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Abs~acr .  The aim of the present paper* is to prove the existence 
of universal Doeblin probability measures for classes of multiply self- 
decomposable probability measures on Banach spaces. 

1. introduction a d  notation. Throughout the paper we shall denote by X 
a real separable Banach space with the norm 11 - 11 and the topological dual 
space X*. Given r ,  s > 0, let 

and let B: be the complement of B,. We shall consider only a-additive 
measures defined on Bore1 subsets of X.  Given a bounded linear operator A 
and a measure p on X let Ap denote a measure defined by 

In particular, if Ax = cx ( x  E X )  for some c E R1, then Ap will be denoted 
by the usual symbol T , p .  

Let L,(X) denote the class of all infinite divisible (i.d.) probability 
measures (p.m.'s) on X endowed with the weak convergence -. It is well 
known [3] that for every measure p E Lo (X) its characteristic functional (ch,f.) 
fi has a unique representation 

where x, is a vector in X, R a covariance operator corresponding to the 

* Partially written during the author's stay at the Wroclaw University (Poland) in the 
academic year 1980/8 1. 
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symmetric Gaussian component d p, and M a Uvy measure on X. The 
kernel k is given by the formula 

where 1, denotes the indicator of a subset E of X. 
In the sequel we shall identify p with the triple [x,, R ,  M] in (1.1). In 

particular, if x, = 0 and R = 0, then p will be denoted simply by [MI 
which, for a finite measure My is of the form 

m 

[ M ] ( E )  = e(M)(E) =e-"(') M*k(E)/k! (E c X), 
k =  0 

where the asterisk * denotes the convolution operation. Further, if t > 0 and 
p = [x,, R ,  MI, then we denote by pt the p.m. [tx,, tR, tM]. 

A p.m. p on X is called self-decurnposabIe if for every c ~ ( 0 ,  1) there exists 
a p.m. & such that 

If -3) P = ZP*&. 

Note 171 that if p is self-decomposable, then p and are both i,d. 
Multiply self-decomposable. p.m17s &ere. studied by IUrbanik [I21 on R1 

and by the author [9] on general Banach spaces. Recall [9] that a p.m. p on 
X is said to be n t ims self-decomposable if for every c ~ ( 0 ,  1) the 
decomposition (1.3) holds, where the measure is n-  1 times self- 
decomposable. Let L,(X) denote the class of all n times (n = 1, 2, . . .) self- 
decomposable p.m.'s on X . The class L, ( X )  of completely self-decomposable 
p.m.'s on X is defined as the intersection of all L,(X), n = 1, 2, ... 

In the sequel we shall extend the definition of classes L,(X) to the 
fractional case &(X) (a > 0) by introducing operators .Ia (a > 0) on some a- 
finite measures on X. Such operators stand for some analogues of ordinary 
fractional integration on functions. 

In [4] DoDoCblin proved that there exists an i.d.p.m. belonging to the 
domain of partial attraction of every one-dimensional i.d.p.m. A natural 
generalization of this theorem in a Hilbert space was done by Baraiiska [I], 
and in a Banach space by Ho Dang Phuc 161. A new version of the theorem 
was obtained by the author. Namely, in [lo] we presented an operator 
approach to Doeblin's theorem. 

Let A be a bounded linear operator on X and let K be a subclass of 
L,(X). A p.m. p on X is said to be A-universal for K if p E K and for every 
p.m. V E K  there exist subsequences ink) and {mk) of natural numbers such 
that the sequence { A " ~ ~ ~ ~ )  is shift convergent to v. The case K = L,(X) was 
treated in [lo]. In the sequel we shall prove the existence of A-universal 
p.m.'s for &(X) (a > 0). Our results are new even in the onedimensional 
case. 
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2. Fractional sakuhs on semi-finite measures an X. The starting point to 
this study is a known formula for Levy measures corresponding to n times ( n  
= 1, 2, . . .) self-decomposable p.m.'s on X. Namely, in [9], formula (5.2), we 
proved that p E L,(X) (n = 1, 2, . . .) if and only if its Levy measure M is of the 
form 

m 

(2-1) M (Q = J c,(x) j l,(e-'x) tnL1 dtrn(dx) ( E  c X), 
X 0 

where m is a finite measure on X vanishing at 0 and 
.- - w 

(2.2) - cil(x) = S @ ( ~ - ~ x ) t " - l d t  (xEX], 
0 

@ being a weight function on X in Urban~k's sense [13]. 
Butting G(dx) = (n- l)! c,(x) rnedx), and taking into account (2.1) we get 

a measure G which is finite on every Bi (r > O), G((0j) = 0 ,  and 
m 1 

(2.3) M ( E )  = - 1 j l , (e - '~) t " -~  dtG(dx] ( E  c X), 
(n-ll! x 0 

where the constant (n-l)! is introduced for further convenience. 
Let M ( X )  denote the class of all g-finite measures M on X such that 

M({O)) = 0 and M(Bi) < a, for every r 3 0 .  A sequence ( M , )  c M ( X )  is 
said to be convergent to M if M, 13: converges weakly to M J B: for every 
r > 0. 

Formula (2.3) suggests a more general setting. Namely, for a > 0 and 
GEM(X) we put 

1 * 
(2.4) J" G(J3) = - 1 j l F ( e - ' x ) t U - '  dtG(dx) 

r ( 4  x 0 

for all Bore1 subsets E of X. 
It is evident that for any GI, G2 E M ( X ) ,  a > 0, arid for every linear 

bounded operator A on X we have 

(2.5) Ja (aAG1 + G2) = pAJa GI + Ja G2., 

Further, we have the following 
1 i~ I I 

I 21. b~o~osmon. For any a > 0 ana G E M (X) , S G E M (X) If and only if 

(2.6) j logu ( ( X I (  G fdx) < o~ . 
i B; 

Moreover, if J" G EM(X), then for every p > 0 we have 

$ and only if 
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1 Proof. Given r > 0, by (2.4) and by a simple computation we have 
I 

which implies the first part of the proposition. Further, for any p > 0 and 
S > 0 we obtain 

which, by a simple reasoning, implies the second part of the proposition. 
Thus the proof is completed. 

2.2. THEOREM. f i r  arty cr, f i  > 0 and G E M ( X ) ,  J U G ,  J @ J " G E M ( X )  if 
I 
I 

and only if J " + B  G E M ( m .  In any case we have 

Proof. For any a ,  p > 0 and G c M ( X )  we have 

1 logllxll 
- -- j I (log flxll- t)Bta- ' dtG(dx) 

r ( 4  Bi 0 

Thus 

which, by Proposition 2.1, implies that Ja ' P  G E M ( X )  iff Ja G, JB  Ja G E M ( X ) .  
On the other hand, by (2.4), for every Bore1 subset E of X we get 

1 " 
J @ J u G ( E )  = - 1 1 l , ( e - fx ) t a - l d tJaG(dx )  

r(8) x 0 

which proves (2.9). Thus the proof is completed. 
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I 

The following: theorem can be considered as an analogue of the 
Dominated Convergence Theorem for ordinary integrals. 

23. THEOREM. Suppose that for ol. > 0 and G n ,  G ,  H E  M ( X )  we have 
G,  + G ,  G, 6 H for every' n  = 1 ,  2 ,  . . . , and Ja H E M ( X ) .  Then 

J U G ,  e- J U G .  

P r o  of. From the assumption that J" H E M ( X )  it follows that for every 
r > O  - 

Let f be a bounded continuous function on Bi with 

C = sup ( I f ( x ) l :  X E B : ) .  

Then for every t > 0 we have 

. (2.12) 1 j f ( e - ' x ) ~ , ( d x ) (  6 C G . ( y e , )  < CH(BL,)  (n = 1,2 , . - , j .  
B;d 

Further, since G ,  3 G ,  we have 

lim' 1 f (eFtx)G, (dx)  = j f ( e - ' x ) G ( d x ) ,  
n-+X! B ' #  

re B:er 

which together with (2.1 1) and (2.12), and the Dominated Convergence 
I Theorem implies I 

I 1 " 
lim j f  ( x )  Ja G,  (dx)  = lim - j l f (e-' x) G ,  (dx)  t"- ' dt 
n + a  B' n - + m  ~ ( Q I  o B;,, 

I 

Consequently, Ja G,  3 J" G . Thus the theorem is proved. 

24 COROLLARY. Suppose that G, , G  E M ( X ) ,  G,  G and, for some s > 0 ,  
G, (n = 1 ,  2 ,  ...) care concentrated on 3,. Then for every a > 0 we have 
Ja G ,  - J U G .  

P r o  of. Write H = sup G,. Then H E  M ( X )  and H is concentrated on B,. 
Now, by Theorem 2.3 we get the Corollary. 

2.5. THEOREM. Suppose that for a > 0 and G,, G , M , ,  M  E M ( X )  we have 
M,  = J U G ,  ( n  = 1 ,  2 ,  ...), G ,  - G ,  and M ,  - M .  Then M = JOG. 

Proof.  Choose s, r (0 < s < r) such that B,,, is a continuous set for G .  
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Then, for every bounded continuous function f on B,,,, we have 

1 ~ s l l x l l s - '  
+ lim - 1 j f (e-'x) P- l  dtGn(dx) 

ntm r ( a )  B; l ~ g l / x i l r - l  

which shows that M ( B,,, = Ja G I B,,, and, consequently, M = JUG.  Thus 
the theorem is proved. 

Given a > 0, e = e-', t > 0, and M E M ( X )  we put 

for all Bore1 subsets E of X such that 0 4 8 ,  where 

( )  = 1 and ( z )  = 
a(a-1) ... (a-k+l )  

(k = 1 ,  2 ,  ...). 
k ! 

Since 

it follows that if O$E, then the series (2.13) is absolutely convergent, and 
, hence i t  defines a signed measure on the field of Borellsybsets of X such 

that O$E. It is clear that A: M is a-additive on every 3; (r  3 0j. I ' 

In the sequel we shall need the following function on (0, a): 

Such a function plays an important role in the study of ordinary 
fractional integrals. Recall [14] that pa€L?(O, m) (a > 0) and 
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Further, for any or, t > 0 we define a signed measure on (0, co) by 

(2.1 6) $ {dx) = t - ' pa (x/t) dx . 
Then we get the following lemma : 
26. LEMMA. FOP every u > 0 the signed measures n$ ( t  > 0) have a common 

finite variation on (0, a) and nf * a0 as t 10. 
Proof. By (2.141, (2.16), and by the fact that pa E ~ ( O ,  a) the measures qu 

( t  > 0) have a common finite variation on (0, a). For v >, 0 we put 

Then, by (2.16) we get the formula 

Therefore 
0 i f v = O ,  

(2.19) 
110 

which implies that @ = a0 as t 1 0 .  Thus the lemma is proved. 

27. LEMMA. Suppose that for a > 0 and M, G E M ( X )  we have M = 3°C. 
Then t - ' A f M - G  on every Bi ( r  > 0) as t / O .  

Proof. Given r > 0 and a bounded continuous function f on 3: we have, 
by (2.13), the formulas 

Hence and by (2.14) and (2.16) we get 

which, by Lemma 2.6, implies that 

Consequently, t-" A: M * G as t 1 0 .  Thus the lemma is proved. 
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i 2.8. LEMMA. Suppose that for a > 0 and M, G E M ( R ' )  we haue 

1 loga 1x1 G (dx) c co 
I 4  ' 1 

and assume that t - "  A: M + G on every set {X F R' : 1x1 > r) (t > 0) US t 10. 
Then M = J" G .  

Proof. We may assume that M and G are both concentrated on (0, m). 
For U E R '  and t > 0 we put 

I 

(2.21) 4(u)  = M ( d x ) ,  
, - ,  

e -  u 

m 

(2.22) g(u) = 1* G ( d x ) ,  
e- Y 

By (2.131, (2.21), and (2.23) we get 
' 

I yhich, by the assumption of the lemma, implies 
m 

(2.25) Iim t-°A; q(u)  = J G(dx) = g ( ~ )  
t1o e- Y 

for every point u of continuity of g . Further, from (2.22) it follows that for every 
a € R 1  

a a 

( a -MY- 'g (u )du  = a-' (a+logx)"G(dx), 
- m  e-a 

which, by (2.20), implies that for every a €  R1 
a 

(2.26) j ( a -uy - 'g (u )du  .< a. 
- I D  

Finally, formulas (2.25) and (2.26) together give an integral representation 
of q (cf. 181). Namely, 

which, by (2.21) and (2.22), implies M = Ja G .  Thus the lemma is proved. 

2.9. THEOREM. Far any a > 0 and M ,  G E M ( X )  the relation M = J a G  
holds i f  and only i f  condition (2.6) is satisfied and t-" AYM G on every Bi 
(r  > 0) as t J O .  Consequently, the operator Ja (or > 0) is one-to-one. 
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Proof.  The necessity foIlows from Proposition 2.1 and Lemma 2.7. We 
prove the sufficiency. 

Suppose that for a > 0 we have t - a  A; M =. G on every Bi ( r  > 0) as 
t J 0 and G satisfies (2.6). Given a functional y EX* with llyll = 1 let yM and 
yG denote projections of M and G on R1, respectively. By (2.6) it is evident 
that 

f log" 1x1 yG (dx)  < cc 
1x1 > 1 

.. 

and, moreover, r- 'A;yM Z- yGoneveryset [XER': 1x1 > r ) ( r  > 0)as tL0. 
Hence and from Lemma 2.8 it follows that yM = J4yG. Consequently, 
y M =  yJa G ,  and since y is arbitrarily chosen, we get M = J" G ,  which 
completes the proof. 

Recall that a Banach space X is of type p (0 < p < 2) if for every sequence 
(x,) c X with C Ilx,llP < co the series C x , ~ ,  converges with probability 1, 

A n 

where :E , )  is the Rademacher sequence. Every Banach space X is of type 1 and 
every Hilbert space is of type 2. Further, X is of type p (0 < p d 2) if and only 
if every M E M (X) with J I lx[lp A4 (dx)  < a, is a Levy measure. Hence and by 

B ,  
Proposition 2.1 we get the following 

210. PROPOSITION. S u p p s e  that X is of type p (0 < p < 2), a > 0 ,  alld 
G E M ( X )  with 1 IlxlJP G (dx)  < cc . Then Ja G is a G v y  measure if and only if 

1 

This proposition implies the following 

211. COROLLARY. For every Livy measure on a Hilbert space H and for 
I every o! > 0 ,  Ja G is a Livy measure if and only if condition (2.27) is satisfied. 

3. Universal muhitiply self-deeonpsable p.m.'s. Operators Ja (a > 0) 
defined by (2.4) allow us to subclassify i.d.p.m.'s on X into decreasing 

I subclasses (X) (a > 0) which, for a = n (n = 1 ,  2, . . .) , coincide with 
classes of n times selfdecomposable p.m.'s on X . Namely, given cr > 0, we 

Put 

& ( X )  = { p  = Ex, R ,  M J E L , ( X ) :  M = J U G  for some GEM(X)). 
, Q 

By (2.3) and Theorem 2.9 we get the following characterization of multiply 
self-decomposable p.m.'s on X : 
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3.1. THEOREM. A p.m. p = [ x ,  R , MI E LO(X) is n times self-decomposable 
if and only, if there exists a G E M ( X )  such that 

S log" 11x11 G(dx) < 

and r -"A:M = G as t i 0  on every B: (r 3 0). 

3.2. THEOREM. For any 0 < a < P we have 

- Proof.  Suppose that p E L8 (X) . We prove that p E L, ( X )  . Clearly, one may 
assume that p = [MI, where M = J B  G for some G E M ( X ) .  By Theorem 2.2 
we have JB-" G f M ( X )  and M = . J " J ~ - "  G ,  which shows that [MJEI+(X) 
and (3.1) is proved. 

In [10] we proved that if A is a bounded invertible linear operator on X 
such that 

then there exists a p E Lo(X) such that p is A-universal for L,(X)  . Moreover, 
if X is a finite-dimensional space, then from the existence of A-universal 
p.m.'s for Lo (X) it follows that A is invertible and condition (3.2) is satisfied. 

The same is true for &(XI. Namely, we get the following theorems : 

33. THEOREM. Let A be a linear operator on Rd (d = 1 ,  2, ...) such that 
for some a > 0 there exists an A-universal p.m. for &(Rd). Then A is 
invertible and condition (3.2) is satisfied. 

Proof  is the same as the proof of Lemma 1 in [lo] and will be omitted. 

I 3.4. THEOREM. For every invertible bounded linear operator A on X 
satisfying condition (3.2) and for every u > 0 there exists an A-universal p.m. 
for LAX) - 

Proof.  Suppose that A is an invertible bounded linear operator on X such 
that condition (3.2) is satisfied. By (3.2), there exist constants c > 0 and a > 1 
such that 
- - -  

(3.3) llAklJ s e a - '  ( k  = 1,2, ...). 

Given or > 0 we infer from the definition of &(X) and Lemma 2.4 in 
[ll] that there exists a countable dense subset {p , )  of L(X) such that 
pk = EMk] x dx,, Mk = J" G,  , where Gk is a measure concentrated on Bk , 
Gk({O)) = 0 and Gk(X) < k (k = 1 ,  2 ,  ...). 

Put 



Sey-decomposable probability measures 8 1 

where for a real number b its integer part is denoted by [b] and the constant 
rr is ,determined by (3.3). Since G , ( m  < k (k = 1, 2, . ..), G is a finite 
measure on X and, moreover, G({O)) = 0. 

Let B = max(e, IjA-lll). Theny for every k = 1, 2, .. ., 

Hence and by (3.4) we get 

which, by the fact that G is finite and by Proposition 2.10, implies that Ja G 
is a Liky measure. Put M = 3' G and p = [MI. It is evident that p~ L ( X ) .  
Out fdrthek aim is to prove that p is A-universal for &(X). 

Accordingly, let q be an arbitrary p.m. in L, (X) .  Then there is 
a subsequence (pnk)  of (p , )  converging to q .  Let us put tk = [an;] 

3 t (k = 1, 2, . ..). We shall prove that the sequence vk : = A4 p k  (k = 1,  2, . ..) 
is' shift' convergent to q .  

For k = 1 , 2 ,  ... we write 

Itl is clear that Ni and Hi are Uvy measures and 

Further, for every k = 1, 2, . . . we have 

m 

d u(Q-~) - '  x (nk+n)a-(2"h+n)n 
n= 1 

which implies 

6 - Rob.  Math Statist. 3(1); 
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Let s be an arbitrary positive number. By (3.6) we get 

. where f l  = max (e , 1 1  A- l11). Consequently, 

(3.11) Iim j bgsllx[ll\r:(dx) = 0. 
k + m  B' 

Hence and from (3.10) it follows that for any s ,  6 > 0 

I 
! Next, by (3.3) and (3.7) we get 

,where the constants a and c are determined by (3.3). Consequently, 
! 

lim 1 1IxlIN;(dx) = 0 
k-+m X 

Hence it follows that for any s i 6  > 0 

lim j log"llxlld-' N;(dx)  = 0. 
k+m B; 
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Further, formulas (2.7) and (3.8) imply that, for any r > 0 and i = 1, 2, 

Hi (Bi) = J a  Ni (B:) = 
1 1 log" lfxll r -  l N: (dx) . 

T(a + 1) B; 

Consequently, by (3.12) and (3,14), for r > 0 and i = 1, 2, we get 

(3.15) lim H;(B:) = 0. 
k + m  

On the other hand, from (2.8) it follows that for any S > 0 and i = 1,  2 

J IlxIlHi(d4 = j 11x11 JaN(dx) 
Ba 8 8  

S " 
= J llxll N i ( d ~ ) + -  j e- ' ( t  f log llxtl dtlVi(dx). 

B, r(a) 0 

Therefore, for i = 1, 2 the following inequality holds: 

Consequently, by (3.10), (3.12)-(3.14), and (3.16), we have 
I 

(3.17) lim j' llxll Hi(dx) = 0 (S > 0, i = 1, 2). 
k - r m  B 

Noting that every Banach space is of type 1 we infer from formulas (3.15), 
(3.17), and Corollary 2.8 in [53 that, for i = 1, 2, 

(3.18) [Wi] * S o  as k -+ cc. 

Finally, since pnk q,  formulas (3.9) and (3.18) imply that 

lim 4 * S x y  = q ,  
k + m  

which shows that the sequence { u k )  is shift covergent to q .  Thus the theorem 
is proved. 
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