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Abstract. This note gives the convergence rate in the central 
limit theorem and the random central limit theorem of some 
functions of the average of independent random variables. 

lection and preliminaries. Let {X,, k 2 1) be a sequence of 
random vakiables and put 

A 

s, = C x,. 
k =  1 

We are interested in finding estimates of the convergence rate in 

where g denotes a real function, c, and d, > ' O  are normalizing constants 
depending on g ,  D denotes weak convergence, and Na,, a normal random 
variable with mean a and standard deviation b.  

To give our results, which are an extension of some considerations in [6],  
we need the following notation, lemmas, and theorems. 

Let C ( R )  be the class of all continuous functions and let C,(R) stand for 
the dass of all bounded and continuous functions. Put 

Ck (R)  = {g  E C (R) : g'') E C, (R) )  , r 2 1 . 
Denote by F the class of all functions cp defined on R and satisfying the 

following conditions : 
(a) p(x) is nonnegative, even, and nondecreasing on [O, co] , 
(b) x/q(x) is defined for all x  and nondecreasing on [0, a). 
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LEMMA 1 ([7], p. 28). Assume that X and Yare random variabIes and F(x) 
= P[X < x], G(x) = P[X+Y< x]. Then, for a n y &  > 0, XER,  and any 
distribution function H , 

(2) IG(x)-H(x)~ < max (IF(X-E)-H(X-E)I, ~F(X+E)-H(x+E)~}  + 
+max{I~(x-E)-H(x)~,  lH(x+~)-H(x)l]+PClYl 3 E] 

and 

(2') IG (x) - H (x)l < sup IF (x) - H (x)l+ 
x 

In what follows C denotes positive constants, in general different. We put 
EX, = pk, X: = Xk-p,, 0 2 X X ,  = c$, k 2 1 .  Moreover, 

(in tk case where X,, k 2 1 ,  are identically distributed), and 
X 

( x )  = ( 1  exp(- t2/2)dt. 
- 03 

THEOREM 1 (131). Let {X,, k 2 1 )  be a sequence of independenr random 
variables with EX, = pk, a2 X, = n;, and E 1xkl3 < coy k = 1 ,  2, . . . , n. 
Then there exists a positive constant C not depending on n and x such that 

c E I X ~  
(3) sup IF,(x)-@(x)l < ck=' 

X sn 

THE ORE^ 2 ([2]). Under the assumptions of Theorem 1 there exists a 
positive constant C such rhat, for all n 2 1 and X E R ,  

n 

THEOREM 3 ([7], p. 141). Let (~€9. Assume that E(X;)' q(X:) < m, 
k = 1 ,  2, . . ., n. Then there exists a positive constant C such rhat 

n 
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THEOREM 4 { [ I ] ) .  Under the assumptions of Theorem 3 there exists a 
positive constant C such that, for all n 2 1 and X E R ,  

THEOREM 5 ([4]). Let {X,, k 1; be a sequence of independent and 
idenricully distributed random variables with E X ,  = p, b2 XI = u2 < CO. 

. Then the series 

converges $ and only if EIX,12+S < co, 0 < 6 < 1 .  If E ~ ; I o g ( l + l X , j )  
< CQ , then (7) conwrges with S = 0. 

2. Nonuniform estimates. Using the notation 

1 
we derive the following estimates : 

I THEOREM 6. Let ( X , ,  k 2 1 )  be a sequence of independent and identically 
, distributed random variables with E X ,  = p, oZ Xl = a2 < co . Then, for any 

E > 0, OL > 0, X E R ,  and g€C1 (R)  with g f (p)  # 0, 

( 8 )  IG,*(x)-!D(x)l < ~ ~ x ( ~ F : ( x - E ) - @ ( x - E ) I ,  IF~(X+E)-@(X+E)I)+ 

where 0 <Id < 1. 
If; additionally, E ( ~ y ) ' r p ( X y )  < ao, where ~ € 9 ,  then there exists a 

positive constant C such that, for any E > 0, u > 0, x E R, and g E C1 (R)  with 
sl(cl) + 0, 
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I If E I XIl3 < m , then there exists a positive. constant C such that, fir any 
1 E 3 0, u > 0, IxER, and g€C1(R) with .gl(p) # 0, 

If GC;(R),  fhm (9)  and (10) take the fnm 

9 IG,* (4 - Wx)l 

and ' 

, respectively. 

Proof. Put 

8 # r ,  

i f x = p .  
We see that 

& J;r - (s (SJn) - s ( P I )  = (Sdn - d h(SJn) 
s' (PI 

Hence, ,by Lemma 1, (2), for any E > 0 we have 

(11) tG:(x)-@(x)l 
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But, for any a > O (later we shall take 0 < a < 1/2), we get 

Moreover, by the assumption that g E C1 (R)  and gJ(p) # 0, we obtain 

where 0 < 8 < 1.  
.Using (1 1)-(13) we get (8). 
To prove (9) and (10) it is enough to use (6) and (4), respectively, the 

considerati~ns given above, and to note that 2(1- @(E-")) < CE and 

Estimates (9') and (10') follow from (9) and (lo), res&tively, and from the 
estimate 

- -  . 
P[lh(S,Jn)-11 > E""] 

where 0 < 0 < 1, 0 < 8,  < 1, and C is a positive constant. 

3. Uniform estimates. The considerations of Section 2 and the uniform 
estimates, given in Section 1 ((3) and (5)) allow us to give the following 
results : 
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THEOREM 7. k t  {Xk, k 3 I )  be a sequence of independent and identically 
distributed random variables with E X ,  = p, a2 XI = a2 < co. Tkn, fur uny 
E > 0,  a > 0, and g~ C1 (R) with gf(p) # 0, 

4" , 
where 0 - = , O  < 1 .  

If; additionally, E(Xa2 rp(X:) < co and q E 9, then there exists a positive 
constant C such that, for any E > 0, a > 0 ,  and g€C1(R) with gf(p) # 0,  

If E 1X,j3 < a, then there exists a positive constant C such that, for any 
> 0, u > 0, and g~ C1 (R)  with g'(p) # 0, 

If g E Ci (R), than we have 

sup I GX ( x )  - 8 ($1 < C max , - ( 17112-3 ) /4  

X 

and 

( 1 6 1  sup]G: (x) - 9 (x)( < ~ n - ( ~ ~ ~ ' ~ - ~ ) / ~ .  
X 

Proof. InequaIities (14)-(16) can be obtained by the considerations given 
in Section 2, inequality (2'), and the corresponding uniform estimates of 
Section 1 .  

To prove (15') it is enough to note that for g€C2(R)  inequality (15) can 
be rewritten as follows: 

I Then, putting E = n-(1-a)/2(1+") and or = (17'"-3)/4, we obtain (15'). 
I 
I Inequality (16') follows in the same way. 
I 
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COROLLARY. If (X,, k 3 11 is a sequence of independent identically 
distributed random variables with E X ,  = p # 0, o 2 X ,  = a2, EIX1I3 < x,  
then 

We give now an 'extension of Theorem 5. 

THEOREM 8. Lat ( X , ,  n 2 1 j be a sequence of independent identically 
distributed random variables with E X ,  = p, cr2X, = uZ, and E(XF(2+a 
< rn , 0 < 6 < 1. Then,. for every g E Ci (R) with gf(p) # 0, 

I f  E (xa2 log (1 + lXY1) < rn , then (17) converges with S = 0. 
Proof. Under the assumptions d Theorem 8 we can write (14) in the 

form 

Now using Theorem 5 and the fact that 6/4-(1711z-3)j4 < 0 as 0 < 6 
< 1, we cpncIude that (17) holds. 

We give now some uniform estimates of the above type in the case where 
X,, k 2 1, are not identically distributed. 
THEOREM 9. Let (X,, k 1) be a sequence of independent random 

variables with EX, = k ,  aZ X, = a:, and E(X:)*rp(X;) < a, k 2 1 ,  for 
some q E 9. Then there exists a positive constant C such that, for any E > 0 
and ~EC'CR) with g'(F,J # 0, n 2 1, 

(18) supIG,(x)-@(x)l 
X 

where 

and 0 < 6 < 1 .  
If E IX;l3 < a, k 2 1 ,  then there exists a positive constant C such that, 

: for any E > 0 and ~ E C '  (R)  with gf(p,,) # 0, n 2 1, 
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If g€C;(R),  then (18) and (19) take the form 

and 

1 EIX,0l3 
< cp=1 + s," 

,If (171i2-3)/4 
+ 

Sn (gf (F,))Z n(17112 - 3114 

Proof .  Put 
I-, 

Evaluations similar to those in the proof of Theorem 6, together with 
Theorems 3 and 1 lead to (18) and (19). Estimates (18') and (19') can be 
obtained from (18) and (19) after using Chebyshev's inequality to estimate 

COROLLARY 1. k t  ( X k ,  k 2 1 )  be a sequence of independent random 
uariables with EX, = p ,  k 2 1 ,  a 2 X k  = at, and E ( X , ~ ) ~ P ( X , O )  < a, 
k 2 1,for some rp €9. I f g ~  Cg(R) and g'(p) # 0, then there exists a positive 
constant C such that 

- 
n 

= P and IXA3 G M ,  k 2 1, where M is a positive constant, and 
if there exist positive constants C1 and C2 such that C,  n d s,2 < C2 n, then 
for every g€C;(R)  with g'(p) # 0 

sup (G,(x)- Qi(x)( G ~ n - ( ' ~ " ~ -  ')j4. 
X 
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To give the next corollary we need the following 
Definition. A sequence { X ,  , k 3 1 )  of independent random variables 

is said to satisfy condition (A) if there exist a random variable X and positive 
constants a ,  b, and xo such that, for all n 2 1 and x 2 x,, 

R 

n-' 1 P[iXkl 2 x] < aP[IXI 3 bx] .  
k =  1 

COROLLARY 2. If {Xk , k 2 1 )  is a sequence of independent random 
vmiables with EXk = p, k 2 1 ,  which satisjies condition (A) with a random 
variable X. such that E I x ~ ' - - ?  wl and there exists a positive constant C, such 
that s t  2 C1 n, n 2 1 ,  then for every ~ E C , ~ ( R )  inequality (21) blds .  

.The statements of Corollary 1 follow immediately from Theorem 9. The 
assertion of Corollary 2 is a consequence of Corollary 1, condition (A), and 
the assumptions given in Corollary 2. 

4. Tb khaviour of fuwticsm d sum with mdom idices. Here we give 
some results on the convergence rate in ( 1 )  for the case of random indexed 
sums. 

In what follows we write 

THE ORE^ 10. Let { X u ,  n 2 1) be a sequence of independent and identically 
distributed random variables with EX,  = p and a2X1 = o2 < co. Suppose 
that (N,, n, 2 1 )  is a sequence of positive integer-valued random variables such 
that {X , ,  n 2 I )  and (N, ,  n 2 I) are independent. 

I f  E ( X a 2  rp(Xy) < co and rp 6 F, then there exists a positive constant C 
such that, for g€C;(R) with g'(p) # 0, 

(22) sup IG;,(x) - @(x)l < C max 
X 

1 EN, ( 1  7 112 - 3)/4 

rp (aNAt2) ' 

If, moreover, E Ix1l3 < oo, then 

for g E Ci(R) with g' (p) # 0 and some positive constant C .  
Proof. We shall prove (23). Taking into account the independence of 

( X u ,  n 2 1) and {N,, n 2 1 )  we have 
03 

sbp IGgn(x)-@(x)/ d sup (G:(x)-@(x)lP[N, = k ] .  
x x k = l  

Using now estimate (16') we get (23). The proof of (22) is similar. 
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Let us consider now the case where the random summation index N ,  may 
depend on X,, n 2 1. 

We prove the following 
I THEOREM 1 1 .  Let (X,, n 2 1 )  be n sequence of independent and identically 

distributed random variables such that E X ,  = p, a2X, = cr2, and E ( x , I ~  
< m . S u p p e  that { N , ,  n 3 1 )  is a sequence of positive integer-valued random 
variables such that 

(24) - - PDNJn-AI 2 E,] = 0(&), 

1 where A is a positive mndorn variable independent of {X,, n 3 11, raking ualues 
in an interval ( c ,  d), 0 < c i d < CQ, and E,, = n-(i71/2-3)12. Thenfor euery 
g ~ C i ( 4  with g f ( p )  # 0 

Proof. The considerations of the proof of Theorems 6 and 7 ailow us to 
write, for any E > 0 and 0 < ar < 1/2, 

N,-Nnp < C sup P i 1 r., < x]-r(xll+ 

where C is a positive constant and 0 < 8 < 1, 0 < 8, < 1 .  
In [ 5 ]  it has been proved that under assumption (24) 

We now prove that 

P flSNm/N,-/tI 2 E'+'] 6 C/pl~~(~+' )  , 
where C is a positive constant. 



Convergence rate 95 

Put I ,  = {k 3 1 : [n(c -E, ) ]  < k < [ n ( ~ , + d ) ] ) .  Then we have - 

P[(SNR/Nn-PI 3 E""] ,( PIJSNn-Nn~I 2 Nn&lf", Nn~JttI+ PINm#JnI  

< P[max IS,-kpl b [ n ( e - ~ , , ) ] e ' + ~ ] + ~ ( ~ & ) .  
k ~ l ,  

By Kolmogorov's inequality we have 

where C is a positive constant. 
Using this estimate and the assumption that g E C2 (R)  we obtain 

sup (GA (x) - @ (x)J h c (<& + E + 1/m2(l 
X 

Letting now E = n-(1-")/2(1+"', oc = (17'l2 -3)/4, we get (25). 
Remark.  The results obtained, giving the rate of weak convergence of 

{g(SJn), n 2 1 1 ,  can be applied in statistical investigations (see, e.g, [S], 
p. 259). One can observe that the mentioned convergence rate is heavily . . based 
on the convergence rate in probability of (g'(p+ 0 ((S,Jn)- p)), n 2 1 )  . 
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