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Abstract. We prove that an integrated simple random walk, where ran-
dom walk and integrated random walk are conditioned to return to zero,
has asymptotic probability n−1/2 to stay positive. This question is moti-
vated by random polymer models and proves a conjecture by Caravenna
and Deuschel.
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1. INTRODUCTION AND MAIN RESULT

1.1. Introduction. This paper considers the persistence probability, i.e. the
evaluation of

P (A1  0, . . . , An  0) ≈ n−θ, n→∞,

where A is some stochastic process and the number θ is called a persistence expo-
nent. Here and below f(n) ≈ g(n) means that f(n)/g(n) is bounded away from
zero and infinity for large n. The problem is also sometimes called a one-sided exit
problem or survival probability problem. Problems of this type have experienced
quite some recent attention, see, e.g., [18], [3], [12], [1], [2], [19], [5], [6], [13],
and the recent survey paper [4].

These probabilities have a couple of applications to problems in theoretical
physics as well as to other questions in probability. We refer to the aforementioned
survey [4] and to a survey article on the related physics literature [16] and its up-
dated version [8] for details.
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The particular problem that we treat here is motivated by a connection to ran-
dom polymer models, see Section 1.5 in [10], also see [11]. Here, A will be an inte-
grated simple random walk, where the pair of random walk and integrated random
walk is conditioned to return to the origin. This is supposed to model a polymer
chain with Laplace interaction and zero boundary conditions.

Let us be more precise and introduce the relevant notation. Let (Xi)i∈N be a
sequence of independent symmetric Bernoulli random variables (P (Xi = ±1) =
1/2). We consider the simple random walk Sn :=

∑n
i=1Xi and the respective

integrated random walk An :=
∑n

i=1 Si for n ∈ N0 := {0, 1, . . . }. Note that the
paired process (Sn, An)n∈N0 is Markovian and one can easily check that it can
return to (0, 0) only at the times 4n, n  1. Our main theorem is as follows.

THEOREM 1.1. When n→∞ we have

(1.1) P (A1  0, . . . , A4n  0 |A4n = S4n = 0) ≈ n−1/2.

This proves the conjecture by Caravenna and Deuschel (see [10], (1.22) on
p. 2396) for the case of the simple random walk.

Let us give a couple of remarks. The unconditioned probability has also been
subject to a number of studies: The first is due to Sinaı̆ [17] who showed that, with
the notation above,

(1.2) P (A1  0, . . . , An  0) ≈ n−1/4.

This result was subsequently refined by [18], [3], [12], [19] to the end that

P (A1  0, . . . , A4n  0) ∼ cn−1/4;

see [19], Theorem 1, which extends to other types of random walks. Here and
below f(n) ∼ g(n) means that f(n)/g(n)→ 1 as n→∞.

We remark that the result in Theorem 1.1 is in contrast to conditioning only
on S4n = 0, where the rate is again

P (A1  0, . . . , A4n  0 | S4n = 0) ≈ n−1/4,

see [19], Proposition 1, where our problem is also mentioned. That is, conditioning
on S4n = 0 does not change the rate from the unconditioned situation.

The remainder of this paper is structured as follows: The next subsection gives
an overview of the method of proof. In Section 2 we derive a local limit theorem for
the (unconditioned) process (Sn, An), which we could not locate in the literature.
A similar local limit theorem was proved in [10] (see Proposition 2.3 there) for ran-
dom walks with X1 having a continuous distribution and under an appropriate inte-
grability assumption. In Section 3, we show some scaling properties of the process
(Sn, An) under the condition A1  0, . . . , An  0. Further, Section 4 contains a
CLT for the process (Sn, An) “pinned” at some final value: (Sn, An) = (pn, qn)
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with (n−1/2pn, n
−3/2qn) → (p, q); we show that the suitably scaled law of this

process converges to the law of a pair of Brownian motion and integrated Brown-
ian motion, conditioned to end at (p, q). This result may be of independent interest.
Finally, Section 5 contains the proof of the main result.

1.2. Overview of the proof and notation. Throughout we use the following
notation:

Ω+
n := {Aj  0, 1 ¬ j ¬ n}.

We let

(1.3) Dn :=

{
ℓ = (ℓ1, ℓ2) ∈ Z2 : ℓ1 = n (mod 2), ℓ2 =

n(n+ 1)

2
(mod 2)

}
denote the set of all possible values of (Sn, An).

We will use the notation of an adjoint process which is gained via time rever-
sion. Depending on parameters N ∈ N and (sN , aN ) ∈ Z2 we define the adjoint
process (S̄(N)

n , Ā(N)
n )n=0,...,N via

S̄(N)

0 = sN and Ā(N)

0 = aN

and the equations

S̄(N)

n+1 = S̄(N)
n −XN−n and Ā(N)

n+1 = Ā(N)
n − S̄(N)

n .

By construction, one has for n,m ∈ {0, . . . , N}

(1.4) {(S̄(N)

N−n, Ā
(N)

N−n) = (Sn, An)} = {(S̄(N)

N−m, Ā(N)

N−m) = (Sm, Am)},

meaning that the time reversed adjoint process and the original process either
agree or disagree for all times n = 0, . . . , N . In particular, the event of accordance
is equal to {(S̄(N)

N , Ā(N)

N ) = (0, 0)} or to {(SN , AN ) = (sN , aN )}. The process
(S̄(N)

n , Ā(N)
n ) is Markovian and the definition can be extended in a canonical way

to the time index N0.
The strategy of the proof is as follows: We partition the time frame 4n into

three periods: in the first n steps, the process is observed under the conditioning.
The same is done in the last n steps. Then in the middle 2n time steps one has to
use (upper bound) or ensure (lower bound) that the two ends meet.

For the upper bound, we observe that, on Ω+
4n and with A4n = S4n = 0, one

has Ω+
n and the same condition for the adjoint process on the final n time steps.

Conditioning on the first and last n time steps, in the middle piece – consisting of
2n time steps – one again observes a pair of random walk and integrated random
walk, however, starting and terminating at certain values. The probability of this
pair starting and ending at certain values is governed by a local limit theorem.

The lower bound is more complex. Here one has to ensure that during the
first (and last, respectively) n steps one ends with the pair (Sn, An) in a target
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zone [an1/2, bn1/2]× [an3/2, bn3/2], where a, b are appropriate positive constants.
This can be shown by analyzing the scaling of S and A under the conditioning.
To ensure that both ends meet, we prove a CLT for the process (Sn, An) which
is “pinned” at the beginning and at the end (by values that are in the above target
zone). This CLT helps us to transfer the question of positivity of the second com-
ponent to the same question for the limiting process (that is, Brownian motion and
its integrated counterpart), where the question of positivity is easily solved.

The local limit theorem just mentioned is stated and proved in Section 2. Then,
in Section 3, we prove the results concerning the scaling of A and S under the
conditioning needed in the proof of the lower bound. Further, the CLT for pinned
process is formulated and proved in Section 4. Finally, in Section 5 we give the
proof of our main theorem.

2. LOCAL LIMIT THEOREM FOR (Sn, An)

In order to state our limit theorem, we will need the notion of Brownian motion
B = (Bt)t0 and integrated Brownian motion I = (It)t0 defined as

It :=
t∫
0

Bs ds.

Note that the paired process Γ = (Γt)t0 = (Bt, It)t0 is a centered Gaussian
Markov process and Γ1 has the two-dimensional Lebesgue density

(2.1) g(x, y) =

√
3

π
exp{−2x2 + 6xy − 6y2},

which follows directly by calculating the covariance matrix of Γ.
A main ingredient of our proofs will be the following local limit theorem for

the simple random walk and its integrated version, which we could not locate in
the literature.

PROPOSITION 2.1. We have

lim
n→∞

sup
ℓ∈Dn

∣∣∣∣n2

4
P
(
(Sn, An) = ℓ

)
− g
(
ℓ1/
√
n, ℓ2/n

3/2
)∣∣∣∣ = 0,

where g is defined in (2.1).

2.1. Proof of Proposition 2.1.

P r o o f. We start with a general representation of probabilities through the
characteristic function. Let Y ∈ Z2 be an integer random vector and

f(t) = Eei(t,Y ) =
∑
k∈Z2

exp{i(t1k1 + t2k2)}P(Y = k), t = (t1, t2) ∈ R2,
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its characteristic function. Then for any ℓ ∈ Z2

π∫
−π

π∫
−π

f(t) exp{−i(t1ℓ1 + t2ℓ2)}dt1dt2

=
∑
k∈Z2

P(Y = k)
π∫
−π

π∫
−π

exp
{
i
(
t1(k1 − ℓ1) + t2(k2 − ℓ2)

)}
dt1dt2

=
∑
k∈Z2

P(Y = k)
π∫
−π

exp{it1(k1 − ℓ1)}dt1
π∫
−π

exp{it2(k2 − ℓ2)}dt2

=
∑
k∈Z2

P(Y = k)(2π)21l{k1=ℓ1}1l{k2=ℓ2} = (2π)2P(Y = ℓ).

We conclude that

(2.2) P(Y = ℓ) = (2π)−2
π∫
−π

π∫
−π

f(t) exp{−i(t1ℓ1 + t2ℓ2)}dt1dt2.

When Y is symmetric, then one has

(2.3) P(Y = ℓ) = (2π)−2
π∫
−π

π∫
−π

f(t) cos(t1ℓ1 + t2ℓ2)dt1dt2.

In our case Yn = (Sn, An)
d
=
(∑n

1 Xj ,
∑n

1 jXj

)
, where (Xj) are indepen-

dent Bernoulli variables. Hence, the characteristic function of Yn is

fYn(t) =
n∏

j=1

cos(t1 + jt2).

Let us discuss a periodicity property of the integrand in (2.3). For the charac-
teristic function we have

fYn(t1 + π, t2) = (−1)nfYn(t1, t2),

fYn(t1, t2 + π) = (−1)[n(n+1)]/2fYn(t1, t2),

while for the cosine part we have

cos
(
(t1 + π)ℓ1 + t2ℓ2

)
= (−1)ℓ1 cos(t1ℓ1 + t2ℓ2),

cos
(
t1ℓ1 + (t2 + π)ℓ2

)
= (−1)ℓ2 cos(t1ℓ1 + t2ℓ2).

Therefore, if ℓ ∈ Dn, then the integrand in (2.3) is π-periodical with respect to
both coordinates. In particular, it is equal to one at any point of the set

Q := {(0, 0), (π, 0), (0, π), (π, π)}.

On the other hand, it is trivial to see that |fYn(t)| < 1 for any t ̸∈ Q, n  2.
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What follows next is a “three-domain approach” of proving a CLT through
characteristic functions: we divide the area of integration into three pieces: on the
first piece the integrand is exponentially small, the second piece is not large enough
to give any contribution, and on the third piece, the integrand can be approximated
by the corresponding normal characteristic function, and thus gives the main con-
tribution.

Let us start with the first piece. If we look at the integral in (2.3) and con-
sider the integration domain as a torus, then for large n the integral is essentially
accumulated in the small vicinity of the set Q.

To be more precise, let 0 < ε < 1, define the distance d(t, s) := |t1 − s1|
+ n|t2 − s2|, and let d(t,Q) := infs∈Q d(t, s). One can show first that the inte-
grand on the domain T1 := {t : d(t,Q)  ε} is uniformly (in t and ℓ) exponen-
tially small, that is

sup
t: d(t,Q)ε

|fYn(t)| ¬
(
1− h(ε)

)n
for some h depending on ε, see Lemma 2.2 below. Therefore, everything reduces
to the domain T1 := {t : d(t,Q) < ε}. By periodicity, we can only consider

{t : d(t, 0) ¬ ε} = {t : |t1|+ n|t2| ¬ ε}

and then multiply the result by |Q| = 4.
Next, the zone {t : d(t, 0) < ε} is further split into two zones, T2,M := {t :

M/
√
n ¬ d(t, 0) < ε} and T3,M := {t : d(t, 0) < M/

√
n}. On T2,M we use, for

ε small enough, the bound

|fYn(t)| =
n∏

j=1

| cos(t1 + jt2)| ¬
n∏

j=1

exp{−(t1 + jt2)
2/2}

= exp
{
−

n∑
j=1

(t1 + jt2)
2/2
}
¬ exp{−c(nt21 + n3t22)},

where we used Lemma 2.1 (see below) in the last step. Therefore,

lim
M→∞

n2
∫

T2,M

|fYn(t)|dt

¬ lim
M→∞

n2
∫

{|t1|+n|t2|M/
√
n}

exp{−c(nt21 + n3t22)}dt

= lim
M→∞

∫
{|s1|+|s2|M}

exp{−c(s21 + s22)}ds = 0

for any n ∈ N, having used the change of variables s1 = t1
√
n, s2 = t2n

3/2.
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On T3,M by Taylor expansion we can compare fYn with the corresponding
normal characteristic function. Namely,

fYn(t) =
n∏

j=1

cos(t1 + jt2) = exp
{ n∑

j=1

ln cos(t1 + jt2)
}

= exp
{ n∑

j=1

ln
(
1− (t1 + jt2)

2/2 +O(n−2)
)}

= exp

{
− 1

2

( n∑
j=1

(t1 + jt2)
2 +O(n−1)

)}
= exp

{
− 1

2

(
nt21 + 2

n∑
j=1

jt1t2 +
n∑

j=1

j2t22 +O(n−1)
)}

= exp

{
− 1

2

(
nt21 + n2t1t2 +

n3

3
t22 +O(n−1)

)}
.

Therefore, using the change of variables s1 = t1
√
n, s2 = t2n

3/2 in the second
step, we get

n2

(2π)2

∫
T3,M

fYn(t) exp{−i(t1ℓ1 + t2ℓ2)}dt1dt2

=
n2

(2π)2

∫
{|t1|+n|t2|¬M/

√
n}

fYn(t) exp{−i(t1ℓ1 + t2ℓ2)}dt1dt2

→ 1

(2π)2
×

×
∫

{|s1|+|s2|¬M}
exp

{
−1
2

(
s21 + s1s2 +

1
3s

2
2

)}
exp{−i(s1L1 + s2L2)}ds1ds2

as n → ∞, provided that ℓ1 = [L1
√
n], ℓ2 =

[
L2 n

3/2
]
, and the convergence is

uniform over L1, L2 ∈ (0,∞). For large M the latter limit is close, uniformly over
L1, L2, to

1

(2π)2

∫∫
exp

{
−1
2
(s21 + s1s2 +

1
3s

2
2)

}
exp{−i(s1L1 + s2L2)}ds1ds2

=

√
detR

2π

1

2π
√
detR

∫∫
exp

{
−1
2
(R−1s, s)

}
exp{−i(s1L1 + s2L2)}ds1ds2

=

√
detR

2π
exp

{
−1
2
(RL,L)

}
,

where

R−1 =

(
1 1

2
1
2

1
3

)
, R =

(
4 −6
−6 12

)
, detR = 12.



8 F. Aurzada et al.

By recalling the factor |Q| = 4, we arrive at

4
√
12

2π
exp

{
−1
2
(RL,L)

}
=

4
√
3

π
exp{−2L2

1 + 6L1L2 − 6L2
2},

as required by the proposition. �

2.2. Some auxiliary lemmas.

LEMMA 2.1. There exists c > 0 such that for all n large enough and any
t1, t2 ∈ R

n∑
j=1

(t1 + jt2)
2  c(nt21 + n3t22).

P r o o f. There is no loss of generality to assume t1 = −1 and t := t2  0.
Then we have to evaluate the function

n∑
j=1

(jt− 1)2 = S2t
2 − 2S1t+ n,

where S2 = S2(n) =
∑n

j=1 j
2 ∼ n3/3 and S1 = S1(n) :=

∑n
j=1 j ∼ n2/2.

Consider the function

G(t) :=
n∑

j=1

(jt− 1)2 = S2t
2 − 2S1t+ n− c1(n+ n3t2).

This is a quadratic function with discriminant

4S2
1 − 4(n− c1n)(S2 − c1n

3) ∼ 4n4
(
1
4 − (1− c1)

(
1
3 − c1

))
< 0

for c1 chosen sufficiently small and n sufficiently large. Thus G is positive every-
where. �

LEMMA 2.2. For any 0 < ε < π/2 there exists h = h(ε) ∈ (0, 1) such that
for any integer n  4 we have

sup
t: d(t,Q)ε

|fYn(t)| ¬
(
1− h(ε)

)n
.

P r o o f. Let M(x) := mink∈Z |x− kπ|. Take any t = (t1, t2) ∈ [0, π]2 such
that d(t,Q)  ε. The latter means that

M(t1) + nM(t2)  ε.

Then two cases are possible:
(1) nM(t2) ¬ ε/2.
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Then we have M(t1)  ε/2. Hence, for any 1 ¬ j ¬ n/2 it is true that

M(t1 + jt2) M(t1)−M(jt2) M(t1)− jM(t2)

M(t1)− nM(t2)/2  ε/2− ε/4 = ε/4,

and we obtain the required estimate

|fYn(t)| ¬
n/2∏
j=1

| cos(t1 + jt2)| ¬ [cos(ε/4)]n/2.

(2) nM(t2)  ε/2.
By symmetry reasons, there is no loss of generality in assuming that 0 < t2

¬ π/2.
Let δ := ε/10. Then

nt2
δ

=
nM(t2)

δ
 ε/2

ε/10
= 5.

Let us choose an integer m  0 such that mt2 ¬ δ ¬ (m+1)t2. Since mt2 ¬ δ ¬
nt2/5, we have m ¬ n/5.

Assume for a while that t2 ¬ π/3. We show now that for any 1 ¬ j ¬
n− 2(m+ 1) the inequalities

M(t1 + jt2) < δ and M
(
t1 + jt2 + 2(m+ 1)t2

)
< δ

are incompatible. Indeed, let the first one be satisfied. Then for some k ∈ Z we
have

πk − δ < t1 + jt2 < πk + δ.

It follows that

(2.4) t1 + jt2 + 2(m+ 1)t2 > (πk − δ) + 2δ = πk + δ

but (using twice that ε < 1 < π/2)

t1 + jt2 + 2(m+ 1)t2 < (πk + δ) + 2(δ + t2)(2.5)

= πk + 3δ + 2t2 ¬ πk + 3π/20 + 2π/3

< π(k + 1)− π/20 ¬ π(k + 1)− δ.

From (2.4) and the last line of (2.5) it follows that M
(
t1 + jt2 +2(m+1)t2

)
> δ,

and incompatibility is proved. This fact yields

#{j ¬ n : M(t1 + jt2)  δ}  n− 2(m+ 1)

2
 3n

10
− 1,
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and

|fYn(t)| =
n∏

j=1

| cos(t1 + jt2)| ¬ [cos(δ)]3n/10−1,

which settles the assertion of the lemma.
For the remaining case π/3 ¬ t2 ¬ π/2 it is immediate to see that the inequal-

ities
M(t1 + jt2) < δ and M

(
t1 + (j + 1)t2

)
< δ

are incompatible; we obtain

#{j ¬ n : M(t1 + jt2)  δ}  n− 1

2
,

and

|fYn(t)| =
n∏

j=1

| cos(t1 + jt2)| ¬ [cos(δ)](n−1)/2. �

3. SCALING OF S AND A UNDER THE CONDITIONING

The purpose of this section is to show the following facts concerning the scal-
ing of S and A under the condition of positivity of A.

PROPOSITION 3.1. There is a constant c > 0 such that, for all n  1,

E
(
|Sn|

∣∣ Ω+
n

)
¬ cn1/2,(3.1)

E
(
|An|

∣∣ Ω+
n

)
¬ cn3/2.(3.2)

P r o o f. (1) We start with the proof of (3.1). First we show that it suffices to
estimate E(S+

n |Ω+
n ), since

(3.3) E
(
|Sn|

∣∣Ω+
n

)
= E(S+

n + S−n |Ω+
n ) ¬ 2E(S+

n |Ω+
n ).

Indeed, if Sn < 0 we let σ0 denote the last visit to zero: σ0 := max{k ¬
n : Sk = 0}. Consider the path transformation that is given by inverting the steps
after σ0. This transformation maps any path in Ω+

n with Sn < 0 to a path in Ω+
n

with Sn > 0. It is a one-to-one transformation (however, not a bijection, since the
image of a transformation of a path in Ω+

n with Sn > 0 does not have to be in Ω+
n ).

Therefore,

P(Ω+
n ∩ {Sn = −k}) ¬ P(Ω+

n ∩ {Sn = k}), k > 0,

and thus
E(S−n |Ω+

n ) ¬ E(S+
n |Ω+

n ).
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It remains to estimate the latter expectation. For 0 ¬ t ¬ n, let

(3.4) Ωn,t := {Aj  0, 1 ¬ j ¬ t;St = 0;Sj > 0, t+ 1 ¬ j ¬ n}.

Clearly,

Ω+
n = (Ω+

n ∩ {Sn < 0}) ∪
n∪

t=0

Ωn,t.

Thus,

E(S+
n |Ω+

n ) =
1

P(Ω+
n )

ES+
n

n∑
t=0

1lΩn,t(3.5)

=
n∑

t=0

ES+
n 1lΩn,t

P(Ωn,t)

P(Ωn,t)

P(Ω+
n )

¬ max
0¬t¬n

E(S+
n |Ωn,t)

n∑
t=0

P(Ωn,t)

P(Ω+
n )

¬ max
0¬t¬n

E(S+
n |Ωn,t).

By definition,

E(S+
n |Ωn,t) =

∑
k>0

P(Ωn,t ∩ {Sn = k})k
P(Ωn,t)

.

We can represent each of the events here as an intersection of two independent
events, respectively:

Ωn,t = Ω+
t ∩{St = 0}∩{Sj − St > 0, t+ 1 ¬ j ¬ n},

Ωn,t∩{Sn = k} = Ω+
t ∩{St = 0}∩{Sj − St > 0, t+ 1 ¬ j ¬ n;Sn − St = k}.

It follows that

(3.6) E
(
S+
n |Ωn,t

)
=

∑
k>0

P(Ω+
t ∩ {St = 0})P(Sj − St > 0, t+ 1 ¬ j ¬ n;Sn − St = k)k

P(Ω+
t ∩ {St = 0})P(Sj − St > 0, t+ 1 ¬ j ¬ n)

=
∑
k>0

P (Sj − St > 0, t+ 1 ¬ j ¬ n;Sn − St = k) k

P (Sj − St > 0, t+ 1 ¬ j ¬ n)

=
∑
k>0

P (Si > 0, 1 ¬ i ¬ n− t;Sn−t = k) k

P (Si > 0, 1 ¬ i ¬ n− t)

= E(S+
n−t|Si > 0, 1 ¬ i ¬ n− t), 0 ¬ t ¬ n.

In order to evaluate the latter expectation we use a stopping time argument.
Let v := inf{k : Sk = −1} and vn := min(v, n). Then vn is a bounded stopping
time and we have

0 = ESvn = ESn1lv>n − P(v ¬ n).

Hence, ESn1lv>n = P(v ¬ n) ¬ 1.
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On the other hand, we know (see [15], XII.8) that P(v > n) ≈ n−1/2.
Finally, let us consider S′i := Si+1 − S1, 0 ¬ i ¬ n, and let v′ be the corre-

sponding stopping time. Then

E(S+
n+1|Si > 0, 1 ¬ i ¬ n+ 1) = 1 + E(S′n|S′i  0, 1 ¬ i ¬ n)(3.7)

= 1 + E(S′n|v′ > n)

= 1 +
ES′n1lv′>n

P(v′ > n)

¬ 1 +
√
n/c ¬ C ′

√
n.

Combining this with (3.5) and (3.6) gives

(3.8) E(S+
n |Ω+

n ) ¬ c
√
n.

This and (3.3) show (3.1).
(2) We now prove (3.2). We start with some simple estimates:

|An| =
∣∣ ∑
k¬n

Sk

∣∣ ¬ ∑
k¬n
|Sk| =

∑
k¬n

S+
k +

∑
k¬n

S−k .

Moreover, on Ω+
n we have

0 ¬ An =
∑
k¬n

Sk =
∑
k¬n

S+
k −

∑
k¬n

S−k .

Hence,
|An| ¬ 2

∑
k¬n

S+
k ¬ 2n max

0¬k¬n
Sk.

It is now enough to prove that for any R ∈ N it is true that

(3.9) P({ max
0¬k¬n

Sk  R} ∩ Ω+
n ) ¬ 2P({Sn  R} ∩ Ω+

n ),

because this leads to the desired

E
(
|An|

∣∣Ω+
n

)
¬ 2nE( max

0¬k¬n
Sk

∣∣Ω+
n ) ¬ 4nE(S+

n |Ω+
n ) ¬ 4n · c

√
n = c′n3/2,

where we used (3.8) in the third step.
For proving (3.9) we will only use the monotonicity property of Ω+

n : if x and
y are two paths with x ∈ Ω+

n and y  x pointwise then y ∈ Ω+
n .

Fix R ∈ N. For any S ∈ {max0¬k¬n Sk  R} ∩ Ω+
n the time

σR := max{k ¬ n : Sk = R} ¬ n
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is well defined. For any S ∈ {max0¬k¬n Sk  R} ∩ Ω+
n ∩ {Sn < R} define its

transformation y by inverting steps starting from σR. This is a one-to-one trans-
formation and we have the following properties of y: Sk = yk for k ¬ σR while
Sk < R < yk for σR < k ¬ n (in particular, yn > R). Hence S ¬ y pointwise. By
monotonicity, y ∈ Ω+

n .
We infer that our transformation is a one-to-one embedding (as a side note: it is

not a bijection, since the image of the transformation of a path in Ω+
n ∩ {Sn > R}

may be outside Ω+
n ):

{ max
0¬k¬n

Sk  R} ∩ Ω+
n ∩ {Sn < R} → Ω+

n ∩ {Sn > R}.

Hence,

P({ max
0¬k¬n

Sk  R} ∩ Ω+
n ∩ {Sn < R}) ¬ P(Ω+

n ∩ {Sn > R}).

and (3.9) follows. �

The following lemma is also concerned with the scaling of S and A. We show
that the joint distribution of Sn and An (conditioned on Ω+

n ) is not concentrated
near zero when n→∞.

LEMMA 3.1. For l,m, n ∈ N with l < n one has

P
(
Sn  m,An  (n− l)m | Ω+

n

)
 P(Sl  2m)P(|Sn−l| ¬ m).

In particular, for any constants c1, c2 > 0, there exists a strictly positive constant
κ = κ(c1, c2) such that for all sufficiently large n

P(Sn  c1n
1/2, An  c2n

3/2 | Ω+
n )  κ > 0.

P r o o f. First note that

(3.10) P
(
Sn  m, An  (n− l)m | Ω+

n

)
 P(Sl  2m,Si − Sl  −m for i = l + 1, . . . , n | Ω+

n )


P({Sl  2m} ∩ Ω+

l ∩ {Si − Sl  −m for i = l + 1, . . . , n})
P(Ω+

n )
,

since for k = l + 1, . . . , n

Ak =Al +
k∑

i=l+1

(Si − Sl) + (k − l)Sl

 0 +
k∑

i=l+1

(−m) + (k − l)Sl

=(k − l)(Sl −m)  (k − l)m  0.
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By independence, the last term in (3.10) equals

P({Sl  2m} ∩ Ω+
l )P(mini=1,...,n−l Si  −m)

P(Ω+
n )


P(Sl  2m)P(Ω+

l )P(maxi=1,...,n−l Si ¬ m)

P(Ω+
n )

 P(Sl  2m)P(|Sn−l| ¬ m),

where, in the last step, we used the reflection principle as well as the fact that

(3.11) P({Sl  2m} ∩ Ω+
l )  P(Sl  2m) · P(Ω+

l ),

which means that the events are positively correlated: Recall that a family of ran-
dom variables (Xi)1¬i¬l is called associated if for any pair of bounded coordinate-
wise non-decreasing functions f1, f2 : Rl → R1 it is true that

E
(
f1(X1, . . . , Xl)f2(X1, . . . , Xl)

)
 Ef1(X1, . . . , Xl)Ef2(X1, . . . , Xl).

See [9] for detailed account of the association property and its extensions. One
only needs to know that any family of independent random variables is associated,
cf. Theorem 1.8 in [9] due to [14]. Thus, (3.11) holds. �

4. CLT FOR THE PINNED PROCESS

In this section, we prove a CLT for the pinned process (Sn, An)n=1,...,N , when
letting N ∈ 2N tend to infinity. By “pinning” we mean that the process is condi-
tioned to arrive at a certain point, depending on N and scaling in N with the natural
scaling of the process. We restrict attention to even numbers N for technical rea-
sons, although the following theorem remains valid for general N .

We need some more notation. Recall that the set Dn was defined in (1.3). We
describe the pinning via an R2-valued sequence (p(N))N∈2N satisfying

(N1/2p(N)

1 , N3/2p(N)

2 ) ∈ DN and lim
N→∞

p(N) = p

for a p ∈ R2. Further, as described in the introduction, we associate with the pro-
cess (Sn, An)n=0,...,N the adjoint process (S̄(N)

n , Ā(N)
n )n=0,...,N started at

S̄(N)

0 = N1/2p(N)

1 and Ā(N)

0 = N3/2p(N)

2 .

We will consider both original process (Sn, An)n=0,...,N and adjoint process
(S̄(N)

n , Ā(N)
n )n=0,...,N in their normalized versions: we set for s ∈ 1

NZ ∩ [0, 1] and
N ∈ 2N

Ξ(N)
s := (N−1/2SNs, N

−3/2ANs) and Ξ̄(N)
s := (N−1/2S̄(N)

Ns , N
−3/2Ā(N)

Ns)
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and apply a continuous piecewise linear interpolation between the breakpoints
s ∈ 1

NZ ∩ [0, 1] to obtain continuous processes Ξ(N) = (Ξ(N)
s )s∈[0,1] and Ξ̄(N) =

(Ξ̄(N)
s )s∈[0,1].

Using this notation, the CLT reads as follows.

THEOREM 4.1. One has

L(Ξ(N) |Ξ(N)

1 = p(N))⇒ L(Γ |Γ1 = p),

where Γ = (Γt)t∈[0,1] = (Bt, It)t∈[0,1].

REMARK 4.1. We remark that the theorem remains valid when choosing dif-
ferent starting points for the Markov process (Sn, An)n∈N. Suppose that it is start-
ed in (s(N), a(N)) such that the limit

s = lim
N→∞

(N−1/2s(N), N−3/2a(N))

exists. Now assuming that the pinning is done on non-null events, one gets

L(s(N),a(N))(Ξ(N) |Ξ(N)

1 )⇒ Ls(Γ |Γ1 = p).

Here the right-hand side denotes the law of integrated Brownian motion started
in s. The statement is straightforwardly obtained by using the fact that

(S̃n, Ãn) := (Sn + s,An + a+ ns)n∈N

has under P(0,0) the same distribution as (Sn, An) under P(s,a), and the analogous
property for the process Γ.

In order to prove Theorem 4.1, we show tightness and convergence of finite-
dimensional distributions for the conditioned distributions.

P r o o f o f T h e o r e m 4.1. Tightness. We prove that the sequence of con-
ditional distributions L(Ξ(N) |Ξ(N)

1 = p(N)) on C
([
0, 1
]
,R2

)
is tight.

Let ε > 0 and fix compact sets K1,K2 in C
([
0, 12
]
,R2

)
with

P(Ξ(N) ∈ K1)  1− ε and P(Ξ̄(N) ∈ K2)  1− ε

for all N ∈ 2N, where the processes are to be considered on the time interval[
0, 12
]
. Such compact sets exist by Donsker’s invariance principle (see, e.g., [7]).

Now let K ⊂ C[0, 1] be the set of continuous functions f : [0, 1]→ R2 with(
f(t) : t ∈

[
0, 12
])
∈ K1 and

(
f(1− t) : t ∈

[
0, 12
])
∈ K2.

It is obviously compact in C([0, 1],R2). By the definition of the adjoint process
(see (1.4)), one has

{Ξ(N)

1 = p(N)} = {Ξ(N)

1/2 = Ξ̄(N)

1/2} = {Ξ̄
(N)

1 = 0},
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so that

P(Ξ(N) ̸∈ K |Ξ(N)

1 = p(N))

¬ P(Ξ(N) ̸∈ K1 |Ξ(N)

1/2 = Ξ̄(N)

1/2) + P(Ξ̄(N) ̸∈ K2 |Ξ(N)

1/2 = Ξ̄(N)

1/2).

To obtain an upper bound for the first term, we observe that (1l{Ξ(N) ̸∈ K1},Ξ(N)

1/2)

and Ξ̄(N)

1/2 are independent, which implies that

P(Ξ(N) ̸∈ K1,Ξ
(N)

1/2 = Ξ̄(N)

1/2) =
∑
z

P(Ξ(N) ̸∈ K1,Ξ
(N)

1/2 = z)P(Ξ̄(N)

1/2 = z).

By the local central limit theorem, the weights P(Ξ̄(N)

1/2 = z) are uniformly bounded
by a constant multiple of N−2 so that

P(Ξ(N) ̸∈ K1,Ξ
(N)

1/2 = Ξ̄(N)

1/2) ¬ C1
1

N2
P(Ξ(N) ̸∈ K1) ¬ C1ε

1

N2

for a universal constant C1. Analogously, one concludes that

P(Ξ̄(N) ̸∈ K2, Ξ̄
(N)

1/2 = Ξ(N)

1/2) ¬ C2
1

N2
P(Ξ̄(N) ̸∈ K1) ¬ C2ε

1

N2

for a universal constant C2. Since by the local central limit theorem (Proposi-
tion 2.1 above) limN→∞N2 P(Ξ(N)

1 = p(N)) = C3 > 0, we conclude that

lim sup
N→∞

P(Ξ(N) ̸∈ K |Ξ(N)

1 = p(N)) ¬ C1 + C2

C3
ε.

Since ε > 0 was arbitrary, this proves tightness.
Convergence of finite-dimensional distributions. It remains to prove conver-

gence of finite-dimensional marginals. For t > 0 we denote by gt : R2 × R2 →
[0,∞) the transition density of the Markov process (Γs) over an interval of length t.
It is

gt(u, v;x, y) = t−2 g

(
x− u√

t
,
y − v − tu

t3/2

)
.

Fix m ∈ N, times 0 < t1 < . . . < tm < 1, and a continuous and bounded
function f : (R2)m → [0,∞). We write t∗m = t∗m(N) = min(Z/N) ∩ [tm, 1].

First we verify that, for arbitrary ε > 0, it follows that for sufficiently large
N ∈ 2N

P(Ξ(N)

1 = p(N) |Ξ(N)

t∗m
= z) 

(
4g1−t∗m(z, p)− ε

)
N−2(4.1)

for all z with P(Ξ(N)

t∗m
= z) > 0. The estimate is a consequence of the local limit

theorem (Proposition 2.1): we let

ℓ = ℓ(N) =
(√

Np(N)

1 , N3/2p(N)

2

)
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along with n = n(N) = (1− t∗m)N and ζ =
(√

Nz1, N
3/2z2

)
, where z is as be-

fore. For any ε′ > 0, it follows that uniformly in the relevant z’s we obtain for
sufficiently large N

P(Ξ(N)

1 = p(N) |Ξ(N)

t∗m
= z) = Pζ

(
(Sn, An) = ℓ

)
= P

(
(Sn, An) = (ℓ1 − ζ1, ℓ2 − ζ2 − nζ1)

)
 4n−2g

(
ℓ1 − ζ1√

n
,
ℓ2 − ζ2 − nζ1

n3/2

)
− ε′n−2

= 4N−2g1−t∗m(z1, z2; p
(N)

1 , p(N)

2 )− ε′n−2.

(4.2)

Since n(N) is of order N , we can choose for given ε > 0 a sufficiently small
ε′ > 0 such that (4.2) implies (4.1).

Hence, by the Markov property one has

E[f(Ξ(N)

t1
, . . . ,Ξ(N)

tm ) 1l{Ξ(N)
1 =p(N)}]

= E
[
f(Ξ(N)

t1
, . . . ,Ξ(N)

tm )E[1l{Ξ(N)
1 =p(N)}|Ft∗m ]

]
 4N−2 E[f(Ξ(N)

t1
, . . . ,Ξ(N)

tm ) g1−t∗m(Ξ
(N)

t∗m
, p)]− εC N−2,

where C = ∥f∥∞. Using the continuity of g together with the classical Donsker
invariance principle [7], we arrive at

lim inf
n→∞

1
4N

2E[f(Ξ(N)

t1
, . . . ,Ξ(N)

tl
) 1l{Ξ(N)

1 =p(N)}]

 E[f(Γt1 , . . . ,Γtm) g1−tm(Γtm , p)]− εC.

Analogously, one proves the converse bound. Since ε > 0 is arbitrary, we get

lim
n→∞

1
4N

2 E[f(Ξ(N)

t1
, . . . ,Ξ(N)

tm ) 1l{Ξ(N)
1 =p(N)}]=E[f(Γt1 , . . . ,Γtm) g1−tm(Γtm , p)]

=
∫
. . .
∫
f(z1, . . . , zl) gt1(0, z1) . . . g1−tm(zm, p) dz1 . . . dzm.

In particular,
lim
n→∞

1
4N

2 E[1l{Ξ(N)
1 =p(N)}] = g1(0, p),

and putting the estimates together completes the proof. �

5. PROOF OF THE MAIN THEOREM

5.1. Proof of the upper bound. The purpose of this section is to prove the
upper bound in (1.1). This will follow almost directly from a local limit theorem
for (Sn, An) (Proposition 2.1).
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Let us recall that

Ω+
n = {A1  0, . . . , An  0} ∈ σ(X1, . . . , Xn)

and let us define

Ω̄+
n = {Ā(4n)

1  0, . . . , Ā(4n)
n  0} ∈ σ(X3n+1, . . . , X4n),

where the adjoint process is started at (0, 0). Then due to the fact that Ā(4n)

k =
A4n−k on A4n = S4n = 0 (see (1.4)) we have

P (A1  0, . . . , A4n  0, A4n = S4n = 0)

¬ P(Ω+
n ∩ Ω̄+

n ∩ {A4n = S4n = 0})
= P(A4n = S4n = 0 |Ω+

n ∩ Ω̄+
n ) · P(Ω+

n ∩ Ω̄+
n ).

Clearly, Ω+
n and Ω̄+

n are independent. Further, the adjoint process started at (0, 0)
has the same distribution as the original process, so that P(Ω+

n ) = P(Ω̄+
n ) ≈ n−1/4,

by Sinaı̆’s result [17].
On the other hand, the event Ω+

n ∩ Ω̄+
n only concerns the random variables

X1, . . . , Xn and X3n+1, . . . , X4n, so that

(5.1) P(A4n = S4n = 0 |Ω+
n ∩ Ω̄+

n )

¬ sup
x1,...,xn,

x3n+1,...,x4n∈{−1,+1}

P(A4n = S4n = 0 |X1 = x1, . . . , Xn = xn,

and X3n+1 = x3n+1, . . . , X4n = x4n).

Given the values for X1, . . . , Xn and X3n+1, . . . , X4n, the variables (Si, Ai), i ∈
{n+1, . . . , 3n}, form another pair of simple random walk and its integrated coun-
terpart, however, the pair is started at some different point: that is, for the vector
(Si, Ai), i = n+ 1, . . . , 2n, started at (k, l) has the distribution(

k + Si−n, k(i− n− 1) + l +Ai−n
)
.

Thus, the quantity in (5.1) is bounded by

sup
a,s,a′,s′

P(s,a)(A2n = a′, S2n = s′) = sup
a′,s′

P(0,0)(A2n = a′, S2n = s′).

Now, the local limit theorem for (Sn, An) (Proposition 2.1) tells us that the latter
probability is bounded by cn−2.

Summing up and using once again the local limit theorem, we get

P (A1  0, . . . , A4n  0 |A4n = S4n = 0)

=
P (A1  0, . . . , A4n  0, A4n = S4n = 0)

P (A4n = S4n = 0)

¬ const · n
−2 · n−1/4 · n−1/4

n−2
≈ n−1/2,

which completes the proof of the upper bound.
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5.2. Proof of the lower bound. Here we prove the lower bound in (1.1).
First observe that Proposition 3.1, Lemma 3.1, and the Markov inequality

show that there are constants 0 < a < b <∞ and κ > 0 such that, for all n,

(5.2) P(Sn ∈ [an1/2, bn1/2], An ∈ [an3/2, bn3/2] | Ω+
n )  κ > 0.

Using the Markov property of (Sn, An) we have

(5.3) P
(
Ω+
4n ∩ {(S4n, A4n) = (0, 0)}

)
=
∑
k,l

∑
k′,l′

P(0,0)
(
Ω+
n ∩ {(Sn, An) = (k, l)}

)
× P(k,l)

(
Ω+
2n ∩ {(S2n, An) = (k′, l′)}

)
× P(k′,l′)

(
Ω+
n ∩ {(Sn, An) = (0, 0)}

)
.

We denote by (S̄(n)

k , Ā(n)

k )k=0,...,n the adjoint process started in (0, 0) and consider

Ω̄+
n = {Ā(n)

k  0 for all k = 0, . . . , n}.

By (1.4), one has

P(k′,l′)
(
Ω+
n ∩ {(Sn, An) = (0, 0)}

)
= P(k′,l′)

(
Ω̄+
n ∩ {(S̄(n)

n , Ā(n)
n ) = (k′, l′)}

)
= P(0,0)

(
Ω+
n ∩ {(Sn, An−1) = (−k′, l′)}

)
,

where in the last step we used the fact that
(
(S̄(n)

m , Ā(n)
m ) : m = 0, . . . , n

)
under

P(k′,l′) is distributed as
(
(−Sm, Am−1) : m = 0, . . . , n

)
under P(0,0) with target

point (k′, l′). Here we adopt the convention A−1 = A0 − S0. In order to compute
a lower bound for (5.3), we can confine ourselves to summands where (k, l) and
(−k′, l′) are in [an1/2, bn1/2]× [an3/2, bn3/2], respectively, that is to

L(n) = {(k, l) ∈ Dn | (k, l) ∈ [an1/2, bn1/2]× [an3/2, bn3/2]}

and

R(n) = {(k′, l′) ∈ D̃n | (−k′, l′) ∈ [an1/2, bn1/2]× [an3/2, bn3/2]},

respectively, where Dn is defined in (1.3) and

D̃n :=

{
ℓ = (ℓ1, ℓ2) ∈ Z2 : ℓ1 = n (mod 2), ℓ2 =

(n− 1)n

2
(mod 2)

}
.

We will prove below that

(5.4) 2κ′ := lim inf
n→∞

n2 inf
(k,l)∈L(n)
(k′,l′)∈R(n)

P(k,l)
(
Ω+
2n ∩ {(S2n, A2n) = (k′, l′)}

)
> 0.
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Then one estimates (5.3) by the product of κ′n−2,
∑

(k,l)∈L(n)
P
(
Ω+
n ∩ {(Sn, An) = (k, l)}

)
 P(Ω+

n )κ,

and ∑
(k′,l′)∈R(n)

P
(
Ω+
n ∩ {(Sn, An−1) = (−k′, l′)}

)
 P(Ω+

n )κ,

where we used (5.2) in both cases. To see the second relation one needs the follow-
ing additional argument in conjunction with (5.2): Let 0 < ε < b− a. Then for all
n large enough

P
(
Sn ∈ [an1/2, bn1/2], An−1 ∈ [(a− ε)n3/2, bn3/2] | Ω+

n

)
 P

(
Sn ∈ [an1/2, bn1/2], An ∈ [an3/2, bn3/2] | Ω+

n

)
 κ > 0;

and we continue to work with a− ε instead of a.
Thus, assuming (5.4), using the local limit theorem (Proposition 2.1) for the

denominator, and Sinaı̆’s result [17], we get

P
(
Ω+
4n | (S4n, A4n) = (0, 0)

)
=

P
(
Ω+
4n ∩ {(S4n, A4n) = (0, 0)}

)
P
(
(S4n, A4n) = (0, 0)

)
 κ′n−2 · κc n−1/4 · κc n−1/4

c (4n)−2
≈ n−1/2,

which shows the assertion.
It remains to prove (5.4). We proceed with a proof by contradiction.
Assume that the lim inf in (5.4) is zero. Then there exist an N-valued se-

quence (nm)m∈N that tends to infinity and pairs (km, lm) ∈ L(nm) and (k′m, l′m) ∈
R(nm) for m ∈ N such that

lim
m→∞

n2
m P(km,lm)

(
Ω+
2nm
∩ {(S2nm , A2nm) = (k′m, l′m)}

)
= 0.

Without loss of generality we can assume that the limits

s := lim
m→∞

(
(2nm)−1/2km, (2nm)−3/2lm

)
∈ [a, b]2,

p := lim
m→∞

(
(2nm)−1/2k′m, (2nm)−3/2l′m

)
∈ [a, b]2

exist, since this is the case for at least one subsequence of (nm). In order to apply
the central limit theorem, we work with the continuous function

F : C[0, 1]2 → [0,∞), (z1, z2) 7→ 1 ∧ ( inf
t∈[0,1]

z2t )
+ ¬ 1l{z2t0,t∈[0,1]}.
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Let
Zm
t := (Zm,1

t , Zm,2
t ) :=

(
(2nm)−1/2 S2nmt, (2nm)−3/2A2nmt

)
for t ∈ N0/(2nm) and extend the definition of Zm between the points in N0/(2nm)
linearly. Then

P(km,lm)
(
Ω+
2nm
∩ {(S2nm , A2nm) = (k′m, l′m)}

)
 E(km,lm)[F (Z) | (S2nm , A2nm) = (k′m, l′m)] ·P

(
(S2nm , A2nm) = (k′m, l′m)

)
.

Since P(km,lm)
(
(S2nm , A2nm) = (k′m, l′m)

)
 c(2nm)−2 for a positive constant c,

a contradiction is achieved once we show that

lim sup
m→∞

E(km,lm)[F (Z) | (S2nm , A2nm) = (k′m, l′m)] > 0.

However, this follows directly from the local limit theorem (Proposition 2.1) and
Remark 4.1. Indeed, the lim sup is actually a limit and it is equal to

Es[F (Γ)|Γ1 = p].

Furthermore, it is positive, since s2 and p2 are positive.

REMARK 5.1. After the first version of this paper had been made public in the
preprint arXiv:1205.2895, Denisov and Wachtel announced in [13] an extension of
our main theorem, cf. their Section 1.3. The formal proof is not given, however,
their methods are – presumably – quite different from ours.

An anonymous referee pointed out that the strategy suggested in the present
paper might also be valid for a much more general class of random walks. We leave
the exploration of this valuable idea to subsequent publications.

Acknowledgments. We would like to thank the two anonymous referees for
their careful reading and their suggestions.
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