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Abstract. This note gives the convergence rate in the central
limit theorem and the random central limit theorem of some
functions of the average of independent random variables.

1. Introduction and preliminaries. Let {X,, k > 1} be a sequence of
‘raridom variables and put '

= Z Xk'
k=1 -
We are interested in finding estimates of the convergence rate in
(1 da(g(Sym)—c) > Nap a5 m—> 0,

where g denotes a real function, ¢, and d, > 0 are normalizing constants
depending on g, D denotes weak convergence, and A~ wb @ normal random
variable with mean a and standard deviation b.

To give our results, which are an extension of some considerations in [6],
we need the following notation, lemmas, and theorems.

Let C(R) be the class of all continuous functions and let Cgz(R) stand for
the class of all bounded and continuous functions. Put

2(R) = {geC(R): g"eCy(R)}, r > 1.

Denote by # the class of all functions ¢ defined on R and satisfying the
following conditions:

(a) ¢(x) is nonnegative, even, and nondecreasing on [0, o],

(b) x/p(x) is defined for all x and nondecreasing on [0, o0).



I Y e

@ | IF,(x)— @ (x)] < C*52
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LemMa 1 ([7], p. 28). Assume that X and Y are random variables and F(x)

= P[X < x],G(x) = P[X+Y < x]. Then, for any ¢ > 0, xeR, and any

distribution function H,
(2 |1G(x)—H(x)| < max{|F(x—g)—H(x—e), [F(x+e&)—H(x+e)}+

+max {|H(x—&)—H(x)|, |H(x+&—H(x)|}+P[Y| = €]
and

2) IG(X) H(x) < SUPIF (X) H(x)| +

+maX{|H(x—6)—H(X)I, [H(x+e)—Hx)}+P[Y] = £].
In what follows C denotes positive constants, in general different. We put
EX, = m, X0 = X, —w, 6*X, = o2, k = 1. Moreover,
i | n 'n
Z O' ’ ﬁn = Z ,'lk/n)
k= k=1

n

Sn_ Z By | .
F,,‘(x) = P[% < x:I, F¥(x) = P[S;:/n; < x:I

(in the case where X,, k = 1, are identically distributed), and

@(x) = (1/1/2n) j exp(—t%/2)dt.

TueoreM 1 ([3]). Let {X,, k > 1} be a sequence of independent random

" variables with EX, = i, 0*°X, = o, and E|X;? < 0, k=1,2,...,n

Then there exists a positive constant C not depending on n and x such that
Z E|XpP?

‘THeOREM 2 ([2]). Under the assumptions of Theorem 1 there exists a
positive constant C such that, for alln>1 and xeR,

Z E|X,/*

sn(1+1x%)

Treorem 3 ([7], p. 141). Let peF. Assume that E(X0)? (X)) < oo,
k=1,2,..., n. Then there exists a positive constant C such that

T E(X9p(XD)

). - swplF()-0( < g
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THeEOREM 4 ([1]). Under the assumptions of Theorem 3 there exzsts a

positive constant C such that, for all n 2 1 and xR,
Y E(X))?o(X3)

6 . . [F,(x)—®(x)] < C*5 .
( W=l < O o)

Tueorem 5 ([4]). Let {X,,k > 1} be a sequence of independent and
‘identically 'distributed random varlables with EX| = H, @ X, = a* < 0.
Then rhe series

™ S a1t sup|FE (9 - B0 < o0
- n=1 x ’

converges if and only if E|X|**? < w0, 0 <6 < 1. If EXilog(1+|X,))

< o0, then (7) converges with 6 = 0.

2. Nonuniform estimates. Using the notation

Gr(x) = P[ \((') {gSyn—gw)} < xJ

we derive the following estimates:

THEOREM 6. Let {X,, k > 1} be a sequence of independent and identically
distributed random variables with EX, = u, 6* X, = 6> < . Then, for any
&€ >0, a >0, xeR, and geC'(R) with ¢g'(y) # 0,

®)  IGH()—P(x) < max {|F}(x—e)—&(x—a), [F¥(x+8)—O(x-+a)} +
 HIFEET) =0T HIFR (- ) - B(—a 7 +
L +2(1-0( )+ max {|® (x—e)— S (x), 1B (x+)—(x)} +

+P|:|g'(#+0(s,./n—ﬂ))_l > 81+a_]’
where 0 < 0 < 1.

g’
If, additionally, E(X°)2(p(X°) < o0, where peZ, then there exists a
positive constant C such that, for any ¢ > 0, a > 0, xe R, and ge C*(R) with

g(w # 0,
9 1Gr(x)~-2(x)

0\2 0 1 1 '
c {E X1 e (X1) l:(p (on*2(1+]x—gf?) + @(on*2(1+]x+¢?) +

1 J+P[|g'(u+9(5,./n—#))_l‘ S 1+¢J+8}

T e @) [T dw
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IfE|X,? < o0, then there exists a positive constant C such that, for any
¢>0,a>0,xeR, and geC'(R) with g'(1) # 0,

o L 1 1 1 1
10) "G*(0)—(x) < C{—|-
. (10) 1630 — @ () C{ﬁ(1+|x—sl3+l+|x+sl3+1+s‘3“)+
g (u+0(S/n—p)

+'P[ g ¢ a]ﬂ}

If gGCB(R) then. (9) and (10) take the forms
1 1

.(9')' G5 (x)— @ ()
| | 02 (%0
\ < C{E(Xl) »(X7) [(p(a-n”z(l+|x—8|3))+(P(“"1/2(1+|x+£.|3))+

-1

1 1 .
+(p(an1/2(1+s_3‘)):|+m:2(1+’)+£}
and '
(10) 1639~ (x)

C 1 1 o 1 + 1 + 1 +
< \[ 1+|x P 14lx+ef 146 %) peRiEa [

respectively.
Proof. Put
g(x)—g(p) .
: ————  if x # u,
h(x) = < (x—p)g' (W)
; 1 if x = pu.
We see' that ' ‘

\(/; (9Sym~g(w) = i(sn/" W h(Su/m).

Henée, by Lemma 1, (2), for any ¢ > 0 we have

1) |G-

=‘ l:\/—(S,./n M)+f(S,,/n - (h(S/n)—1) < x]—di(x)

< max {|F} (x—&)— B (x—e), |F} (x+&)— D (x-+e)|}+

v
p[[£"
o

f(SJ"“M)(h(SJn)—II)‘ > 8]4.
+max {|P(x—&)— & (%), |®(x+&)— P(x)|} .
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But, for any a > 0 (later we shall take 0 < a < 1/2), we get

(12) P[—?(S,,/n—u)(h(sn/n)—l) > a}
- P[‘é(s,/n—p)(h(s"/n)—l)‘ > e, 4(S,,/n—/.t)l > s-a]+
+P H—*éi'(s,,/n— u)(h(S,,/n)—l)' > e, \/T;(S,,/n— u), < s‘“]-

VAN

P[|Sa—nw/o/n| = e “]+Ph(S/n)—1] > &' *]

< 1-F*E Y+ F*(—e )+ P[h(S/n)—1] = &**]

< |FX(E™®)— @ ) +IFF (=)= B (- O +2(1 -2 (™) +
P[RS/ ~1] > &+, -

Moreover, by the assumption that geC'(R) and g'(y) # 0, we obtain

3 P[Ih(Sy/m)—1| > s”j = P[%ﬁ%_—l‘ > 81“‘]

) o ‘P[g’(u+6(S;./n—i‘))_1‘ > 81”:,’
g W

where 0 <. 0 < 1.

Using (11)-(13) we get (8).

To prove (9) and (10) it is enough to use (6) and (4), respectively, the
considerations given above, and to note that 2(1—d§(e‘“)) < Ce¢ and

T g
max {|P(x+8)—P(x)|, |P(x—g)—P(X)|} € —F=.
{l( _()Il( )— @ (x)|} NS
Estimates (9') and (10" follow from (9) and (10), respectively, and from the
estimafe

PR,/ —1] > &'*°]

g" (n+0, 0(S,/n— p)| S it Co?
e e

where 0 < 8 <1, 0 < 0, <1, and C is a positive constant.

=P I:'O(S,,/n— w

3. Uniform estimates. The considerations of Section 2 and the uniform
estimates given in Section 1 ((3) and (5)) allow us to give the following
results: : .
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TueoreM 7. Let {X,, k > 1} bé a sequence of mdependent and identically

distributed random variables w1th EX; = u, 6’ X, = ¢* < . Then, for any
¢ >0, a >0, and geC'(R) with ¢'(u) # 0,

(14)’ sup |G¥ (x)— P (x)| -.<\. 35up|F,T(x)—d>(x)|+2(1—d5(s“'))+

| lg’(u+0(Sn/n—u))_1I m] e
+P[| g® > e +\/2?

where 0 <.0 < 1. _
If, additionally, E(X?)? ¢(X?) < oo and pe F, then there exists a positive

constant C such that, for any ¢ > 0, a > 0, and geC*(R) with g'(u) # 0,

(15)  sup|Gy(x)—@(x)

1 lg' (1+0(Su/n—p) ] }
C +P - -1 = ¥ |+¢
{fp(an”z) [l g (1)
IfE|X,|® < oo, then there exists a positive constant C such that, for any
e€>0,a >0, and geC'(R) with g’'(n) # 0,

(16)  sup|GE(9— () < c{i+P[‘g'("+"(S"/"‘“”—1' > él+’]+s}.

Jooo dw

If ge Ci(R), then we have

) 1 ve_

! ~(17'2-3)2
(15) : suplG*(x) D(x) < Cmax{m, n | ‘) }
and '

(16)) sup |G* (x)— D (x)| < Cn~(7"2-304

Proof. Inequalities (14)-(16) can be obtained by the considerations given

~in Section " 2, inequality (2'), and the corresponding uniform estimates of

Section 1.

To prove (15') it is enough to note that for geC2 (R) inequality (15) can
be rewritten as follows:

1 1 '
S‘iPIG: (x)-2(x) < C {(p(o_nl/Z) +m:2‘1 Yo 'H'}‘

Then, putting ¢ = p~ {1 ~@/2(1+a) and o = (1’7‘/2—3)/4, we obtain (15').

* Inequality (16') follows in the same way.
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CoroLLARY. If {X,,k = 1} is a sequence of independent identically
distributed random variables with EX, = u # 0, 0 X, = ¢*, E|X,|® < x,
then

- 1/2_
< Cn 17 3)/4_

“2porT < xJ —d(x)

Q2 _,,2,,2
sup P[S" i~
X
We give now an extension of Theorem 5.

THEOREM 8. Let [X,,n > 1} be a sequence of independent identically
distributed random variables with EX, = u, 02X, = o%, and E|X??*?
< 0, 0 < 6 < 1. Then, for every -geC3(R) with g'(w) # 0,

(17

TIMg

n~ 1+ sup |G*(x)— D (x)| < 0.
1 x
If E(X9)?log(1+|XY)) < o0, then (17) converges with 6 = 0.

Proof. Under the assumptions of Theorem 8 we can write (14) in the
form

sup|G¥ (x)— @ (%)) < C{sup|F}(x)—®(x)|+n~ 07" -3},

Now using Theorem 5 and the fact that 6/4—(17Y2—3)/4 < 0as 0 < &
< 1, we conclude that (17) holds. ' ‘

We give now some uniform estimates of the above type in the case where
X, k = 1, are not identically distributed.

TueoreM 9. Let {X,,k =1} be a sequence of independent random
variables with EX, = w,, 6> X, = of, and E(X)? p(X) < 0, k = 1, for
some @€ F. Then there exists a positive constant C such that, for any ¢ > 0

and geC'(R) with g'(&,) # 0, n > 1,

(18)  sup|G,(x)— @ ()|

Y E(X0) o (XD) [
k=1

< C{ . |g,(ﬁn+-0(sn/n—ﬁn))_l‘ ? 81+“]+6},
Sy @ (Sn)

. l g (&)
where

n

Sng' (B

Gulx) = _P[ {9(Sm—g@)} < xJ

and 0 <6 < 1. ‘ .
IfE|X2® < o0, k > 1, then there exists a positive constant C such that,

" for any ¢ > 0 and geC*(R) with g¢'(,) # 0, n > 1,
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(19)  sup|G,(x)— 2 (x)|

<

Z": E|XOP o - ~
C{m _ +pﬂ-" (#..+;((»;n;n—un))_1‘ Nm]ﬂ.}_

Sn
If ge C}(R), then (18) and (19) take the forms
(18')  sup|G,(x)—-P(x)

S E(X9? (X)) . R
<C {"*‘ + o + }
st (s, nt +(17"2—3)/4(g,(ﬁn))2 n(1742-3)4

and ‘
(19)  suplG,()-B()

Y E|XQ? 5
< Cc{t + on ot
= 3 1+7Y2-3ya ¢ remw2 (172 3)8 ("

s nl+( (g (@) nt V

~Proof. Put
gx)—g(m) . -
: ———  if x # [,
hy () {(x—u,.)g ()
1 fx=70a,,n=1,2,
, Evaluations similar to those in the proof of Theorem 6, together with
Theorems 3 and 1 lead to (18) and (19). Estimates (18) and (19') can be
obtained from (18) and (19) after using Chebyshev’s inequality to estimate

P [Ig,(ﬁn+0,(€n/n_ﬁn))_ 1‘ 2 81 +u:,,
g9 (i) ,
1} be a sequence of independent random

CoroLLARY 1. Let {X,,k >
variables with EX, = u, k> 1, ¢*X, = o}, and E(XD)? (X0 < o,

k = 1, for some pe F. If geCB(R) and g (;1) # 0, then there exists a positive -
constant C such that v

Z E(Xo)z(P(X ) sz 1 }

' _ < k=1 n ]
(20) SIiPIG..(x) P(x) < C{ o6 +n1+“7”2‘3’/4+n‘””2‘3”4

IfEX, = pand E|X,)®> < M, k > 1, where M is a’posmve constant, and
if there exist positive constants Cy and C, such that C;n < s? < Czn then

Jor every geCi(R) with g'(y) # 0
(21) sup |G, (x)— @ (x)| <

Cn— 17234



Convergence rate - _ 93

To give the next corollary we need the following .

Definition. A sequence {X;, k > 1} of independent random variables
is said to satisfy condition (A) if there exist a random variable X and positive
constants a, b, and x, such that, for all n = 1 and x = x,,

w ! % POX > ] < aP[IX] > b].

Cororrary 2. If {X «» k = 1} is a sequence of independent random
variables with EX, = p, k > 1 whzch satisfies condition (A) with a random
variable X.such that E|X|?> < oo and there exists a positive constant C; such
that s2 > Cyn, n = 1, then for every geC}(R) inequality (21) holds.

‘The statements of Corollary 1 follow immediately from Theorem 9. The
assertion of Corollary 2 is a consequence of Corollary 1, condition (A), and
the assumptions given in Corollary 2.

4. The behaviour of functions of sums with randem indices. Here we give
some results on the convergence rate in (1) for the case of random indexed
sums.

In what follows we write

Gy, (x) = [\/,(*){Q(SN,/N..) g} < x]
TueoreM 10. Let {X,, n > 1} be a sequence of mdependent and identically
distributed random varmbles wzth EX, = p and 6> X, = ¢* < 0. Suppose
that {N,, n > 1} is a sequence of positive integer-va!ued random variables such
that {X,,n > 1} and {N,, n > 1} are independent.
If E(X))? (X)) < oo and @€, then there exists a positive constant C
-such that, for geCi(R) with g’ (1) # O,

1 . '
, EN—(171/2—3)/4 .
@(@N?)"

(22)  supl|GE (0)—-@(x) < C max{E
| If, moreover, E|X,|® < o, then
(23) ~ sup|G% () —(x)) < CEN, 17234

- for ge C3(R) with g'(w) # 0 and some positive constaﬁt C.

Proof.. We shall prove (23). Taking into account the independence of
{X,,n = 1} and {N,, n > 1} we have

sup |G§ (x)—d(x)| < sup 2 IG*(x) &(x)| P[N, = k].

x k=1

Using now estimate (16') we get (23). The proof of (22) is similar.
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Let us consider now the case where the random summation index N, may
depend on X,, n > 1.
We prove the following

THEOREM 11. Let {X,, n = 1} be a sequence of mdependent and identically
distributed random variables such that EX, = u, ¢’ X, = o2, and E|X,|?
< 0. Suppose that {N,, n > 1} is a sequence of positive integer-valued random
variables such that

49 - . PONn—1} = & = 0(\/,).
where 1. is a positive random variable independent of {X,, n > 1}, taking values

in an interval (¢, d), 0 < ¢ < d < 0, and &, = n” 17" "32_ Then for every
geCi(R) with g'(n) # 0

(25 sup|G¥, ()~ B(x) = O(n~17"*-314)

Proof. The considerations of the proof of Theorems 6 and 7 allow us to
write, for any ¢ > 0 and 0 < a < 1/2,

SN,,""iVnFl
”[_m—_ < ."]‘4’"" *
+max {|8(x—e) = B (), [B(c-+5)— B} +2(1— Be™9) +

P[|g’(#,+9(S~u/N..—u))_ 1( S 8,;,]
l g () -

sup|G#, (x)~ @ ()| < 3sup

<C {sup

x

N ,,_"Nn“ |
[ a'\/_ ]—qﬁ(x)+
g"(1+6,0(Sn,/N,~p)

g

PUB(SN,,/N..-M)

81 +a:,+£},

where C is a positive constant and 0 <0 <1, 0< 6, < 1.
In {5] it has been proved that under assumption (24)

[Sa:/_ x]—é(x) = 0(/2).

sup

X

We now prove that
PLISy, /N, —pl = &' 79 < C/me™1+9

where C is a positive constant.
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Put I, = {k = 1: [n(c—e,)] < k < [n(s,+d)]}. Then we have -
P[ISN,/Nn—hI > &'**] < P[ISy,— N,y > N,&'**, N,el,]+P[N,¢1,]
< P[ISy,~Notl > [n(c—e)1e' ™, NoeL,]+0( /2,
< P[ max |S,—kpl > [n(c—e)1e' "] +0(Ven).
kel

By Kolmogorov’s inequality we have
[n(e,+d)] o (of
[(c—e 26200 < pgaive’

P[ max |S,—ky| > [n(c—e)]e'™®] <
- k&l

where C is a positive constant.
Using this estimate and the assumption that geC3(R) we obtain
sup|GE, ()~ P(x) < C(/e,+e+1/neX1¥9),
Letting now g = n~(7®20%a o — (1712_3)/4, we get (295).
Remark. The results obtained, giving the rate of weak convergence of
{g(S./n), n = 1}, can be applied in statistical investigations (see, e.g., [8],
p. 259). One can observe that the mentioned convergence rate is heavily based
on the convergence rate in probability of g’ (u+0((S,,/n)— y)), n> 1}.
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