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Abstract. In the paper a general zeroaum stochastic game with 
stopping is considered. Using the so-called penalty method the author 
shows the existence of the value of the game under fairly general 
assumptions. 

I. Introduction. Let (0,  F, P) be a probability space and (St),,, an 
increasing, right continuous family of complete sub-a-fields of F. Let us 
suppose we have two right continuous, (F,),,, adapted, bounded processes 
(jJr 2 o  and (g,),,, such thatf, 2 g, P-a.e. for each t 2 0. We shall consider the 

, following game. There are two players and each of them is choosing, as his 
strategy, stopping time relative to (F,),, , . If z and a are stopping times chosen 
by the first and the second players, respectively, then the first one pays to the 
second the amount equal to ePa'f ,  or e-aug, according as z < a or n < T .  
The aim of the first (second) player is to minimize (maximize) the expectation 

f ( z ,  a) E - [ ~ ~ ~ ~ e - ~ ~ f r + ~ ~ ~ ~ e - ~ ~ g ~ ) .  

For a fixed stopping time z of the first player, the second one is interested in 
choosing a time a which achieves, or at least approximates, the 
supremum supf(z ,  a). Thus, if the first player is cautious, he will chbose 

u 

a time giving (or at least approximating) theinfimum 
. . 

R = inf su f ( r ,  a) ,  
z€Ao 

where A,, s 2 0, denotes a family of ail Markov times almost surely greater 
than s .  



Reversing the roles of the two players, we also see that an expected gain of 
the second player is at least equal to 

x' = su inf 2 (s , 0) 
0-f TEA* 

regardless of the strategy adopted by the first player. It is always true that 
3 < a. The identity x = a holds if there exists a saddle point for the game. In 
our situation a saddle point is a pair of Markov times ^z, 6 such that 
x = f ( ? ,  6) = R .  Sufficient conditions for the existence of a saddle point for 
the game are given by Bismut [3]. 

The main result of the paper is Theorem 3 which shows the existence of the 
value of the game, equivalently the identity x = 5 under fairly general 
conditions. Our method of the proof is new and, for instance, different from 
that of [3]. Namely, we use the penalization method in a general setting similar 
to the one considered in [lo). This method can be described as follows. 

First we prove (Theorem 1) that for each > 0 and y > 0 there exists a 
unique pair of right continuous, (Fa), a adapted processes b, = eY, cs = ct.7 
which satisfy the equations 

,P-as. for qach s 2 0. 
It is pdssible to prove (Theorem 2) that the limits 

* 
b, = lim bFY and 2, = lim c!,' 

Il.q+m P . Y - + ~  

,are well defined and under some additional assumptions one can show 
.(Theorem 3) that 

I 

3 = E { ~ ~ - z ~ )  = K. 

The problem of zero-sum stochastic game with optimal stopping was 
infroduced [ by Wynkin [5] for discrete time case. The continuous time game 
was considered first by Krylov 161, [7] for diffusion processes and a class of 
sfandaid Markov processes. Later this game was investigated from the point of 
view of variational inequalities by Bensoussan and Friedman [I], and by using 
the convex duality by Bismut 121-141. An extension of results due to Krylov 
[6], [7] for standard Markov processes will appear in [9J. 

2. Penalized systems of quations and their interpretation. In this section we 
consider the problem of existence and uniqueness of the solution of equa- 
tions (1). We also give a stochastic control interpretation of this solution, 
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i.e. a problem which consists in finding right continuous, (FS),,, adapted 
processes (b,),,, and (cS),,, such that the equations 

oC t 

b, = supessE(j  exp [- ~(ol+~,2)dr]u~~(c,+g,)dtI.~~j~ 
I .2€My S s 

' f2) 

are fulfilled P-a.s. -for each-s 2 0. In the system (2) the symbols M p  and M y  
denote the sets of all adapted processes with values from the intervals [0, P ]  
and [0, y ] ,  respectively. The solutions (bsls2 and (c,),, , depend on f l  and y, so 
to be more precise one should write (b,B.Y)s,, and (4wY),,o, and when it is 
necessary to emphasize the dependence of the solution on fly y, we shall use this 
more cumbersome notation. The systems (1) and (2) will play the main role in 
our paper. We have 

THEOREM 1. The systems (1) and ( 2 )  are equivaient and have, as a unique 
solution, the pair (b,, c$~,,  of right continuous, (Fs)s,o adapted processes for 

' I  

each 'pbsitive fi  and y .  
Proof.  Similarly as in [lo] we introduce a certain Banach space. For every 

right continuous, (F8),,, adapted process f we define the norm 

llf ll  ess sup sup If (s Y u)l - 
id s 3 0  

It can be verified that the space W of all right continuous, (FS),,, adapted 
processes f such that 1 1  f 1 1  < oo with the norm 11 - 1 1  is a Banach space. Now, let 
us note that if (dY,, Il.IIl) and (%, 11 -(I2) are Wspaces, then their Cartesian 
product Wl x W2 is the Banach space with the norm 

lllflll = max ~Ilfllll, Ilf2112), where f = (fl , f , ) ~ W l  x w2. 

t - L We define the following transformation !P in the space -ly; x dY,: 
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The transformation IP works from YPi x W2 into Wl x W; since as the 
processes we can take their right continuous modifications. We want to check 
that 1Y is a contraction. 

If z = (zl, z2), w = (wl, W ' ) E  #; x W i ,  then 

t l l~ (z ) -  ~ ( w ) t l l  
= max {HY1(zl, 2')- Y1 (w', w2)It, IIY2(z', z2)- Yz(w', w2)]1) 

and 

11 !Pi (2'; z2)- Y' (wl, wZ)(l 
It 

= supess sup / y ~  { J  e-("+ '"*-"' [(z: + qr -z:)+ + z,! - 
S*, s30 s 

- (w?+g,-w:)+ -~7,!]dtI F,)I 

To continue the proof we need the following 
LEMMA 1. If F(x,  y) = .$(x-Y)+ +By, then 

The proof of this lemma is not difficult, and therefore can be omitted. From 
Lemma 1 we obtain 

a. 

< sup ess sup E { j e-(a+Y)('-s) y max {lz: - wtl, lz: - w:l) dt 1 Ss) 
R s>O 

and, analogously, 

Thus, finally, 

The last inequality insures the existence of the unique solution of the sys- 
tem (1). Using similar considerations as in [lo] we can show that this solution 
satisfies also the system (2). Now, by the Banach principle we can show the 
uniqueness of the solution of (2). 



Let us define the transformation @: W, x *W2 + W1 x W2 by 

m 3 

sup ess E ( 1 exp [ - 1 (I + u:) dr] er? (2: + y,) dt ] .FS) 
S - - U Z E M ~  s 

lr; t 

sup ess E { j exp [- 1 ( E  + u:) dr] u: (z: -A) dt 1 Ss) 
S u l ~ M p  . 5 

We obtain easily 

Consequently, IP is a contraction, and thus we have established the 
theorem. 

Remark 1. Applying Lemma 1 of [lo] to the system (1) one can obtain the 
third equivalent system of penalized equations: 

COROLLARY 1. There exists a unique, right continuous, (9s)s30 adapted 
process (at*y)s20 satisfying the equation 

I ,  , I  I 

P-a.s; for each s 2 0 and, furthermore, a!.? = b ~ ~ Y - c f ' .  
Proof.  Obviously, (bs - c,),, , from (3) satisfies (4). By Lemma 1 of [lo], 

equation (4) is equivalent to 

03 

= E ( J  s-(a+@+r)(t-s)  C - B (a, -A)+ + Y (a, -d- + ( B  + Y) all dt I 9,) 
S 

I 

and the transformation 

, is a contraction with the parameter (fl+ y)/(a+P+ y) < 1. 
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From [ l o ]  we obtain without difficulty 

COROLLARY 2. The solu'tion of equation (4) is of the form 

P-as. for .each s 2 0 .  , 

. This corollary explains a probabilistic idea of the penalized method. The 
process a, denotes the value of the game in which the first and the second 
players stop with densities 

t t 

u: exp [ - j u: dr] and u: exp [- [ U: dr] , 
respe~tivelx. 

s s 

3. Identification af t k  mhtion nf the system (1) a d  a limit theorem. The 
system (1) is a counterpart of a penalized equation studied in [lo] in 
wnnection:with the optimal stopping. Moreover, it turns out that solutions are 
also a-supermartingales, kt us recall that a process (zJS),,, is an a- 
supermmtingale if (e-aSz,),,o is a supermartingale. Namely, we have 

~ O P O S ~ ~ I O N  1 .  The solutions of the system ( I ) ,  i.e. processes (l@"',,, and 
(cf Y ) , ,  ,, are right continuous a-supermartingaies. 

This proposition follows easily from the form of equations ( 1 )  and (3). 
Now we can prove the following important convergence result: 
THEOREM 2. If 

dr 
supess t f y  = gS and supess c:.' 
b B O , y 2 O  f l 3 O . y B O  

me jinite, then (6s)s,0 and (ZS),, ,  me right continuous a-supermartingales. 
Proof. Let us introduce some additional notation 

bl.8.Y = Q 1 ( 0 ,  01, ... bn+ 1.b.~ = a1 ( ~ w L Y  C n , B 3 ~ ) ,  

( 5 )  C 1 , B , ~  = 
G 2 ( 0 ,  o),  ... p+ ~ , P , Y  = 4 9  (br~B.v, C n . B * ~ )  

It is well known that 

If y ,  d y 2  and B1 < 8 2 ,  then 

bsl.Pls~, < ~ : J J ~ ~ Y Z ,  C t , f l ~ * Y ~  < ~ t * B z * Y z  

and, inductively, 
b ~ b , ~ ~ ,  < b:B,.Yz, C : @ ~ * Y ~  < C ? B Z ' ~ Z  
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P-a.e. for each s 3 0 and'n E N. Taking the limits with #I + co and y + c~ in 
the first identities of (5) we obtain 

w I 

b,lym-" = lim b , l > B p y  = supessE(j exp[- J ( a + u ~ ) d r ] u ~ g , d t ( P s ) ,  
B,v+.o I I ~ E M *  s S 

m I 

- lim ~ , 1 * ~ , ~  = supess E { exp[- j (a +uf)dr]  u: (-J)dt 1 Ps) c:,m,m - 
B . Y + ~  ultMm s s 

P-a.e. fdr each s 2 0. Now, by [lo] we notice easily that these processes are 
the a-Snelli envelopes of the processes (g,),, , and (-jJS, ,. This means that 

I 
I ( b ~ * o o p m ) s 2 ~ l  and ( c ~ ~ " ~ " ) , ~ ,  are the smallest right continuous u- 

supermartingales majorizing (g,),,, and (-a3,, respectively. Analogously, 
rO t 

b;+l.m.- = supessE(j exp[- ( a + ~ ~ ) d r ] u ~ ( c ~ ~ ~ ~ + g ~ ) d t 1 ~ ~ } ,  
U Z E M ~  s s 

53 t 

<+l*w*" = SU~EY.SE(S exp[- f ( u + u , ' ) d r ] u : ( b ~ " ~ " - f ; ) d t ( F 3 )  
S s 

I ul EM*, 

are the uSnell envelopes of the processes (cl-"Omffi+g,)~,,, and (b,*"l" -f,),Bo. 
Now it is easy to see that ~(b:'m3m)sL0]nEN and [ ( c ~ ' . ~ ~ ) ~ , ~ ] ~ ~  are increasing 
sequences of right continuous a-supermartingales, and b:"." f. &, c,"."Ow" 7 2% 
P-a.e. for each s as n + a. This completes our proof. 

Re mark 2. Theorem 2 was proved under the assumption that (6s)s,, and 
(ZS),,, are finite. This demand will be satisfied if we impose the following 
assumption similar to that introduced by Mokobodzki [8] in the case of 
Markov games : 

ASSUMFTION. There exist two right continuous positiue or-supermartingales 
( x , ) ~ , ~  and Cy,),, , such that for each s 

We find out immediately that (6s)sb0 and (i?,),,, are finite since for each n 
we have b2"m" d xs and c,"."*" 6 ys P-a.e. for each s 2 0. 

4. The main result. In this section we prove the main result of the paper. 
THEOREM 3. Assume that rhe right continuous, (2FS),,, adapted, bounded 

processes , and (g,),, are such that 
(i) f, 2 gs P-a.e. for each s 2 0, 

a (ii) the  assumption (6) holds. 
d l -  Then E = 5 = ESo, where a  ̂ = b -;. Moreover, 

ii, = inf ess sup ess E {x, ,  , e-"('-') e- a(a - r )  A+ x n ~ r  
r€Ar .sellr 

gm I 

= sup ess inf ess E {x,, , e - a(r - r) 
f t f xadse  -"'"-'Iga I Sr) 

a d ,   TEA^ 
P-a.e. for each r 2 0. 
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Proof. The proof consists of three steps. 
1 .  First we establish a new representation of (af97) ,30 .  We need the 

following obvious lemma : 
LEMMA 2. If (d,),SO is right continuous and for euch s 2 0 

a 

d., = E { j e - z ( ' - s )  h, dt 1 Fs) P-a,@., 
B 

where (h,),,, is a right continuous, (F,),,, adapted, bounded process, then 

fbr s 3 r is a right continuous, bounded martingale. 
From (4) and Lemma 2 we infer that for each r 3 0 

is an (F,),,, right continuous, bounded martingale. Thus for z, ~ E A ,  we 
obtain the representation 

2. Equation (7) can be transformed in the following way. First we have 
T A U  

at,' 2 E J e-"('-" [ - 8 -A) + ] dt 1 gr) + 
r 

+ E a L L ~  e - W - r )  r 1 
fT I ~ r i + ~ { X r i a ~ ~ l Y e - z ( r - r )  1 d r ~  

rna 

2 E [ J e - a " - r 1 [ - P ( a f , Y - f ; ) + d t ] 1 9 r j +  
r 

+ E (Xo,c, e-a(u-r) bm-(a!,'-gJ-] 1 Fr)  + E t ~ z < m u ~ ~ y e - a ( r - r ) ~  ' 

with the identity for a = inf.[t 2 r :  a f , ~  < g,) .  Then we obtain 

P-a.e. for each r 2 0. 
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Similarly, 

and since for r = i d  ( t 3 r : a!,' 2 A ) we have the equality in (a), we finally 
obtain 

a,B>Y = infess sup ess E [ x ,  $, e -#(a-r1 
Ya+Xr<lre  

-a('-'' ft- 

ZEA? a e A r - -  

I e - a ( a - r )  ( a f 1 3 ~  - ,-a(.-.) 
- X a < t  @ o ) - + ~ r < m  (a$y  -A)+ 1 3,) . 

In a similar. way, changing the role of inf and sup operations, we get 

3. Our aim is now to estimate the processes ( ( U , B ~ ~ - ~ , ) ~ ) ~ , ,  and 
(la!*Y-f,)+),30 as P ,  y + fee. For this purpose we need the following 
lemma : 

LEMMA 3. For eaclz s 3 0 we Iwve g, < iii, < f, P-a.e. 
Proof.  From the system (3) we can obtain 

c : ~  = BE j e-a[t-"(a!+" -A)+ dt 19,)- 
S 

P-a:e. for each s 2 0. Let us write 

Thus KemY 3 K" (see Section 2, Corollary 2) and 

S 

Consequently, 

and as y -, oo we infer that K" has dr@dP measure zero. Since (g,),,, and 
(6s),,o are the right continuous processes and E is arbitrary, we have ii, 2 gs 
P-a.e. for each s 2 0. Similarly, from the second equation of (9) we obtain 
Gs i, P-a.e. for each s 2 0. 
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Summarizing the results of steps 2 and 3 of our proof we establish the 
required assertion of Theorem 3. 
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