PROBABILITY
 AND
 MATHEMATICAL STATISTICS
 Vol. 34, Fasc. 1 (2014), pp. 97-117

DIMENSION RESULTS RELATED TO THE ST. PETERSBURG GAME

Peter Kern
Lina Wedrich

Abstract: Let S_{n} be the total gain in n repeated St. Petersburg games. It is known that $n^{-1}\left(S_{n}-n \log _{2} n\right)$ converges in distribution along certain geometrically increasing subsequences and its possible limiting random variables can be parametrized as $Y(t)$ with $t \in\left[\frac{1}{2}, 1\right]$. We determine the Hausdorff and box-counting dimension of the range and the graph for almost all sample paths of the stochastic process $\{Y(t)\}_{t \in[1 / 2,1]}$. The results are compared to the fractal dimension of the corresponding limiting objects when gains are given by a deterministic sequence initiated by Hugo Steinhaus.

2000 AMS Mathematics Subject Classification: Primary: 60G17; Secondary: 28A78, 28A80, 60G18, 60G22, 60G52.

Keywords and phrases: St. Petersburg game, semistable process, sample path, semi-selfsimilarity, range, graph, Hausdorff dimension, box-counting dimension, Steinhaus sequence, iterated function system, self-affine set.

