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Absrract. In the paper a stochastic generalization of the Taylor 
formula for It6 processes of diffusion type i s  investigated with respect 
to mean square, almost sure and weak convergence. 

1. Introduction. In this paper we investigate a stochastic generalization of 
the ~a ' ) lor  formula for It6 processes of diffiion type. This generalization is 
based upon the use of multiple stochastic integrals. In [4] we developed similar 
ideas for the construction of time discrete approximations of It6 processes. 
Further, we propose Taylor approximations and give estimations of the mean 
square error. Also almost sure and weak convergence is investigated. 

Let (0,  F, P) be the basic probability space and let (@), t E [to, TI, be 
a right continuous non-decreasing family of sub-c-algebras of where % for 
each tf[r0,  TI contains all P-null sets of K We consider the process 
(x, , E),  t E [to, n, which is given by the It6 differential equation 

(1) dx, = af t ,  x,)dt+b(t, x,)dw,, 

where x,, is @,-measurable and (w,, *), t e [r,, TI, is an n-dimensional 
standard Wiener process, w, = {wy')j"= while x, = (xji))r= and a(t , y) 
= (di'(r, y)}K are m-dimensional vectors, b ( t ,  y) = (b(i,a(t , y))?", is an 
(m x +matrix for rn, n E { I ,  2,  . . .), a(')(t, y) 'and b('j'(t, y) are real-valued 
functions on [to, x Rm. Further, we assume that a strong unique solution 
of (1) exists. In the following we summarize a result proved in [4] on 
a representation formula for It3 processes. Let 

M := {GI? ..., jk): k ~ { l ,  2 ,  ...}, ji€{O, ..., n) for i ~ { 1 ,  ..., k ) ] " { v i  

denote the set of row vectors cc = (j, , . . ., j,) with finite length l(u) : = k, where 
l(v) : = 0. We write - a  or a - if we delete the first or the last component of 
a E M  ( / (a)  3 I), respectively. Further, q, p ~ ( 1 ,  m), is the set of non- 
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anticipative (with respect to (.*), r ~ [ r ~ ,  TJ) functions g I [to,  T ]  - RP with ( '1  

For x r M ,  s ,  t ~ [ r , ,  q, s a I ,  and functions Q(.)E'~R~, p ~ l l ,  mj, we 
define rccursively multiple stochastic integrals 

( S ( I )  for z = v, 

where riwtO' : = L I U .  Obviously, for all a = Q,, . . . , j,) E M \(v) we have 

I Sk s2 

I.b(*l, s ,  f )  = . . . J g(sl)dwJI1) . .  . d ~ $ ~ ~ ~ ) d w $ ) .  
Y S .  S 

. In the case g ( t )  = 1 we write I, (s, r) : = I ,  ( g  (-1, s ,  r). 
We introduce now the differential operators 

and 

for k ~ ( 1 ,  ..., n) 
i =  1 

which are defined on the corresponding sets of functions f 1 [ t o ,  TI x R" + Rm 
having the necessary partial derivatives. 

Further, we use functions f, = { f , " ' ) ~ = ,  , E M ,  where 

f for u = v ,  
' 

f;i' : = 
for a = (O) ,  

),(I," for 9 = (j), j ~ { l ,  ..., n}, 

f for a = (j,, ..., j , ) ,  k 3 2 .  

Now for A c M we set 

B(A) := ( a € M \ A :  - Z E A }  

and formulate the theorem which is proved in [43. 

I 

(I) 11  denote~ the Euclidean norm. 
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THEOREM 1. Assume that for A c M ,  A # 8, and s,  t  E [to, TI, s < r,  rhe 
foilowing conditions are satisfied: 

(i) sup l(r) < c~ ; 
aeA 

(ii) - U E A  fur all Z E A ;  
(iii) S, exists for all a  E A u B ( A ) ;  

* ( i v ) f , ( s , x , ) ~ 9 J ~ ~ f o ~  all ~ E A  a n d f , ( . , x , ) ~ I t n , f o r  a lEa€B(A) .  
Tlzen 

xr = xs+ x - l a ( f i ( s ,  xs), 57 t ) +  Ja(f,(-7 x.1, s ,  t) .  
. . ,  UEA asB(A)  

We can interpret this assertion as a stochastic generalization of the Taylor 
formula. For t h s  purpose we write this formula in the deterministiccase. That 
means, we have to develop the function 

t 

X, = xla+ 1 x,)du, t € [ t o ,  TI. 

Obviously, for s E [ t o ,  T'l we have in that case 

A O I b ,  x,) = a ( s ,  x,) = - x ,  (s), G ) 
for all X E M  with I(a) = n(r) = k , k ~ { 2 , 3  ,... 3, 

and 

f, (s, x,) = 0 otherwise, 

where n(s) denotes the number of components of r E M  which are equal to 0. 
Further, for aII a E M with l (a )  = n(m) = k we obtain from (2) the formula 

1 S2 

1, (g (r,), to, r) = 1 . . . 1 g(to) ds, . . . Ask = g ( to)  ( t  - to)k/k! . 
l o  t o  

Now, for given D, := { u E M :  l ( r )  = n(m) d r ) ,  r ~ j O ,  1 ,  ...), we get 
from Theorem 1 

which is the well-known Taylor formula. 
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I We propose now a stochastic generalization of the usual Taybr 
approximations. For y E (0, 1, . . .) we set 

A, := (zEM: l(a)+n(a) 6 y ) .  

For y E (0, I ,  . . .) we define the approximation (xjY),  st), t E [to, TI, by 

1 (3) 4" = x,, + C L 7 xto) la (to, t) ~ =*, 
where f, is assumed to exist for a11 a E A 7 .  

I In the following -we investigate the convergence behaviour of the above- 
' I 

I defined approximations. 

2. Mean square convergence. For all a~ M we introduce the row vector 
a* E M which is obtained by deleting all components of a equal to 0, e.g. 
(1, 0,  2,  1)" = (1, 2, 1). For the estimation of the mean square approxima- 
tion error we use also the following notation of multiple stochastic integrals: 

For all U E M  with a* = a and l(a*) = 1 ,  1 ~ 1 1 ,  2, ...), ki€(O, 1, ...I, 
k ( 0 ;  ..., I ) ,  functions g ( - ) ~ % l $ ,  p ~ { l , r n ) ,  and t ~ [ t , , q  we define 
recursively the multiple stochastic integrals 

rqy for I = 0, ko = 0, 

where a* = (i,, . .., j,) for I 2 1. 

In the sequel ko(a) denotes the number of the first components of  EM 
which are equal to 0 until the first non-zero component or until the end of a if 
there are only zeros. Furthermore, ki (a), i E (1, . . . , I(a*)), counts the number 
qf components which are equal to 0 between the i-th non-zero and the (i+ 1)-st 
non-zero component or the end of a E M. For example, for o! = (0, 1, 2, 0) we 

I have'& = ( I ,  2), [(a*) = 2 and k,(or) = 1,  k,(a) = 0, k,(a) = 1. 
a The following proposition shows the relation between the multiple 

stochastic integrals defined in (2) and (4). 

. I 
PRo~osqrro~ 1. For all a EM, functions g (.) E 9J&, p E (1, m), and t E [to, TI 

we have 
4 (g ('1 t) = Ha* (k0 (a) * - 7 k,,,? (a), g ('1 t)  P-a-s. 

I For the proof of this assertion we need two lemmas. 
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LEMMA 1 .  For all t ~ [ t ~ ,  t l] ,  t l ~ [ r D ,  T I ,  g(., t ) € 9 i P ,  p ~ ( 1 ,  m), and 
j ~ ( 1 ,  ..., n} we have 

Proof. By a well-known property of the It8 integral we obtain (') 

E l l t - ~ t l l ~  = EH<1l2-2E(i, q)+Ellvl12 = 0, 

which completes the proof. - 

LEMMA 2. For the multiple stochastic inregruls defined in (4) we have 

Pro  of. We consider two cases, 
1. 1 = 0. 
We have r* = v and the assertion folbws from (4). 
2. 12 1 .  
By (4) we have 

t t 

lo l o  

where 
1 for u ~ _ [ t ~ ,  21, 
0 otherwise. 

Using Lemma 1 and (4) we get 
f t 

which completes the proof. 

t2f (., .) delmtes the usual scalar product. 
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P r o  o f o f P r o p o s i t i o n 1. We prove the proposition by induction 
with respect to l ( r ) .  

I. l ( ~ )  = 0 .  
We have 1 = x* = v and the assertion follows from (2) and (4). 
2. [ ( X I  = 1 3 1, r = (jl, ..., j l ) .  
2.1. j , ~ ; l ,  ..., n ] .  
In this case we have r - ' = r* - and k,(,*, = 0. From (21, the induction 

assumption and (4) we obtain 

1 

= S HE*- (ko  (4, . . . , kl(l*)- (a) ,  g (-1, u)dw?' 
I0 

= H,+(k , (d ,  . . a ,  k l ( , 4 - , ( 4 ,  O , g r ( . ) ,  f ) .  
- 

2.2. j )  = 0. 
We have k,(,*, (xj  2 1 and z* = z - *. From (21, the induction assumption 

and Lemma 2 we get 

which completes the proof. 

In the sequel we use the notation 

k r ! c, := 
k! (r - k)! ' 

where k , r ~ { O ,  1 ,... ) ,  k  < r. 
The following assertions will be useful for the mean square error 

estimation : 
PROPOSITION 2. I f  2 ,  P E M ,  t ~ [ r , , ,  TI and f ( . ) , g ( - ) € ! D l , ,  p ~ { 1 ,  m}, 

then for 

E (la (f 9 t ;  , t )  , ID(g (9, t o ,  t ) )  = : 5;: 
we have 

( 5 )  p"r,,P = 0 for rr* # p* 
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t(a'9 (t A f,)'~("*fi) 

(6) ~ 1 ;  < K ~ , ~  ( i = o  JJ c g i + k i w J  . a(. , P)! 
for a* = p* ,  

where 

and 

I n  (6 )  equolity holds i f  .f (-) - g ( . )  = 1. 
By partial integration we obtain easily the following 
LEMMA 3. For k ,  r~ (0, 1, . ../ and t r  [r,, TI we h a w  

Pro of of P r o  po sit i o n 2. By Proposition 1 and (4) the assertion ( 5 )  can 
easily be shown by the use of well-known properties of the It6 integral. 

We prove (6) by induction with respect to i(r*).  
1 .  l(f*) = l(fl*) = 0. 
Obviously, we have r*  = B* = v and from Proposition 1 and (4) in the 

case l ( x )  2 1, I(P)  2 1 we get 

Analogously we get this assertion for the case l (a )  = 0 or I (P)  = 0 .  
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2. I(x*) = I @ * )  = f 3 1, r* = B* = (jl, . . .yjl), 
From Proposition 1, (4) and the induction assumption we obtain 

to 

where 
I -  1 

a(%, B) := (k i (a)+ki(B))+I-1 .  
i =  0 

Using Lemma 3 we get 

It is easy to see that, in the whole proof, equality holds iff (a) = g(.) = 1.  
Thus the proof is completed. 

Now we obtain the following mean square error estimations: 
THEOREM 2. Iffor given y E {I ,  2, . . .) and for all a E A, u B(A,) there existsf, 

such that f, ( t o ,  xto) E !Dl,,, for M E A, and f, ( a ,  x.) E for Q E B (AT), then for 
f ~ C f o ,  17 

v +  1 

n (a)! 



I 
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G(Y) = 
I [ (a ,  B)EB(A~) x B ( A J :  

l(.*) = I(P*) = 1 and n(z)  = n( j )  = 

and 

Remark 1. By a straightforward application of Proposition 2- it follows 

, I from the .first part of  heo or em 2 that 

where 
2U(r + 2 - 1)Izl- (r + 1 - 1)Iz) 

Remark 2. If we assume additionally in Theorem 2 that for all a~ B(A,j 

then it follows (similarly as in the proof of Theorem 2) that 

Obviously, the mean square convergence of the sequence of approximations 
for y -, cc follows from (7). Using Proposition 2 it is possible to show also 
mean square convergence in many other cases. From (7) we also obtain, by a 
well-known assertion (see [3], p. 20), almost sure convergence which will be 
considered in the next section. 

Proof of Theorem 2. 
1. By Theorem 1 and (3) we have 

It follows from Proposition 2 and the definition of A, and B(A,) that we 
have only to sum up those (a, ~~)EB{A,)XB(A,) for which 0 < E(u*) 
= I(#?*) 6 y + 1. Further, we know that, for all a EB(A,), l(a)+ n{a) = /(a*) + 

(3)'[a] denotes the greatest integer not greater than a. 
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+ 2n(a) = y + 1 or y + 2.  Therefore, we have 17 (a) = (y + i - l { x * ) ) / 2  or 
(y + 2 - Z(cr*))/2, respectively. Since n (a) is an integer, we get 

n(,x) = [ ( y  + 2 - 1(x*))/2 1. 
Thus we have to sum up all (3 ,  P )  for which 

0 a / (a* )  = E ( f l * )  ,< 11 + 1 and n(a) = n ( f i )  = [(y + 2 - l(a*))/2]. 

This proves the first part of the theorem. 
- 2. For k i 7  r l ~ { O ,  1 ,  ...): i € { O ,  1 ,  ..., 1 3 ,  I E ( O ,  1, ...;, we can show by 

induction with respect to k ,  + r ,  + k ,  +I . ,  that 

k i  L -bk 
c i i + r o  c k i  t v I  c k i + r i + k l  + v ,  

We have 

(8) 
k. k g +  ...+ bl rL C k f t r i  C ( k o + r o ) f  ...+ ( k l + r l )  

i = O  

By Theorem 1 and (3) we obtain 

and by the Minkowski inequality and Proposition 2 we get 

We noted above that l (a)+n(a)  = y + l  or y+2.  Now by (8) we obtain 

which completes the proof. 

3. Almost sure convergeme. In the following we give a condition for 
uniform almost sure convergence of the approximations. 

THEOREM 3. I f f a r  all Y E M  there existsf, such tha t f , ( to ,  xlo),L(., x J E ' ~ ? ,  
unil Kfa  6 C ,  cY)+"("', then the approximations xi'' converge for y -+ x P a s .  
to x , ,  uniformlj, with respect ro r E [ t o ,  77, and 

xt = lim xj" = x,~+ 1 f e ( tO ,  ~ , ~ ) l , ( r ~ ,  t) P-a.s. 
Y - = 
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R e  mark  3. For example, the assumptions of ~he6rem 3 are fulfilled for 
the linear It6 process 

t € [ t o ,  TI with E llxroli2 < rn . 
R e m a r k  4. It  follows from the proof of Theorem 3 that under the 

assumptions of Theorem 3 
. . 

C[(Y + 11/21 

E sup Ilx,-x~'li% C 5 

t , Q s < T  [ (Y  + 11/21! ' 

For the proof of Theorem 3 we need 
LEMMA 4. For all ~ E M \ - [ v ~ ,  ts[to,  a, und y( . )€9tP,  p ~ ( 1 ,  m), 

[(a)+ nla) 

J := E sup J l ~ , ( g ( . ) , t ~ , ~ ) l l ~  4 . 4  r(a)-nla)Cf 

t o s s s t  I (a)! 

Proof. We show this assertion by induction with respect to I ( % ) .  
I .  l (u) = 1, a = j .  

1.1. j = 0 .  
From (2) we get 

S S 

J = E sup 1 1  1 g(u)dul12 < E sup ( s - t o )  f Ilg(u)J12du < Ky(t-rO)Z. 
t o < s < t  

lo 
f o C s C t  I 0  

1.2, j ~ { l ,  .= . ,  PI). 
By (2) we have 

which is a square integrable martingale, and by the Doob inequality we obtain 

S S 

J = E SUP 11 g(~)dw!,"(/~ < 4 sup E 11 1 g(tr)riw,0"l12 
t , < s < i  t o < s C t  

s 

< 4 sup S ~l lg(u) l l~du  d K;4It-t01. 
r o S s S f  t  
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From (2)  and the induction assumption it follows that 
S t 

. . 
2.2. j t ~ { l ,  ..., n ) .  
From (2), the Doob inequality, and the induction assumption we get 

I ( a - ) + n ( a - ) + 1  
< K  .4")-") Naa) + n(a1 

0 - ! ( - + ( - + I )  ' K . 4 w - ~ a b ( r - l d  I (a)! , 

which completes the proof. 

P roo f  of Theorem 3. We have already noted that the number of 
elements of B (A,), y  E (1, 2, . . .) , is not greater than (n + Therefore, for 
y E ( 1 ,  2, . . .) we obtain from Theorem 1 and (3) the following: 

V"' : = E ~ 1 1 ~  ll*.-x~y'l12 = E sup I( C l a ( & ( - ,  x ) ,  t o ,  i)l12 
t o S s < T  to s T aeB(Ay) 

Using Lemma 4 and the assumption of the theorem we have 

Q (n + 1 ) ~ '  C C1 {4Cz ( T- to))l(d'+Ma)/I(a)! . 
U E B ( A ~ )  

From the proof of Theorem 2 we know that for U E B ( A , )  

y + l <  I(a)+n(cr) < y + 2  
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and 

1 (a) = 1 (u*) + n (a) = I (a*) + [ ( y  + 2 - 1 (a'))/2] 

Therefore we get 

V'"' < Cj ((n+ 1 )  a 4 C2 (T- to))' + /[(Y + 11/21! < C4 CK5(" + 11123/[(y + 1)/2]! . 

Now for E > 0 we obtain 

P (  sup Ilxs-x~'ll > E) < E - ~  C V(y) s ~ c ~ E - ~  C ~ ; / k !  
y = l  tOSS<T y =  1 k= 1 

and almost sure convergence holds (see [3], p. 20), which completes the proof. 

4. Weak convergeme. For the investigation of bounded continuous 
functionals of x,, e E [ t o ,  TI, it is useful to know whether the sequence of 
approximations is weakly convergent on C [ to ,  TI (see [I]). The following 
theorem presents a sufficient condition for weak convergence. 

THEOREM 4. If for y -, oo the family of finite-dimensional distributions of 
xiY), t E [ to ,  TI, is convergent to that of x t ,  t E [ to ,  Tj, and 

Ellf,(to,xt,)1(4 < CIC:(a)+R(a) for a11 U E M ,  

then for y + a, the sequence of approximations is weakly convergent on 
CCto, TI to 4, t ~ C t 0 ,  rl. 

Remark 5. For example, th& family of finite-dimensional distributions is 
convergent in the abovediscussed cases of mean square convergence. 

In the proof of Theorem 4 we will use 
LEMMA 5. For all U E M  and t ~ t t , ,  7'l we have 

< 62(1(=) - n(a)) t t 22(1(a)+ n(a))/l (a)! . E ( 1 1 ~  ( to ,  t)14 I eO) ( - 01 

Proof. We prove this assertion by induction with respect to I(a). 
1. l (a )  = 0. 
We have a = v and by (2) we obtain I ,  ( to ,  t )  = 1 and l(u) = n(a) = 0, so 

that the inequality in the lemma is fulfilled. 

4l  - Prob. Matb. Statist. 3(1) 
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From (2) and the induction assumption we get 

2(1(a) + n(a)l < 6ql(U)- ""1) -. 1 (a)! 

2-2. j , ~ { l ,  ..., n ) .  
By (21, a well-known inequality (see [2],  p. 458), and the induction 

assumption we have 

( t  - t0)2(l(a) + n ( W  
42(1(cO - n(d )  

I (a)! , 

which completes the proof of the lemma. 
Proof of Theorem 4. For all t l ,  t 2 f [ t o ,  TI, tI 2 t 2 ,  and y € { I ,  2 ,  . . .} 

it follows from (3) that 

Y 

C 23r Ell C A (to 9 xto) (1. ( to? tl) - Ia(to , t2))l14. 
r = l  . =A,\A, - , 
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Since the number of elements of A, \A,-, , r E (1, . . . , 71, is not greater than 
(n + I)', by (2)  we have 

.Y ' 

For x E A, \Ar-, , r E j 1 , . . . , y),  we obtain . 
l(ol)+n(ol) = f(or*)+Zn(a) = r 

and 

l ( x )  = r -(r-l(ol*))/2 = r/2+ l(a*)/2 2 [ r / 2 ] .  

It follows from Lemma 5 together with the assumptions of the theorem that 

From this estimation we infer that the weak convergence of the sequence of 
approximations holds (see [l] or [3], p. 485). 
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