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Absrracf. The probability measures on separable Banach space X 
which are stable under the group q ( X )  of all invertible linear . 

operators on X are investigated. The characterization of such 
measures on finitedimensional spaces was obtained by Parthasarathy 
in 161. In this paper some generalizations of Parthasarathy's result are 
given. 

1. Parthasarathy proved in [6] (see also [3] and [7]) that the probability 
measures on the at least two-dimensional Euclidean space P1" which are stable 
under the group %(R? of all invertible linear transformations of R" onto itself 
are precisely the full Gaussian and the degenerate probability measures. Our 
aim is to discuss 9 (a-stable distributions on a real separable Banach space X. 
The main results of this paper are the following: For a filbert space X it is 
shown that a nondegenerate Gaussian measure is %(X)-stable if and only if it 
is full and completely stable in the sense of paper [4]. Hence we obtain a 
characterization of %(a-stable Gaussian measures on Hilbert spaces in terms 
of proper values of their covariance operators. Further, it is shown that a non- 
Qegenerate %(X)-stable probability measure on X (dim X >, 2) is a full 
Gaussian measure if' and only if there exists a non-trivial finite-dimensional 
projector in its decomposability semigroup. As an application of this we obtain 
a Parthasarathy-type theorem for probability distributions on X, which are 
stable under 9 ( X )  in some "enough regular" way (for socalled strongly %(X)- 
stable distributions). The question whether in the infinitedimensional case 
there are nonaaussian %(X)-stable probability measures is still open. 

Further in this section we shall introduce basic notions and facts, 
Let )/-I/ be the norm of a real separable Banach space X and let X* be the 

topological dual of X. 
For a set A c X its norm closure is denoted by A.  
By B(X) we denote the set of aB probability measures defined on the class 

of Bore1 subsets of X. The set 9 ( X )  with the topology of weak convergence 



and multiplication defined by the convolution becomes a topological 
semigroup. We denote the convolution of two measures I and p by R * p, and 
b y  p*" the n-th power in the sense of convolution. If a sequence (p,) of 
probability measures on X converges weakly to a p E P(X), we write p, * p. 
Moreover, by 6, (x E X) we denote the probability measure concentrated at the 
p i n t  x. 

The characteristic functional of ,u is defined on X* by the formula 

. . fi  (x*) = j e@Yr' d p  (x) (x* E X*) . 
X 

Given p~ .F (X) ,  we define ji by 

p ( E )  = p ( - E ) ,  where - E  = {-x: X E E ) .  

The mapping p + p is a continuous automorphism of B ( X ) .  For any 
p~ B ( X ) ,  p8 = p  * ,ii is called the ssymmstrizution of p. 

A probability measure p is said to be symmetric if p = p. 
A measure p from P ( X )  is said to be fir11 if its support is not contained in 

any proper hyperplane of X. It is clear that p is full if and only if ,d is full. 
Further, B ( X )  will denote the algebra of continuous linear operators on X 

with the norm topology. By 9(X) we shall denote the group of all invertible 
operators from X onto X. 

The image and the kernel of A EL% ( X )  will be denoted by Im A and Ker A ,  
respectively. An operator A is said to be n-dimensional if dimImA = n 
(n = 1,  2, . . .). By a projector we mean an operator P from B ( X )  with the 
property PZ = P. The zero operator will be denoted by 0, and the unit 
operator by I. 

For any A E B(X) and p E P(X) let Ap denote the measure defined by the 
formula Ap(E)  = p(A- ' (E))  for all Bore1 subsets E of X. For all A in R(X)  
and p ,  u EP(X)  we can easily check the equations 

where A* denotes the adjoint operator. Moreover, it is clear that the mapping 
(A,  p )  -+ A p  from B(X) x P I X )  onto 9(X) is jointly sequentially continuous 
even if g(X) is provided with a strong operator topology. Consequently, if a 
sequence (A,} of linear operators is sequentially strongly compact, then for 
every p E 9(X) the sequence { A ,  p)  is compact in P ( X ) .  

For full measures on finite-dimensional spaces the converse implication is 
also true. Namely, if the sequence { A , p }  is compact in P(X), where p is full 
and A, E B(X) (n  = 1,  2, . . .), then the sequence {A,} is compact in B(X) (see 
[Il l ,  p. 120). 

In the study of limit probability distributions Urbanik [ll] introduced the 
concept of decomposability semigroups 9 ( p )  of linear operators associated 



%(a-stable measures 55 

with the probability measure p. Namely, g ( p )  consists of all operators A from 
B(X) for which p = Ap * v holds for a certain probability measure v .  I t  is clear 
that 9 ( p )  is a semigroup under multiplication of operators and B(p) always 
contains the operators 0 and I. Moreover, g ( p )  is closed in &3(X). It has been 
shown that some probabilistic properties of measures correspond to algebraic 
and topological properties of their decomposability semigroups (see, e.g., [ 121). 

The Tortrat representation of infinitely divisible laws on Banach spaces is 
an important step in our considerations, We recall that for any bounded non- 
negative Borel measure -- F --  on X vanishing at 0 the Poisson measure e(F)  
associated with F is defined as 

where F*" = aO, Let M be a not necessarily bounded Borel measure vanishing 
at 0. If there exists a representation 

M = sup F, ,  
n 

where F,  are bounded and the sequence (s(F,,)} of associated Poisson measures 
is shift compact, then each cluster point of { a ( ~ , ) >  will be called a generalized 
Poisson measure and denoted by e"(M). The measure E ( M )  is uniquely defined 
up to a shift transformation, i.e. for two cluster points, say p, and p,, of 
translates of (e (P , ) )  there exists an element x E X such that p, = p, * 6,. 

Clearly, Z(A4,) = i?(M,) implies MI = M,. Moreover, if e"(W is full, then 
so is M. 

For each pair i?(M), Z(N) of generalized Poisson measures and each 
A E  B ( X )  we can easily check the equations 

where A%($) = AM(S)  for all Borel subsets S  of X\(O) . 
By a Gaussian measure on X we mean a measure Q such that, for every 

X* E X*,  the  induced measure x* Q on R is Gaussian. 
Tortrat proved in [lo], p. 311, the following analogue of the Gvy- 

Khintchine representation: p~ B(X)  is infinitely divisible, i.e. for every positive 
integer n there exists a probability measure p, on X such that p:,*" = p if and 
only if p has a unique representation p = Q * Z ( M ) ,  where Q is a symmetric 
Gaussian measure on X and Z(M) is a generalized Poisson measure. 

If Q is a Gaussian measure on X, then the characteristic functional of Q 
takes the form 

G(x*) = exp [ix* (x) - $x* (Rx*))  (x* E X*) , 

where x is the mean value of Q and R is its covariance operator, i.e. a nuclear 
operator from X* into X with the following properties: xT(Rxq) 
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= xf (Rxf) for all xf , xf E X* (symmetry) and x* (Rx*) 2 0 (non-negativity) 
(see [I I). Clearly, if R is the covariance operator of p and A E B(X), then ARA* 
is the covariance operator of AQ. Moreover, for any Gaussian measures p, and 
QZ with the covariances R, and R,, respectively, the covariance of p ,  * g2 is 
equal to @, -k R,. 

We notk that p is full if and only if its covariance operator R is one-to-one. 
If X is a Hilbert space, then every Gaussian covariance is a positive definite, 

nuclear operator on X. 

2. Let p-be a probability measure on a real separable Banach space X and 
let d be a subgroup of @ (X). We say that p is d-stable if for any A ,  BE d 
there exist a C E ~  and a point X E X  such that 

A p * B p  = Cp*S, .  
The notion of stability with respect to arbitrary groups of automorphisrns 

in the case of probability measures on locally compact groups was introduced 
by Parthasarathy and Schmidt in [7]. Earlier (in [6]) Parthasarathy 
investigated probability distributions on Rn which are stable under the group of 
all invertible linear transformations of R' onto itself. The theory of d-stable 
measures' on Euclidean spaces has been presented in C81. In particular, 181 
contains the Levy-Khintchine formula for such measures. 

It is easy to see that if p is d-stable, then for any finite set A,, . . ., A, of 
elements ,of d there exist a C, ~d and a point X, E X  for which 

A l p *  ...* A m p  = C n p * 6 , .  

Consequently, for each positive'integer n there are C , E ~  and X,EX such 
that p*" = C,p *a,.., e.g. p is operator-stable in the sense of Sharpe (see 191). 
For full measures on Rn the converse is also true. Namely, a full probability 
measure p on h is operator-stable if and only if p is stable under a one- 
parameter subgroup of %(I?') (see [9], Theorem 2). 

PRoPtjsrr~o~ 2.1. Let d be a subgroup of % ( X )  and let p be a probability 
measure on: X which is stable under d .  Then p is infinitely divisible. Let p 
= 4 * Z(M)' be the decomposition of p into its symmetric Gaussian part Q and its 
generalized1 Poisson part Z(M).  Then both Q and Z(M) are stable under d. 

Prodf. 'The proposition foIlows immediately from the operator stability of 
p and from the uniqueness of the Tortrat representation. 

I We note that a generalized Poisson measure Z(M) associated with the 
measure M is stable under d if and only if for any pair A, BE d there exists a 
C E ~  such that 

(2.1) AM+BM = CM. 

: Let Q be a Gaussian measure with the covariance operator R. It is clear that 
e is d-stable if and only if for any A, BE d there is a C E s8 for which the 
Guality ARA* +BRB* = CRC* holds, 
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Let p  be a probability measure on X which is stable under a subgroup d of 
Q(X) and assume that A is a real number from (- 1 ,  1) such that 11 E&'. Then 
the operator Ai belongs to 9 ( p ) .  We infer this from the following 

~ n o ~ o s i n o ~  2.2. Let p  be an &-stable probability measure on X and assume 
that A is an operator fiom ~4 such that 

(i) the sequence {A") converges strongly to 0; 
(ii) A commutes with every element of .d. 
Then A belongs to g ( p ) .  
Proof.  Since p is d-stable and A G d, there exist a sequence {C,) in d and 

a sequence {x,) in X such that 

A p ~ 1 * A ~ p * . . . * A " p = C , p * 6 , ~  for all n. 

Hence we get the formula 

(2.2) C ; l ~ p * C ; l A Z p *  . . . * C ; 1 A n p = p * 6 c n ~ X m  ( n = l , 2  ,... ).  

Since A commutes with Cil,  it is easy to obtain from (2.2) the following 
equation : 

Moreover, from (2.2) and Theorem 5.1, Chapter 111 in [ 5 ] ,  we infer that the 
sequence (C; Ap)  is shift compact and, consequently (by (i) A" + 0 strongly), 
there exists a sequence ( y , )  in X for which 

Thus, setting v, = C; ' An+ l p * GYn and = Cil  A P  * ~ A C ; ~ ~ , + ~ , - C ; ~ ~ ,  
(n = 1, 2 ,  . . .), by (2.3) we have the formula p  * U, = A p  s p,, where v, =+ So. 
Since in this case the sequence {p,) must be compact (see Theorem 2.1, Chapter 
111 in [5 ] ) ,  it is then clear that there exists a v E B (X) for which p = A p  * v . 
This completes the proof. 

We say that a probability measure p ~  B(X) is seIf-decomposable if the 
ibclusion {h: AE[o, 11) c g(p) holds (see 121). T ~ U S  if p is %(x)-stable, 
then p is self-decomposable. Moreover, for any A€(- 1,  0) we have also 
JJ E E (p), and since 93 (p) is closed, the same is true for R = - 1. But it is easy 
to prove that - I  E 9 ( p )  if and only if p is a translation of a symmetric 
probability measure. Thus, every %(X)-stable measure is in addition a 
translation of a symmetric one. 

Moreover, the following statement is true: 

, PRO~SITION 2.3. Let p be a symmetric .d-stable probability measure on X . 
Then for anyjnite group 9 c d there exists a TE a? such that ( T -  AT) p = p 

for all A E  59. 
I For the proof see [6],  Lemma 3. 



Further, we shall need the following lemma : 
LEMMA 2.1. Ler N be a11 infinite-dimensional suhspace of X. Then there exisrs 

an A E ?/(XI such that the linear manifold A ( N )  -t- N is dense in X. 
Proof .  Let [x.) be a countable dense subset of X.  Since N is infinite 

dimensional, we can find a pair of sequences [y , ]  in N and ( y : ]  in X* such that 
y$(yn,) = 6 ,.,, ( n ,  m = 1 ,  2, . . .). Choose a sequence [a,)  of positive numbers 
such that 

J. 

1 1  1 any; (x)x , ( (  < rlxlt for all x z 0 .  
- - n =  I 

If we define the operator S by 
T. 

Sx = 1 u,,Y,$ (x) x, (x f X ) ,  - 
n =  l 

then llSll < I and S a i l  y, = x,  for all n .  Consequently, S ( N )  3 jx,,). Put 
A = I + S . ObviousIy, A is invertible and A ( N )  + N 3 (x,]. Thus the lemma 
is proved. 

An application of Lemma 2.1 leads to the following 
THEOREM 2.1. Let p be a non-degenerare &(X)-stable probability measure on 

a real separable Banach space X. Then p is full. 
Proof .  Denote by N the smallest closed subspace of X for which there 

exists an element x ,  such that p is concentrated on the hyperplane N + x , .  
Since p is X(X)-stable, for any A E 'II ( X )  there exists an operatQr B E )?[ (X) such 
that the formula 

holds. Under our assumption N # (0:. We shall prove that N = X. Indeed, if 
N # X, we can choose an operator A from &(X) in such a way that 
A(N)  # N. Then from (2.4) it follows that N (and X) must be infinite 
dimensional. But in this case A (N) + N is dense in X for some A E I// ( X )  
(Lemma 2.1). Hence and from (2.4) we infer that there exists an operator 
B E  I ( X )  such that B ( N )  = X, which contradicts the assumption N # X. 
Thus the theorem is proved. 

A probability measure p on X is said to be completely stable if for any pair 
A, B E  8 ( X )  there exist C E  8 ( X )  and X E  X such that 

We note that any non-degenerate completely stable distribution p on the 
Euclidean space Rn is full. Consequently, if A, BE ql(R7, then Cp, where C 
satisfies (2.5), is also full. Hence C(R") Rnj i.e. the operator C is invertible. 
Thus, every completely stable measure on Rn is ?l(R")stable. Since any full 
Gaussian measure on R" is completely stable, the converse is also true. 



la/ (X)-stable measures 59 

Completely stable measures on the infinite-dimensional Hilbert~ space were 
investigated in 141, I n  particular, in [4] it is shown that in this case there exist 
even completely stable distributions which are not infinitely divisible. 
Moreover, a characterization of completely stable Gaussian measures in terms 
of proper values of their covariance operators is given. Namely, it is shown (see 
[4], Theorem 3) that a non-degenerate Gaussian measure g on the infinite- 
dimensional separable Hilbert space H is completely stable if and only if its 
covariance operator has infinitely many positive eigenvalues a, 2 a j 2 . . . (i.e. 
p is not concentrated on a finite-dimensional hyperplane of H )  and the 
sequence -a,/az, (n = 1, 2, . . .) is bounded. 

Further, by H we denote a real separable Hilbert space with the inner 
product ( a ,  .). We shall prove that the non-degenerate Gaussian measures on 
H which are Il/(fQ-stable are precisely the full Gaussian completely stable 
measures. The problem of characterization of 'lc (X)-stable Gaussian measures 
on an arbitrary Banach space is still open. 

The following propositions are true: 
PROWSITION 2.4. Let a, 2 a, 2 . . . and b, 3 b, 2 . . . be the sequences of 

eigenvalues of covariance operators S and ASA* ( A  E d { H ) ) ,  respecriuely. Then 
the inequality b,, < llAllZ a,, (n = 1, 2,  . . .) holds. I n  particular, if A E  '? / (H) ,  we 
also have Q, < llA-'112bll f i r  all n. 

For the proof see [43, Lemma 2. 
PROPOSITION 2.5. Let S ,  and S2 be one-to-one covariance operarors with the 

corresponding sequences of eigenvalues a, $ a, 2 ..., respectiuely. Then 
1 1  S ,  = AS, A* for some A E  %(H) ifand only if the sequence (rnax (ajb, ,  b, a,, , 

is hounded. 
Proof.  The necessity follows from Proposition 2.4. To prove the sufficiency 

we assume that el , e,, . . . (f, , f, , . . .) is an orthonormal basis of eigenvectors 
of S ,  (S,) corresponding to the eigenvalues a, , a2 ,  . . . (b, , b, , . . .), respectively. 
Further, let U be the unitary operator on H such that Uf, = en (U-' e, = f,) 
for all n .  Put 

t 

Since the sequence [max (a,/h,, bja,) )- is bounded, H, is a well-defined 
linear operator from ;U%(H). Obviously, H ,  is a Hermitian operator. 
Consequently, setting A = U H ,  wehave AEI'IL(H) and A* = H U - I .  Now it 
is easy to verify the equation AS,  A* en = S, en (n = 1 , 2,  . . .), which shows 
that AS2 A* = S, . Thus the proposition is proved. 

PROPOSITION 2.6. Let S be a one-to-one covariance operator on H and 
A ,  BE JZ! (H) . If there exists an operator C from &?(H) such that ASA* + BSB* 
= CSC*, then we can ,find an invertible operator with the same property. 



Proof. Put S, = ASA* +BSB*. Obviously, the covariance operator S, is 
. also one-to-one. By our assumption, S ,  = CSC*.  Hence, by Proposition 2.4,' 

we have the formula 

where a,  2 a, 2 .. . and h ,  2 b ,  2 .. . are the sequences of eigenvalues S 
and S1, respectively. We note that ( S ,  x ,  x) 3 (ASA* x ,  x) and (S,  x,  x) 
2 (BSB*x ,  x) for all x. Consequently, if c ,  2 c2 2 ... and dl 3 d2 2 ... 
are the sequences .p_f, eigenvalues of ASA* and BSB*, respectively, then 

12-71 6, 2 max (c,, d,) (n = 1, 2, . . .). 
But by Proposition 2.4 we get . - 

for all n. From (2.7) and (2.8) we obtain the inequality 

b,, 2 Pnax(~l~-~11~a,,IIB-~ll~a~) (n = 1,2,-- . )  
which, together with (2.6) and Proposition 2.5, completes the proof. 

THEOREM 2.2. Let p be a non-degenerate Gaussian measure on a real 
separable Hilbert space H .  Then i s  %(H)-stable if and only if it is a full 
completely slable measure. 

P r o  of. It follows from Proposition 2.6 that every full Gaussian completely 
stable probability measure on His %(H)-stable. Conversely, suppose that Q is a 
non-degenerate Gaussian measure on H which is 9(H)-stable. By Theorem 2.1, 
Q is full. Obviously, we may assume that H is infinite dimensional. Let S  denote 
the covariance operator of Q and let al 2 a, 2 . .. be the sequence of 
eigenvalues of S. Using the same arguments as in the proof of Theorem 1 in 
[4], we infer from %(H)-stability of Q that the sequence { u , , / u ~ ~ )  is bounded. 
But in this case Q is completely stable (Theorem 3 in 141). Thus the theorem is 
proved. 

Remark 2.1. k t  Q be a full completely stable Gaussian measure on an 
, infinite-dimensional HiIbert space H. Then the sequence a, 2 a, 2 ... of 

eigenvalues of its covariance operator fulfils the condition sup a Ja,, < m. 
Put n 

a = sup a Ja,, . 
n 

, Let A ,  BE 9(H). Then there exists an operator C such that 

for some X E X  and IICJ[ < a(lJA(1 +llBI(). Namely, the operator C constructed 
in the proof of Theorem 2 in [4] has this property. Moreover, the proof of 
Proposition 2.6 shows that for A ,  B E  %(H) we can find an invertible operator 

, with the same property. 
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3. Let p be a probability measure on X and suppose that P is a projector 
belonging to 3 (p). Then, by Proposition 1.5 in [1 11,l- P also belongs to 23 (p) 
and the equality 

holds. 
L.et p be in addition in6nitely divisible. Then from (3.1) and the uniqueness 

' 
of the Tortrat representation of p one can obtain the following 

I P R Q ~ S I T I ~ N  3.1. Suppose that p = Q * Z(M), where @ is a symmetric 
, Gaussian -measure with the eouariance operator R and O(M) is a generalized 

Poisson measure. Moreover, let P be a projector on X .  Then: 
(i) P E 9 (p) if and only $ P E (p)  n 3 (Z(W) ; 
(ii)' P E 53 (P )  if and only R (Im P*) c Im P and R (Ker P*) c Ker P ; 

(iii) P E ~ ( Z ( M ) )  if and only if the measure M is concentrated on 
I m P u K e r P .  

The following lemma is a crucial step in our considerations: 
LEMMA 3.1. Let X be a real separable Banach space of dimension at least two 

and let Z(M) be a aon-degenerate generalized Poisson measure on X .  I f  there 
exists a non-triuial finite-dimensional projector P belonging to 3 (Z(M)) ,  then 
Z(M) is not @ (X)-stable. 

Proof.  Clearly, by Theorem 2.1 it is sufficient to prove the lemma under 
the assumption that E(M) is full. Then the measure M is also full. 

Suppose that PI and P, are projectors from g(Z(M)). We infer from 
Proposition 3.1 that M is concentrated on the set 

(Im P, u Ker PI) n (Im P, u Ker P,). 

Consequently, the restrictions MI Im PI and MI Ker PI are concentrated 
on the unions 

(Im PI n Im P,) u (Im PI n KerP,), (Ker P, n Im P,) u (Ker PI n Ker P,) , 

respectively. Hence, since M is full, Im P, is equal to the direct sum of 
Em PI n Im P, and Im PI n Ker P,, and Ker PI is equal to the direct sum of 
Ker PI n Im P,  and Ker PI n Ker P, . Consequently, PI P, = P, PI .  

Let k be the least positive integer for which there exists a k-dimensional 
projector belonging to 9(.Z(M)) and let f k  denote the set of all k-dimensional 
projectors from 9 (e'(M)). Consider P, , P, E f k ,  P, # P,. Since P, commutes 
with P2, the operator P IP ,  is a projector from ~ ( . Z ( M ) ) .  Moreover, the 
dimension of P, P, is less than k. By the definition of k ,  this implies P, P2 
= P2 P I  = 0. 

Hence, in particular, we infer (note that, for any PE Yk, M(Im P) > 0 and 
M is g-finite) that f k  is a countable set. 



Contrary to the assertion of the lemma, suppose that E{M) is O(X)-stable. 
Then, by (2.1), given an arbitrary A E  9(X) we can find B E  # ( X )  such that 

(3.2) A M + M  = BM. 

Now let P be a projector from Y ( Z ( M ) ) .  Then the projector BPB-I belongs 
to gi*(Be"(M)). Consequently, since AM d BM and M =S B M  by (3.2), 
Proposition 3.1 implies B P B p l  E P(AF(A4)) n B(Z(M)) (note that P(BM)  
= BZ(M) and O(AM) = AiZ(M)). Hence BPB-' , A- l BPB-' A E p ( r ' (M) ) .  
Obviously, if P E $:',,_then also BPB- I ,  A-I BPB- ' A E XA. Thus the set ,f, 
has the following property: for any A E +/(XI there exists a PA €8, such that 
A -  PA A E Rk. Fix Po E yk. Let A be an arbitrary operator from 'l/ (X) and let 
A -  PA A E Bk for PA E yk. If PA # P o ,  then PA P ,  = 0 and, consequentl$, 
A '  P A  AA-' P , A  = 0. Hence, since A - I  PA A E ~ , ,  we obtain 

(3.3) A - ' ( I m p o )  c (J KerP.  
P€Jl  

If PA = -Po, then A -  ' P,, A E f k  and, consequently, 

(3.4) A - l ( I m P o )  c (J I m P .  
Pel ,  . 

Since A is arbitrary, (3.3) and (3.4) together imply that 

which contradicts the fact that 9, is a countable set. The lemma is thus proved. 
We note that for any Gaussian measure Q on X (dim X 2 2) there are non- 

trivial finite-dimensional projectors in 9 ( g ) .  For instance, if g is a full Gaussian 
measure with the covariance operator R, then every projector of the form 
x* (.) (Rx*/x* (Rx*) )  (x* E X*) belongs to 8 (9)  (this follows, by a simple 
computation, from Proposition 3.1). Thus, combining Proposition 2.1 and 
Lemma 3.1 and taking into account Theorem 2.1, we obtain 

THEOREM 3.1. Let X be a real separable Banach space of iiimension at feast 
two. Then a ttorr-degenerate ' / /(X)-stable probability measure on X is a fuli 
Gaussian measure if and only if there exists a non-trivial .finite-dimensional 
projector in its rlecomposability semigroup. 

4. Before proceeding to state and prove the main results of this paper we 
shall establish auxiliary propositions. 

P ~ o m s l ~ r o ~  4.1. Suppose that, for n = 1, 2, . . . , p, E .Y(X) and (A,), [ B , )  
are two sequences of linear operators on X . If the sequences ( A ,  p,) and ( B ,  p,) 
are conditionally compact, then so are the sequences ~ ( A l , + B , ) p , )  and 
!(A,- B,) p,) . Moreover, if A,  p, 2i for some v E .Y(X) and B, p, 60, then 
(A, ,+B,)P,  = v . 
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Proof.  Since {A, p,) and { B, Frn)  are conditionally compact, it follows from 
Theorem 6.7, Chapter I1 in 151, that given E > 0 there exist compact sets K i  
and K: such that 

& { x :  A , X E K ; )  > 1 - ~ / 2 ,  p,[x: B , X E K , Z )  =- 1-a/2 

for all n. Then we have 

p , { x :  A , X G K ;  and B , x € K : )  > 1 - 6 .  

We note that: -- 
.. . 

( x :  A , x E K :  and B , x E K : )  c { x :  ( A , + B , ) x E K ~ + K : ~ .  

Consequently, 

p , , { x :  ( A , , + B , ) ~ E K : + K ~ )  > 1-E for all n .  

Since K;  +K; is compact and E is arbitrary, it follows once more from 
Theorem 6.7, Chapter I1  in [5] ,  that ((A,+, B,,)F,;  is compact. 

If A is an operator from &?(X), then (- A)  p = $ for any p E .Y(X). 
Hence and from the continuity of the operation - we infer that the 
compactness of {B,  p,,) implies the compactness of [( - 83 p,) . Consequently, 

! 
the sequence {(A, - B3 p,) is alsp conditionally compact. 

Let A, p, - v and B,p ,  6,. By the inequality 

iBgx"(x) < 111-e Idpn(x) = j 11-e'xqx'ld3ny, (n = 1 ,  2 ,  ... ; x 'EX*)  
X X 

we get 

lim ( (A,  + B,) p,)" (x*) = lim ( A ,  p,) A (x*)  = v^(x*)' for all x* E X* . 
n n 

Moreover, by the first part of the proposition, the sequence : ( A ,  + B,,) p, I is 
compact. Hence (A, + 3,) p, - v .  The proposition is thus proved. 

PROPOSITION 4.2. Let { T,) be a sequence of one-dimensional operators from 
.MIX), let p,, E 9 ( X )  (n  = 1 ,  2 ,  . . .), and assume that 

(i) T,P, =, P E - ~ ( X ) ,  P # 60 ,  
(ii) the sequence of norms !11T,,11) is bounded. 
Then the sequence IT,] is sequentially compact in the strong operator 

ropology. 
P r o  of. Let T, be given for each n by the formula T, = x% (.) x,,, where 

x : ~  X* and x, is the element of X with Ilxnll = 1. From (ii) it follows that the 
sequence fx,*] is bounded and, consequently (X is separable), a(X*, X)- 
compact. Thus, to prove our statement it is enough to verify that the sequence 
[x,; is compact. 
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There exist a > ' 0  and b > 0 such that for sufficiently large n we have 

Indeed, if no such a and b exist, then for any b > 0 there exists a 
subsequence of {T, ] ,  say (T,),  such that 

But, by (i), T, % = p .  As p # S o ,  this leads to a contradiction. Moreover, 
since { T, p,) is conditionally compact, it follows from Theorem 6.7, Chapter I1 
in [ 5 ] ,  that given E > 0 there exists a compact set K, such that 

for all n.  By (4.1) and (4.2) we can find a compact set K and b > 0 such that for 
sufficiently large n, say n 3 N ,  we have 

p,{x: IIzxll 2 6 and T,,xEK) > 0. 

Consequently, since 1 1  T, xJ( = JxX ($1 (n = 1 , 2, . . .), there exists a sequence 
' { y , )  in X with Ix,* (y,,)l B b and x t  ( y 3  X,EX for n 2 N. But this implies the 

- compactness of {x,). The proposition is thus proved. 

PROPOSITION 4.3. Let p be a full measure on X,  let P be a one-dimensional 
projector from 9(X), and C, E g ( X )  (n  = 1 , 2, . . .). If the sequence {Cn P p )  is 
compact in P(X), then the sequence {CnP) is  compact in B(X). I n  particular, if 
C, P p  - So, then JIG, PI( + 0. 

P r o  of. First we prove the second.part of the proposition. Let P = x$ (.) x,, 
where xX EX*, xb EX, xg(x,) = 1, and Ilx,ll = 1. Thus C, Px = x$(x) C,x, 

(xEX; n = 1 ,  2 ,  ...). Moreover, it is easy to see that if b < IICnx,J(, 
then the inequality n 

holds for any a > 0. Suppose that C, P p  - 6,. Hence for each a > 0 we 
obtain 

lim CnPp(x: llxll 2 a} = 0. 
n 

But we have 

which together with (4.3) implies that if b < & IICnx,(I, then 
n 

p(x:  )xg(x)(b 2 a )  = 0 for any a > 0. 
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Since p is fuI1, the last relation shows that HC,xoll -+ 0 and, consequently, 

lim I(C, PI1 = 0, 
A 

Now assume that the sequence (C,Pp) is compact in P(X). In order to 
establish that the sequence (C, PI is compact in B(X) it is enough (by 
Proposition 4.2 and the second part of Proposition 4.3) to show that the 
sequence of norms {IIC,, PI/) is bounded. But the Iast assertion follow; easily 
from the fact that if the sequence {C, Pp) is compact, then for every sequence 
{a,) chosen so that a, > 0 and lim a, = 0 we have a, C, Pp =+ 6, and, 

n 

consequently (by the second part of the proposition), Ita, Cn Plf + 0. Thus the 
proof is completed. 

5. Let d be a subgroup of %(X) and let a be a map from d x d into d. 
We say that a is continuous at 0 if for any pair of sequences (A,}  and {B,,} in d 
which converge to 0 we have a(An, B,) + 0. 

Let p be a probability measure on X which is stable under d. For each 
(A, B) E& x let %'(A, B) denote the subset of d consisting of those 
operators C from d for which 

Ap + Bp = Cp *6, for a certain XEX. 

If there exists a selector u on d x d with u(A, B)E%'(A, B) for any 
A ,  BE&, which is continuous at 0, then p is said to be strongly d-stable. 

Remark  5.1. Let p be an d-stable measure on X and assume that for any 
pair of sequences (A,)  and (B,) in d which converge to 0 we can find a 
sequence (C,] in d such that 

A , p * B , p  =C,p*S, f o r s o m e x , ~ X ( n =  1,2 ,...) 
and 

lim C, = 0. 
n 

Then p is strongly d-stable. 
For example, given A ,  B E d it is enough to take as a (A, B) an operator C 

from % ( A ,  3) such that 

Re mark 5.2. Let p be a full d-stable measure on a finite-dimensional 
space. Then p is strongly &-stable. 

To see this we note that for full measures p on the finitedimensional space 
X the convergence A, p * So for A, E a(X) implies 

lim A, = 0 
n 

(it' is a simple consequence of statement (ii), p. 120, in [I l l ) .  

5 .  - Prob. Math. Statist. 3(1) 
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Moreover, it is clear that any p which is stable must also be strongly 
( a l :  a > 0)-stable. 

PROPOSITION 5.1. k t  p be a probability measure on X which is strongly 
$l(X)-stabla and let An, B,E 4 ( X )  ( n  = 1 , 2, . . .). If the sequences of norms 
{IIA,1I) and {llB,JI} are bounded, then we can find a sequence {C,] in %(X) such 
thut 

A,p*B,p = Cnp*dXA for s u m  x , f X  (n = 1, 2 ,  ...) 

and {IICnt() is bounded. 
. Proof. Let p be a strongly 4 (X)-stable measure. Given A ,  BE we 

put r,,, = inf {I/CII : C E V ( A ,  B)).  Then for any pair bf sequences {A:) and 
{ B i )  in which converge to 0 we have 

lim r,;,; = 0. 
n 

Let {A,), {B,) be two sequences of operators from @(If) with 

Then, for any sequence of positive real numbers (a,] which converge to 0, 
we have 

We note that for each a > 0 and A ,  B E % ( X )  we have r,,,,, = ar ,,,. 
Consequently, a , r ~ ~ , , ~  -+ 0 as n -, oo for every sequence {a,,) chosen so that 
a, > 0 and lim a, = 0.  Hence 

n 

SUP TA,.,, < - 
n 

For each n we choose an operator C, from %(A,,, 3,) such that 
d 1. It is clear that the sequence {C,) has the required proper- 

ties. The proposition is thus proved. 
Now, we are ready to prove the main result of this paper. 
THEOREM 5.1. LRt X be a real separable Banach space of dimension at least 

two and let p be a non-degenerate probability measure on X which is strongly 
%(X)-stable. Then p is full Gaussian. 

Proof. Let p be a non-degenerate and strongly %(XI-stable measure on X. 
It is clear that the symmetrized distribution ps is also strongly %(X)-stable. In 
this case for any A ,  BE 41(X) there exists a C E %(X) such that 

(5.1) Aps * Bps = C@ . 

If we prove that @ is Gaussian, then it will follow from Cramer's theorem 
that so is p. By Theorem 2.1, p and, consequently, ps are full. For simplicity of 



I the notation we put v = ps. According to Theorem 3.1 it will be sufficient to 
show that there is a one-dimensional projector P in 9 (u) .  

Given a projector P, we put Pi = I - P. It is obvious that (I, P -  PI) is a 
finite subgroup of QIX). Consequently, by Proposition 2.3 there exists a one- 
dimensional projector Po such that ( P o -  Pk)v = u .  Put 

Obviously, the operators A, and En belong to % ( X ) .  By (5.1) for every 

I . . 
integer n we can find an operator C, in %(A') such that 

(5.2) A,u*B,u = C,v. 

We note that the sequences of norms (I(A,I() and (IlB.ll} are bounded. 
Consequently, by Proposition 5.1 we may Assume that also the sequence (lIC,Jl) 
is bounded. From (5.2) we obtain 

Hence, by Theorem 2.2, Chapter II in [5] ,  the sequences ( C i l A ,  v )  and 
{C; B,v]  are shift compact. Since v^(x*) 2 0 for all x * E X * ,  we infer that 
(C, A, V) and {C, B, v) are compact. Applying the formula (Po  - P$) v 
= u and Proposition 4.1 it is easy to prove that for any sequence IT,) in B(X) 
the compactness of (Tv) implies the compactness of (T,,P0v) and (T, P i u } .  
Hence, in particular, the sequences (C, A, Po u )  and (c, B,, P; V )  are 
compact. Consequently, 

1 1 
-C;1A,Pov=60 and - C ; 1 ~ , ~ ~ v - 6 0 .  
n n 

But for n = 1 ,  2, ... we have 

C ; ~ A , P ~  = c ; ~ P , ,  c;~B,P; =C;~P;. 
Thus (5.3) can be rewritten in the form 

where the sequences (C;  Po V ]  and (Ci l  P i  v) are compact. Passing, if 
necessary, to subsequences we may assume without loss of generality that these 
sequences are convergent. Moreover, we have 
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1 Hence and from Proposition 4.1 we get 

lim C;'P,v  = lim 
(5.5) n 

On the other hand, from (5.4) by a simple computation we obtain 

I 
1 1 

C , ~ P ~ C , V  = C;l~,v*-C;lP,v,  C,'P;C,V = cil P;u*-c,'P~v 
n n 

(n = 1, 2, ...) 

and, consequently, 

Thus (5.4) 45.6) together imply that 

(5 -7) lim C;lPoC,v*lim C;'P;C,V = v .  
n .  n 

Since (C; Po v} is convergent, we infer from Proposition 4.3 that {C; Po)  
is compact. Consequently, by the assumption on the sequence (IICnll> the 
norms (1C; Po Cnj( (a = 1 , 2 ,  . . .) are bounded in common. This together 
with the convergence of {C; Po Cn V )  proves (by Proposition 4.2) that the 
sequence (C;' Po C , )  has a strongly convergent subsequence. Denoting by 
P its limit, by (5.7) we have 

which shows that P E ~ ( v ) .  Obviously, P is a projector from W(X) of 
dimension at most one. Moreover, P # 0. Indeed, if P = 0, then there exists 
a subsequence of indices n, < n, < . . . for which (C,' Po C,,) converges 
strongly to 0 and, consequently, 

lim C ; l P o v  = lim C;lP,C,v = 6 , .  
k k 

But Proposition 4.2 then implies that JJCil Poll -, 0, which contradicts 
the fact that the sequence (IICnll) is bounded. The theorem is thus proved. 

Remark  5.3. In the statement of Theorem 5.1 we have assumed that p is 
strongly @@)-stable. However, it is enough to assume that p is %(X)-stable 
and has the property proved in Proposition 5.1. 

From Remark 2.1 it follows that if H is a Hilbert space, then every %(H)- 
stable Gaussian measure e is also strongly @(H)-stable. Thus, combining 
Theorems 2.2 and 5.1 and taking into account Theorem 3 in [4j, we get a 



characterization of strongiy @Ill)-stable measures on the infinite-dimensional 
Hilbert space. 

THEOREM 5.2. Suppose t h ~ t  the Hilbert space H is infinite dimensional. Then 
a mn-degenerate probability masure ,u on H is strongly u2(H)-stable if and only 
if p is full Gaussian and the sequence al 3 a, 2 ... of eigenvalues of its 
covariance operator fuSfils the condition sup a$a,, < m .  
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