C a s e II. The baseline cdf F0(t) is unknown.
In this case, α∗j for 1 ¬ j ¬ r in the equation (3.6) depend on the unknown

baseline cdf F0(t). If the cdf F0(t) belongs to a parametric family of distributions,
say P = {Fθ : θ ∈ Θ}, then we must maximize the function ℓ∗ with respect to θ,
where ℓ∗ is obtained by replacing αj with α∗j in (3.5), i.e.,

(3.7) ℓ∗ = s ln cp + s
r∑

j=1

lnα∗j +
r∑

j=1

s∑
i=1

lnh0(xij)−
r∑

j=1

α∗j (1 +mj)Aj .

Hence, the ML estimate of θ is obtained by the plug-in method. We illustrate the
proposed procedure for some parametric families of distributions in the next sec-
tion.

4. SOME PARAMETRIC FAMILIES OF DISTRIBUTIONS

In this section, we study some parametric families of distributions in more
detail.
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4.1. The Weibull model. The Weibull distribution is one of the most com-
monly lifetime distributions in the reliability engineering studies. Because of its
flexible shape and ability to model a wide range of failure rates, it has been used
successfully in many applications as a purely empirical model. It is appropriate
to describe the relationship between failure times under the accelerated conditions
and normal operating conditions. The two-parameter Weibull model has the cdf

(4.1) F0(t) = 1− exp

[
−

(
t

σ

)β]
, t  0, σ > 0, β > 0,

where σ and β are called the scale and shape parameters, respectively. For more
details, see [16]. The problem of estimation of the parameters of the Weibull distri-
bution for a random sample has been extensively studied in the literature. See, e.g.,
[7], [12], [17]–[22], [6], [4], and [2]. For a general class of distributions including
the Weibull distribution, Cramer and Kamps [8] considered the problem of estima-
tion for the parameters based on the SOS data. Here, we consider this problem on
the basis of the PSOS data. Substituting (4.1) into (3.6), we obtain

(4.2) α∗j =
sσβ

1 +mj

( s∑
i=1

[xβij − xβi,j−1]
)−1

, 1 ¬ j ¬ r.

Substituting (4.1) and (4.2) into (3.7), we have

ℓ∗(β, σ) = rs[ln(sβ)− 1]− s
r∑

j=1

ln
s∑

i=1

(xβij − xβi,j−1) + (β − 1)
r∑

j=1

s∑
i=1

lnxij ,

which depends only on β. Thus, the ML estimate for σ is not available.
Another form for the two-parameter Weibull distribution has the cdf

(4.3) F0(t) = 1− exp[−λtβ ], t  0, λ > 0, β > 0.

Similarly, the upper bound ℓ∗ in (3.7) does not depend on the parameter λ, and
hence the ML estimate of λ is not available. To see this, by substituting (4.3) into
(3.6), we obtain

(4.4) α∗j =
s

λ(1 +mj)

( s∑
i=1

[xβij − xβi,j−1]
)−1

, 1 ¬ j ¬ r.

Then, putting (4.4) into (3.7), we conclude that

ℓ∗(β, λ) = rs[ln(sβ)− 1]− s
r∑

j=1

ln
s∑

i=1

(xβij − xβi,j−1) + (β − 1)
r∑

j=1

s∑
i=1

lnxij ,

which depends only on β. Thus, the ML estimate for λ is not available.
If either σ or λ is unknown, we showed that there exist no ML estimates of

αj (1 ¬ j ¬ r). We shall prove that for the new reparameterizing α̃j = λαj , 1 ¬
j ¬ r, there exist ML estimates of α̃j provided that s > 1. To show this, we first
give some lemmas.
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LEMMA 4.1. Let 0 < b < a, 0 < d < c, a < c, 0 < bi < ai, 1 ¬ i ¬ s, and
a(s) = max1¬i¬s ai. Then

lim
x→∞

ax ln a− bx ln b

ax − bx
= ln a,(i)

lim
x→∞

ax ln a− bx ln b

cx − dx
= 0,(ii)

lim
x→∞

∑s

i=1
(axi ln ai − bxi ln bi)∑s

i=1
(axi − bxi )

= ln a(s).(iii)

LEMMA 4.2 (Cramer and Kamps [8]). Let a1, . . . , as, b1, . . . , bs ∈ R with
ai  bi, 1 ¬ i ¬ s, and let

S(k) =
s∑

i=1

(aki e
ai − bki e

bi), k = 0, 1, 2.

Then, we have S(2) S(0)− S2(1) + S2(0)  0 with equality if and only if ai = bi
for all 1 ¬ i ¬ s.

PROPOSITION 4.1. Let F (t) = 1 − exp[−λtβ ], t  0, λ > 0, β > 0, and
α̃j = λαj , 1 ¬ j ¬ r. Then, based on the PSOS data,

(a) for s = 1, there exist no ML estimates for the parameters;
(b) for s > 1, the ML estimates for α̃j are

(4.5) α̃∗j =
s

1 +mj

( s∑
i=1

[xβij − xβi,j−1]
)−1

, 1 ¬ j ¬ r,

and the ML estimate of the shape parameter β is obtained numerically from the
equation

−s
r∑

j=1

s∑
i=1

(xβij lnxij − xβi,j−1 lnxi,j−1)

s∑
i=1

(xβij − xβi,j−1)
+

rs

β
+

r∑
j=1

s∑
i=1

lnxij = 0.

REMARK 4.1. We showed that the ML estimates of the parameters λαj (1 ¬
j ¬ r) exist whereas λ and αj (1 ¬ j ¬ r) themselves are not ML-estimable. As
mentioned by an anonymous referee, this problem lies in identifiability of parame-
ters under the CPHR PSOS model. More precisely, in the LF (3.3), if we take the
baseline cdf as F̃0 = 1− (1− F0)

γ , and α̃j = αj/γ (1 ¬ j ¬ r) for every γ > 0,
then the same LF in (3.3) is obtained, i.e.,

(4.6) L(α, F0;x) = L
(
α/γ, 1− (1− F0)

γ ;x
)

for all γ > 0,
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where α/γ = (α1/γ, . . . , αr/γ). Therefore the ML estimates α̃∗j (1 ¬ j ¬ r) in
(4.5) are useless when the parameter λ is unknown. Hence, we need that the pa-
rameter λ in the baseline cdf (4.3) is known for practical applications of the ob-
tained results in this subsection and its generalizations in Subsections 4.2 and 4.3.

REMARK 4.2. For β = 1, the Weibull distribution in (4.3) reduces to the one-
parameter exponential distribution with mean 1/λ and the ML estimates of αj and
α̃j are obtained from (4.4) and (4.5), respectively, by setting β = 1.

4.2. A general family of scale distributions. Cramer and Kamps [8] considered
a general family of distributions of the form

(4.7) F0(t) = 1− e−λg(t), t  0, λ > 0,

where g(t) is a known, increasing and differentiating function on [0,∞), satisfying
g(0) = 0 and limt→∞ g(t) = ∞. For g(t) = tβ and g(t) = ln(t/σ), the Weibull
and the Pareto distributions are obtained, respectively. They proved that the ML
estimates of αj for 1 ¬ j ¬ r based on the SOS data do exist, while for λ do not
exist. Then, they derived ML estimates of α̃j = λαj for 1 ¬ j ¬ r.

Here, we show that the ML estimate for λ in (4.7) based on a single PSOS
data does not exist as we showed for the Weibull distribution in Subsection 4.1.
Substituting (4.7) into (3.6) and, by convention, xi,0 ≡ 0, 1 ¬ i ¬ s, we have

(4.8) α∗j =
s

λ(1 +mj)

( s∑
i=1

[g(xij)− g(xi,j−1)]
)−1

, 1 ¬ j ¬ r.

From (4.7) it is clear that H0(t) = λg(t) and h0(t) = λg′(t), where g′(t) = d
dtg(t).

Then, by substituting (4.8) into (3.7), we see that the associated LLF is simplified
to the following:

ℓ∗(λ) = rs ln s− s
r∑

j=1

ln
( s∑
i=1

[g(xij)− g(xi,j−1)]
)

(4.9)

+
r∑

j=1

s∑
i=1

ln[g′(xij)]− rs.

The LLF in (4.9) does not depend on the parameter λ. If λ is unknown, the ML
estimates of the unknown parameters do not exist.

As for the Weibull distribution in Subsection 4.1, one can obtain the ML esti-
mator for the new parameters α̃j = λαj in the form

(4.10) α̃∗j =
s

1 +mj

( s∑
i=1

[g(xij)− g(xi,j−1)]
)−1

, 1 ¬ j ¬ r.

Therefore, we summarize the above statements in the following theorem.

THEOREM 4.1. The ML estimates of α̃j , 1 ¬ j ¬ r, based on the PSOS data
drawn from the baseline cdf (4.7), are unique and given by (4.10).
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4.3. A general family of scale and shift distributions. Another family of dis-
tributions, that is an extension of the family (4.7) studied by [8], is

(4.11) F0(t) = 1− e−λ[g(t)−η], t  g−1(η), λ > 0, η ∈ R,

where g : [a, b] 7→ R, −∞ ¬ a < b ¬ +∞, is a known, increasing and differen-
tiable function with g(a) = −∞ and g(b) = +∞. For special cases g(t) = t and
g(t) = ln ta, a > 0, the two-parameter exponential and the two-parameter Pareto
distributions are obtained, respectively. By convention, xi,0 ≡ g−1(η) (1 ¬ j ¬ r),
and substituting (4.11) into (3.6), we obtain

(4.12) α∗j =
s

λ(1 +mj)

( s∑
i=1

[g(xij)− g(xi,j−1)]
)−1

, 1 ¬ j ¬ r, s  2.

Substituting (4.12) into (3.4), we see that the upper bound of ℓ∗(λ, η) is reduced to
(4.9), which does not depend on the parameter λ. Then, if λ is unknown, the ML
estimates of the unknown parameters λ and αj (1 ¬ j ¬ r), based on the PSOS
data drawn from the baseline cdf (4.11), do not exist.

On the other hand, ℓ∗(λ, η) increases with respect to η. Then, the ML estimate
of η is

(4.13) η∗ = min{g(xi1), 1 ¬ i ¬ s}.

By multiplying two sides of equation (4.12) by λ, the ML estimate for the new
parameter α̃j = λαj reads

(4.14) α̃∗j =
s

1 +mj

( s∑
i=1

[g(xij)− g(xi,j−1)]
)−1

, 1 ¬ j ¬ r,

where, by convention, g(xi,0) = η∗ for 1 ¬ j ¬ r. Therefore, we summarize the
above statements in the following theorem.

PROPOSITION 4.2. The ML estimates of η and α̃j , 1 ¬ j ¬ r, based on the
PSOS data drawn from the baseline cdf (4.11), are unique and given by (4.13) and
(4.14), respectively.

5. CONCLUSIONS

In this paper, we discussed an extension of the SOS and investigated it un-
der a special CPHR model in more detail. The problem of estimating parameters
under the CPHR model is considered when individual lifetimes follow some well-
known lifetime distributions. The results of this paper may be extended to some
other parametric families of lifetime models such as the log-normal and the gener-
alized Pareto distributions. For generating a PSOS sample of size r, we provide a
proposition which is an extension of Theorem 1 in [3].
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PROPOSITION 5.1. Let X∗(1), . . . , X
∗
(r) be a PSOS data under the CPHR model

with the baseline cdf F0(x) = 1 − e−x, x  0. Then the random variables Z1 =
m1α1X

∗
(1) and Zj = mjαj(X

∗
(j)−X∗(j−1)), 1 ¬ j ¬ r, are iid according to F0(x).

By Proposition 5.1, a PSOS data drawn from an arbitrary baseline distribution
F0 may be generated. To this end, one can generate r iid random variables from
the standard uniform distribution, denoted by U1, . . . , Ur. Letting, for 1 ¬ j ¬ r,

Zj=− ln(1− Uj), X∗(j)=
j∑

k=1

Zk

mkαk
, and Y ∗(j)=F−10 [1− exp(−X∗(j))],

it follows that (Y ∗(1), . . . , Y
∗
(r)) is a PSOS sample of size r coming from the baseline

cdf F0. To assess the performance of the estimations obtained, one may conduct
some simulation studies.

6. APPENDIX

P r o o f o f L e m m a 4.1. To prove (i) and (ii), after some simple algebraic
manipulations we have

lim
x→∞

ax ln a− bx ln b

ax − bx
= lim

x→∞

ln a− (b/a)x ln b

1− (b/a)x
= ln a,

and

lim
x→∞

ax ln a− bx ln b

cx − dx
= lim

x→∞

(a
c

)x ln a− (b/a)x ln b

1− (d/c)x
= 0.

For (iii), we have

lim
x→∞

∑s

i=1
(axi ln ai − bxi ln bi)∑s

i=1
(axi − bxi )

= lim
x→∞

∑s

i=1
[(ai/a(s))

x ln ai − (bi/a(s))
x ln bi]∑s

i=1
[(ai/a(s))x − (bi/a(s))x]

= ln a(s),

and the proof is completed. �

P r o o f o f P r o p o s i t i o n 4.1. (a) Obviously, for s = 1 the number of
observations is less than the number of parameters, so there exist no ML estimates
for α̃j , 1 ¬ j ¬ r, λ and β.

(b) By substituting (4.3) into (3.4), the associated LLF takes the form

ℓ(α̃1, . . . , α̃r, β) = s ln cp + s
r∑

j=1

ln α̃j + sr lnβ + (β − 1)
r∑

j=1

s∑
i=1

lnxij(6.1)

−
r∑

j=1

(1 +mj)α̃j

s∑
i=1

(xβij − xβi,j−1).
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Let α̃∗j = s
[
(1 +mj)

∑s
i=1(x

β
ij − xβi,j−1)

]−1 for 1 ¬ j ¬ r. Then

(6.2) ℓ(α̃1, . . . , α̃r, β) ¬ ℓ(α̃∗1, . . . , α̃
∗
r , β) ≡ u(β).

Notice that

u(β) = rs[ln(sβ)− 1]− s
r∑

j=1

ln
[ s∑
i=1

(xβij − xβi,j−1)
]
+ (β − 1)

r∑
j=1

s∑
i=1

lnxij ,

and

(6.3)
∂u(β)

∂β
= −s

r∑
j=1

s∑
i=1

(xβij lnxij − xβi,j−1 lnxi,j−1)

s∑
i=1

(xβij − xβi,j−1)
+

rs

β
+

r∑
j=1

s∑
i=1

lnxij ,

where, by convention, xi,0 = 0 and lnxi,0 = 0 for 1 ¬ i ¬ s. For s = 1, the equa-
tion (6.3) reduces to

∂u(β)

∂β
=

r

β
−

r∑
j=2

ln(x1j/x1,j−1)

(x1j/x1,j−1)β − 1
.

It is obvious that x1j/x1,j−1  1, 2 ¬ j ¬ r. Using the inequality eβzβz + 1,
z  0, and letting z = ln y, we have yβ  β ln y + 1 and (ln y)/(yβ − 1) ¬ 1/β
for y  1, which leads immediately to

∂u(β)

∂β
 r

β
−

r∑
j=2

1

β
=

1

β
> 0.

This means that u(β) is an increasing function of β and the ML estimate of β does
not exist.

For s > 1, we claim that

(i) lim
β→0+

∂u(β)

∂β
=∞, (ii) lim

β→∞

∂u(β)

∂β
< 0, and (iii)

∂2u(β)

∂β2
¬ 0.

These statements imply that the MLE of β is unique.
To prove (i), from equation (6.3) we see that

∂u(β)

∂β
= K(β) +

r∑
j=1

s∑
i=1

lnxij ,

where

K(β) = −s
r∑

j=1

s∑
i=1

(xβij lnxij − xβi,j−1 lnxi,j−1)

s∑
i=1

(xβij − xβi,j−1)
+

rs

β
.
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We show that limβ→0+ K(β) = +∞. Notice that

lim
β→0+

K(β) = −s lim
β→0+

r∑
j=1


s∑

i=1
(xβij lnxij − xβi,j−1 lnxi,j−1)

s∑
i=1

(xβij − xβi,j−1)
− 1

β

(6.4)

= −s lim
β→0+


s∑

i=1
(xβi1 lnxi1 − xβi0 lnxi0)

s∑
i=1

(xβi1 − xβi0)
− 1

β



− s lim
β→0+

r∑
j=2


s∑

i=1
(xβij lnxij − xβi,j−1 lnxi,j−1)

s∑
i=1

(xβij − xβi,j−1)
− 1

β



= −s lim
β→0+


s∑

i=1
xβi1 lnxi1

s∑
i=1

xβi1

− 1

β

− s
r∑

j=2

lim
β→0+

Bj(β),

where

Bj(β) =

β
s∑

i=1
(xβij lnxij − xβi,j−1 lnxi,j−1)−

s∑
i=1

(xβij − xβi,j−1)

β
s∑

i=1
(xβij − xβi,j−1)

.

It is clear that the first term in (6.4) goes to infinity as β vanishes. It suffices to
show that the last expression in (6.4) is finite. To see this, we consider

lim
β→0+

Bj(β) = lim
β→0+

s∑
i=1

xβij(β lnxij − 1)−
s∑

i=1
[xβi,j−1(β lnxi,j−1 − 1)]

β
s∑

i=1
(xβij − xβi,j−1)

.

Using the l’Hospital rule, one can write

lim
β→0+

Bj(β) = lim
β→0+

β
s∑

i=1
[xβij(lnxij)

2 − xβi,j−1(lnxi,j−1)
2]

s∑
i=1

(xβi,j−1 − xβi,j−1) + β
s∑

i=1
(xβij lnxij − xβi,j−1 lnxi,j−1)

=

s∑
i=1

[(lnxij)
2 − (lnxi,j−1)

2]

s∑
i=1

(lnxij − lnxi,j−1)
.
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To prove (ii), by Lemma 4.1 (iii), one can see that

lim
β→∞

∂u(β)

∂β
=

r∑
j=1

s∑
i=1

lnxij − s
r∑

j=1

lim
β→∞

s∑
i=1

(xβij lnxij − xβi,j−1 lnxi,j−1)

s∑
i=1

(xβij − xβi,j−1)

=
r∑

j=1

s∑
i=1

lnxij − s
r∑

j=1

max
1¬k¬s

lnxkj

=
r∑

j=1

s∑
i=1

(lnxij − max
1¬k¬s

lnxkj) ¬ 0.

To prove (iii), we compute the second derivative of u(β) with respect to β
from equation (6.3):

∂2u(β)

∂β2
= −s

r∑
j=1

[ s∑
i=1

(xβij − xβi,j−1)
]−2

×
{ s∑

i=1

(
xβij (lnxij)

2 − xβi,j−1 (lnxi,j−1)
2 ) s∑

i=1

(xβij − xβi,j−1)

−
[ s∑
i=1

(xβij lnxij − xβi,j−1 lnxi,j−1)
]2}− rs

β2
.

Applying Lemma 4.2, we conclude that

∂2u(β)

∂β2
=
−s
β2

r∑
j=1

1

S2(0)
[S(2)S(0)− S2(1) + S2(0)] ¬ 0.

Finally, by substituting the ML estimate of β into (6.1), and then by derivation, we
obtain the desired result. �

P r o o f o f P r o p o s i t i o n 5.1. Putting F0(x) = 1− e−x in equation (2.6),
we have

L(α;x) = cp
r∏

j=1

{αj exp[−mjαj(xj − xj−1)]}.

Since

X∗(1) =
Z1

m1α1
, X∗(2) =

Z1

m1α1
+

Z2

m2α2
, . . . , X∗(r) =

Z1

m1α1
+ . . .+

Zr

mrαr
,

the corresponding Jacobian simplifies to |J | =
∏r

j=1
1

mjαj
. Therefore, the joint

pdf of Z1, . . . , Zr is

fZ1,...,Zr(z1, . . . , zr) = cp
r∏

j=1

{αj exp[−zj ]}
1∏r

j=1mjαj
= exp

[
−

r∑
j=1

zj
]
,

and the desired result follows. �
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