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Abstract. A measurable integrand f ( s ,  x) satisfying a Lipschitz 
property in x on T(s )  c F is extended to the whole of PE" praswving 
the Lipschitz condition ie x. This extension is obtained by using the 
process developed in [q for an arbitrary function j', Lipschitz on a 
given subset. The problem of minimizing the integral 

if Ix? = Sf (s > x (s))dv (s? 
S 

.over a subset X of measurable functions x satisfying x (s) E r (s) almost 
everywhere is transformed into the problem of minimizing over X the 
integral functional I , (x)  associated with the extended integrand g. 
Comparison results for optimal values as well as for solutions of the 
two problems are described. Finally, the results are applied to obtain 
necessary conditions for optimality for a class of multistage nonconvex 
stochastic programs. 

In [6] we studied the way of extending a function f satisfying a Lipschitz 
property on an arbitrary subset r of a metric space E. The problem was in 
finding a function fr,, defined and having the Lipschitz property on all of E, 
which was equal to f on r. The definition and the properties of the extension 
process as well as comparison results with regard to optimization are 
developed in [6]. In this paper, we begin by carrying out the extension 
procedure to measurable integrands f (s, x) having a Lipschitz property in x on 
a subset T(s) c R" "varying measurably with s". The new integrand fr,,(s, x) is 
constructed in such a way that it agrees with f (s, x) on T(s) and has a 
Lipschitz property on the whole R", which is of importance with regard to 
optimization problems. Section 1 of this paper is devoted to translating, in 
terms of integrands, the properties developed in a "deterministic context" in 
[6]. All the definitions and concepts we need for the sequel, concerning 
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measurability of multifunctions, integrands, measurable selections, are recalled 
in that section. For a full development of such topics in a finitedimensional 
context, the reader is referred to the lecture notes by Rockafellar [8]. 

In many areas of mathematics, including optimization, variational 
problems, functional analysis, and best approximation, we have to minimize 
integral functionals, is.  functionals of the following form: 

- S 

. The admissible- 2 are constrained in X, the subspace of measurable 
functions defined on a measure space (S ,  Y, v ) ,  and must satisfy x ( s ) ~ r ( s j  
almost everywhere (a.e.1. In a first step, one may drop the latter constraint by 
including it in the objective function. Setting f (s ,  x) = f Is, x) if x E T(s)  and 
f(s, x) = + cc otherwise, we reduce the above minimization problem to 

(9) minimize ZS(x) = j f ( s , x ( s ) ) d v ( s ) , x ~ X .  
S 

In the last ten years, convex integral functionab have received a great deal 
of attention (see El], [8], and the references therein), In that context, the key 
result was in calculating the conjugate function I,*. The properties of If as well 
as the determination of its subdifferential were then derived from the 
knowledge of I T .  In the absence of both differentiability and convexity 
assumptions on f (s, .), a step has been taken in the calculation of the 
generalized gradient 81f of I,, at least when f (s, .) and If have appropriate 
Lipschitz properties. The method consisted in reducing the problem of 
determining 81f to that of evaluating the subdiflerential of a certain "tangent 
integral functional" which turned out to be convex. In that respect, we mention 
[13], Chapter III, for the "tangentially convex" case and Ex as underlying 
space, and [I41 and [3] for the general Lipschitz case in Ex (1 < p < a) and 
L?, respectively. The general situation will be treated in a forthcoming article 
by the author and R. J.-B. Wets. However, our method in deriving necessary 
conditions for x, E 9T to be the solution of (@) (Section 2) does not rely upon the 
direct calculation of 81,-. Ow way of grapfing with (3 consists in 
transforming it into an extended problem 

(qTnk minimize If rh tx) = jfr,k (s. x(s))dv(s), x x, 
S 

where fi;, is the extended (Lipschitz) integrand. Comparison results for optimal 
values as weH as for solutions of (P)  and (P),,, will be provided. Afterwards, 
necessary conditions for optimality are deduced from the known results on 
dI,,,, in the Lipschitz case. 

In Section 3, the obtained results are applied to the study of a class of 
multistage nonconvex stochastic programs. We are more particularly 
concerned with the optimal recourse problem such as described in [ I l l  and 
[12], from which we take most of the prerequisites. Roughly speaking, in a 
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multistage stochastic program, we are in the presence of finitely many stages 
(N), at each of which a decision (or a recourse) is selected on the basis of prior 
observations of random events, and subject to costs and constraints depending 
on these observations as well as past decisions. The goal is to minimize an 
expected cost (hence an integral functional) taking into account the known 
probability distribution of random events. In the case of convex costs and 
constraints, necessary and sufficient conditions for a decision rule to be optimal 
are derived in Ell] and [12] with the powerful tool whch is the duality 
approach. For related work, especially from the Soviet literature in the 
framework of models for dsimal economic developments, see the references in 
[ll]. In the nonconvex but locally Lipschitz case, two-stage ( N  = 2) stochastic 
programs were studied in [4] in their dynamic formulation. Here, we consider a 
particular class of N-stage stochastic problems, namely those whose cost 
function has a Lipschitz property, but only in the admissible decision rules. 
Thusj the stochastic optimization problem is set in the framework of Section 2, 
with X representing the nonanticipativity constraint. As in the convex case, we 
show that it is possible (under certain constraint qualifications) to associate 
with nonanticipativity a price system (i.e. a system of Lagrange multipliers) 
having a martingale property. 

1. EXTENSION OF LIPSCIHITZ INTEGRANDS 

1.1. In this Section 1, ( S ,  SP) is a general measurable space. A multifunction 
r  (or set-valued mapping) from S into Rn will be denoted by r:  S 3 R". We 
also fix some other notation: 

(i) the graph of r is g r r  = {(s, x)€SxRn I X E ~ ( S ) ) ;  
(ii) the inverse of r is the multifunction r-' : R" 2 S defined by r- '(x) 

= { S E S  I x ~ T ( s ) ) ;  so, for any X c R: 

For the most part, the values of the multifunctions which will be considered 
in the sequel are either epigraphs of lower-semicontinuous (1.s.c.) functions or 
subsets defining the constraints of a certain optimization problem. So, without 
loss of generality, we shall be concerned with closed-valued rnultifunctions. 
Such a multifunction is said to be measurable (relatively to 9') if, for each closed 
set X c R", the set r-'(X) belongs to 9. As a consequence, g r r  is an 
(Y@$,,)-measurable subset of S x R" (where Bn is the a-field of Bore1 sets in 
R9.  The general properties of measurable multifunctions, the basic measurable 
selection theorem, and the description of operations on multifunctions that 
preserve measurability are fully developed in Part I of [8]. 

Now, let us consider functions from S x R" into R (the extended reals). Such 
functions will be called integrands on S x R". An integrand f is completely 
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determined by the epigraph multifunction s epi f'(s, a). We shall say that the 
integrand f: S x R" + R is 

(i) rnemurahle iff is (p4"@~n)-measurable on S x R", 
(ii) normal if the epigraph multifunction is a closed-valued measurable 

multifunction, 
(iii) proper iff ( s ,  .) is proper for every s E Y,  is .  iff (s, -) does not take the 

value - co and is not identically equal to + m for every s. 
- _ A normal integrand is a measurable integrand. Conversely, if (S, Y )  is 
cornplete-with respect to some nonnegative cr-finite measure on Y, then a 
measurable integrand f yields a normal integrand by the "closure" operation: 
cl f defined by 

clf(s,  x,) = liminff(s, x )  for all (s, x O ) ~ S X W n  
X'X0 

is a normal integrand. 
We also fix another definition which expresses a kind of regular behavior of 

f (s, -) on a nonempty set T(s) "varying measurably with s". 

Defin i t ion  1.1. Let f be a measurable integrand on S x R "  and let 
r:  S 3 R" be a nonempty closed-valued measurable multifunction. Then f is 
said to be Lipschitz on I- if for each S E S  there exists k ( s ) ~  R+ satisfying 

Hence, ''f Lipschitz on I"' presupposes three ingredients : measurability off 
as an integrand, measurability of the nonempty closed-valued multifunction r ,  
and the Lipschitz property above. 

The least positive real k(s) such that (1.1) holds for f (s, -) is 

Clearly, k may be chosen to be measurable in relation (1.1). 
The simplest example of the Lipschitz integrand is the indicator integrand 

dr of a measurable multifunction T, i.e. 

For another example, let us consider a measurable proper convex integrand 
f (i.e. epi f (s, -) is convex for each s); f is Lipschitz on r whenever r is a 
measurable compact-valued multifunction satisfying the condition 

r(s) c int {x E R" I f (s, X) E R)  for all s. 

By pasting together the results on composition of Lipschitz functions and 
the measurability techniques developed in [8j, Section 11, one gets new 
Lipschit2 integrands via usual operations like addition, left-scalar multipli- 
cation, etc. 
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. 1.2. Let f be an integrand Lipschitz on T.  In the way of extending f to the 
whole R: we shall use the integrand f defined by 

f is clearly measurable ; it is moreover normal whenever (S, Y )  is complete 
([B], Theorem 2 4 .  Againfis normal in the case where f is proper normal and r 
nonempty-valued ([X J, Proposition 2M). Therefore, when considering an 
integrand f Lipschitz on T, it will be assumed throughout that f is proper and 
wrmai. -- 

THEOREM 1.1. Let f be an integrand Lipschitz on r and let k be a measurable 
function s w h  that k (s) 2 111 f (s, - ) I l l  for ail s. Then the inregrand fr,k defined by I 

f ~ , k  (s, = inf (f (s u) + (s) llx-ull) 
tlab) 

is Lipschirz on R" with Lipschitz constant k(s) and ver$es 

fr,k(s, x) = f (s, x) for all x E r(s). 

I 13. Tangeot comes, gewnlizd gradients. Let E be a real Banach space, let A 
be a nonempty closed subset of E, and let u, E A. 

Defin i t ion  1.2. d is a rangent direction to A at u, if for every sequence 
(u,) c A converging to u, and for every {A,) c R*, converging to 0 there 
exists a sequence (6,)  converging to 8 such that u , + A , 6 , ~  A for all n. 

The cone of all tangent directions to A at uo is the tangent cone to A at uo 
and will be denoted by (u,). Its polar cone, i.e. the set of n E E* (topological 
dual space of E) satisfying (n, 5 )  < 0 for all 6 E % ~ ( u ~ ) ,  is called the normal 
cone to A at u, and will be denoted by NA(uo). The cones 5Y,,(uo) and NA(uo) 
are nonempty, closed and convex. 

PROPOSITION 1.1 ([4]). Let r: S 2 Rn be a closed-valued measurable 
multifutlction and k t  u: S + R" be a measurable function such that u(s) E r(s) 
for all s. Then the multifuilctions s %T(s, (U (s)) and s Jfrr,,, (u (s)) are 
measurab h. 

Let f: E + R be finite at x,. Starting from the geometric concept of 
tangent cone, the generalized directional derivative off  at x, is defined by 

with the usual convention that inf (D = + a. The definition off (x, ; -) in 
(1.2) is "geometric" without any "analytic" formula involving limits of 
difference quotients of some kind. Rockafellar [9] gave recently the analytic 
form offn (xo  ; .) by translating the construction of Vepf(x0, f (x,)) in terms of 
sequences (Definition 1.2) into a statement in terms of "limsup" of certain 
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quotients. When f is Lipschitz around x,, f (x, ; d) has a simpler expression 
f "(x,; 6) which was first produced by Clarke [Z], 

fo(x0; 6) = limsup [f(x+L6)-f(x)]A-', 
x-x,, 

a+of 

In the general case, the geometric definition (1.2) will be well adapted for 
measurability purposes. The generalized gradient off at x,, in Clarke's sense, is 
dehed as follows: 

af(xo) = {x*EE* ( {x*, d )  6 f o ( x o ;  d) for all ~ E E ) .  

When f is convex, df(x,) is the subdifferential in the sense of convex 
analysis ; when f is C1 at xO, df(xo) is reduced to one element, namely Vf (xo).  

THEOREM 1.2. Let f: S x R" -* A! be a normal integrand and let xo : S 4 R" 
be a measurable function such that I f(s, x,(s))l < a, for all s. Then 

(a) (s, 6) w f (s, xo (s) ; d )  is a normal convex integrand on S x By 
(b) the multifunction s 8f (s, x, (s)) is measurable. 
Proof. (a) The function s J+ (xo (s), f (s, x0 (s))) is measurable. Therefore, 

according to Proposition 1.1, the multifunction A : s 3 Rn+' which assigns to 
s the tangent cone to epi f (s, -) at [x, (s), f (s, xo (s))] is measurable. Now, A (s)  
is nothing but 

{ ( d ,  P)ER"+~ I fU(s ,  xo(s); d )  G P )  

(see [ 5 ] ) .  Hence the normality of the integrand (s, d)  w f (s, xo(s); d) is 
proved. 

(b) The multifunction A " :  s 3 I?'+' which assigns to s the normal cone to 
epi f (s, -) at [xo(s), f (s, xo(s))] is closed-valued and measurable; the constant 
multifunction s =f R" x { -  1) is measurable. Hence the multifunction 

is measurable (closed-valued) ; see [8], Theorem 1 M. 
V(s, xo(s)) is the image of A"{s)n(Rnx (-1)) under the projection 

mapping (x, p) w x. Thus, following Corollary 1P in 181, the multifunction 
s df (s , x, {s)) is measurable. 

Concerning the generalized gradients off(s, a) and f,,, (s , .) (such as defined 
in Section 1.2), we have general comparison results. 
THEOREM 1.3. Let f be an integrand Lipschitz on r, kt xo be a measurable 

function such that xo (s) E r(s) for all s, and let k be a measurable mapping. 



where B denores the closed unit ball in W". 
For the proof see [6] ,  Theorem 2. 
When f (s, A) is convex on T ( s )  (i.e.f(s, .) is a convex integrand), inclusions 

(1.3) and (1.4) become equalities. Actually, results (1.3) and (1.4) are 
strengthened to equalities for which we shall call "tangentially convex 
integrands". 

Let A be a nonempty closed subset of a real Banach space E and let uo E A.  
A classic way to get a conical approximation of A at u, is to consider the 
contingent c-one to A at u0 (also called cone of adherent displacements for A from 
u,). This cone, denoted by T,(u,,), is defined by 

TA(u,) = [ S E E  1 31,10, 6, + 6 with uO+A,6,€A for all 1 2 ) .  

PROPOSITION 1.2. Let r :  S Z Rn be a closed-valued measurabk muIt$unction 
and let u :  S 4 Rn be a measurable function such that u ( s ) ~ T ( s )  for all s. Then 
the multifunction s ETr(,, (u(s))  is masurabb, 

Wr(,, (u (s)) is always included in Tr(,, (u (s))  (see 151) ; if, in addition to the 
assumptions of Proposition 1.2, we suppose that %'.(,, (~(s))  = TyS, (u (3))  for a11 
s, we shall say that r is tangentially convex at u .  Concerning the corresponding 
notion on integrands, a normal integrand f: S x R "  + will be called 
tangentially convex at x i f f  ( s ,  x(s))  is finite for all s and if s epi f ( s ,  -) is 
tangentially convex at u :  s u (x(s) ,  f (s, ~ ( s ) ) ) .  In an analytic way, the 
tangential convexity o f f  at x is translated as 

f ( s  , x (s)  ; d )  = lim inf [ f (s , x (s) +Ad) - f (s, x (s))] A- for all d. 
d+d 

 or a normal integrand f ,  the tangential convexity at x is in particular 
ensured whenever f ( s ,  .) is convex in a neighborhood of x(s)  or f (s, .) is C1 at 
x (4 

THEOREM 1.4. Let f be an integrand Lipschitz on T ,  let x ,  be a measurable 
function SUE h that xo (s) E r (s)  for all s, and let k be a measurable mapping such 
that k(s )  > I l l  f ( s ,  - ) I l l  for all s .  We suppose that the integrand f is tangentially 
conuex at xo. Then fr,, is tangentially conuex at xo and 

dfr,A ( s ,  xO (s)) = q ( s ,  xo (s)) n k (s) B - for all s.  

The theorem follows from Theorem 1.3 and [6], Theorem 3. 
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From now on, v will denote a positive @-finite measure on (S, 9). For any 
normal integrand f: S x R" + R and any measurable function x :  S 4 Rn, it 
follows that s J+ f (s, x(s)) is measurable, and therefore the integral functional 

has a well-defined value in R under the convention that I , (x)  = +a 
whenever 

We denote by L", the space of all measurable functions x :  S + Rn. In 
optimization problems dealing with integral functionals If, there are typically 
two kinds of constraints on the admissible functions x. The first type of 
constraints concerns the "nature" of x :  x must belong to a space S c Lp. 
For the second type of constraints, we are given a closed-valued multifunction 
r: S 2 Rn which we will suppose, without loss of generality, is nonempty- 
valued'on S. We will be concerned with measurable x such that x(s) E r(s) ar. 
The1 assumed measurability of r ensures that such measurable selections do 
exist ([S], Corollary 1C). Y will denote the set of all measurable selections of T .  

Typically, the optimization problem we are concerned with is 

(9) minimize I, ( x )  over X n 9 

By the usual device which consists in "transferring the constraint into the 
objective", (9) is equivalent to 

(9) minimize I f ( x )  over X 

In writing (P), we implicitly assume that the integrand Jis normal, which is 
secured whenever f is proper. As a consequence of assumptions on f  and r, the 
function 

mr: s I - , ~ ~ ( s )  = i d  f(s, X )  
XE~(S) 

is measurable ([8], Theorem 2K). 
The integral functional If is said to be proper on F if If ( x )  > - co for all 

x E 9 and !if If (js) < + a, for at least one js E Y. The first general result 
relating minimization of If on 9 to pointwise minimization off ( s ,  a) on r (s)  is 
the following one : 

PROPOSITION 2.1. Suppose F c 3". Then 

(2.1) i d  j f ( s ,  x(s))dv(s)  = j [ inf f (s, x)]dv(s). 
xw- s S X ~ S I  
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IJ; moreover, the integral functional if is proper on F, the following 
statements are equivalent : 

(a) x, minimizes I f  on Y ;  
(b) x, E F and x,, (s)  minimizes f ( s ,  -) on r(s) a.e. 

Proof.  The proof of (2.1) is contained in the parenthetical case of Theo- 
rem 3A in [8]. If If is proper on F, then f (s, xojs)) dv ( s )  is finite for x, 

S 

minimizing If  on Y. Hence the desired equivalence is easily deduced from (2.1). 

The assumption F c X is satisfied when X = EL", an4  more generally, 
when T -= Ep(i.e. E,(S, Y, v)) and thefunctions I+ sup{llxlj; x ~ r ( s ) )  isin 
Ep.  For results similar to those d Proposition 2.1 in the EWcase, see [16], 
Theorem 2 and Corollary 2. Actually, except in the case where I is "large 
enough", the constraint imposed on the nature of x ( x  E f l  is not satisfied for a 1  
selections of r. We shall study the problem (@ in the following particular 
framework : 

( d l  the underlying space is LP,, (1 < p < a); 

(d,) f is an integrand Lipschitz on r and the function s w 111 f ( s ,  - ) I [ /  is in 
E'e (UP + l / q  = 1) ; 

I ( )  3 is a subspace of measurable functions in E, and 9 c %. 

As usually in the theory of integral functionals, we shall distinguish 2" by 
the presence or absence of a certain property of decomposability. Following the 
definition in [8], 5? is said to be decomposable if S can be expressed as the union 
of an increasing sequence of measurable subsets S ,  (m = 1,  2, . . .) such that 
for every S ,  and bounded measurable function x,: S -+ R", and every xa E 
the "decomposed" (measurable) function 

x,(s) for S E S , ,  
s b xm(s) = 

{xB(s) for s ~ g  (complementary set of S. in S) 

belongs to X. 
As for ( P ) ,  we will transfer the constraint F in the objective by redefining a 

penalized version of the objective function. For that purpose, we consider the 
extension fr,, off such as defined in Section 1. Since v is a-finite, there exists a 
function E :  S + R*+ in Ep. We consider throughout the extension f,, built up 
with k : s H k (s) = 111 f (s, -)Ill + E (s). The extended version of (P)  becomes now 

(P)r,k minimize Ifr,R over X. 

We note that, following assumption (d,), Ifr,k is Lipschitz on F with 
Lipschitz constant Ilk(-)llL$ whenever Ifr,k is finite at some R E F .  
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THEOREM 2.1. Suppose that is Jinite at some Xe J and that 9' is 
decomposabk. Then 

(a) i d  If($ = inf Ifr ,k(x)  = [ inf f(s,  x)]dv(s);  
x d n 5  X E ~  S X E ~ ( B )  

(b) the folbwing statements are equivalent: 
( i )  xo E S n F minimizes If  on X n Y, 

(ii) x, E 5X minimizes Ifrqk an X. 
- Proof .  (a) Applying Theorem 3A from [a] to the integrandsfand frmk, 

we get - -. - 
- .  

inf j f ( s ,  x(s))dv(s) = 1 mr(s)dv(s) 
and x€% s S 

id If,, (S (s)) dv = I [ f r , k  ( s  Y dv 
X E ~  S S x~ l f f  

Now, an easy consequence of the definition off,,, is 

mr (s) = inf A,,+ (s, 4. 
x€iP 

Hence the equality of minimum values is proved. 
(b) Let x0 E 9" miminizing I f  on %. The integral If (s, xo (s))dv(s) is finite 

and, according to the proof of part (a), we have 

Sf (s 3 xo (s)) dv 0) = C inf fr,, (s, x)l dv (s), 
S S XER" 

whence 
f ( S Y  X ~ ( s ) )  = f ~ , k ( ~ ,  X )  

X€P 

Conversely, Iet xo ET minimizing Ifr,, over %. The only thing to prove is 
that xo necessarily belongs to F. Let a(s) be the distance from x,(s) to T(s ) ;  
or is measurable and, furthermore, cr E Ep.  Suppose that a (s) > 0 on a set A of 
positive measure. The multifunction A defined by 

is measurable ([8], Theorem 21). Hence there is a measurable selection R of A, 
that is to- say: 2 E F and 

(2.2) f (s ,  2 ( s ) ) + y  < f,, (s, xo (s)) for almost all s. 

Observe that 2(s) = xo (s) for almost all s E AC. Let S, (rn = 1 , 2,  . . .) be as 
in the definition of decomposability. Intersecting each S, with the measurabk 
set ( s  E S j 12 (s)I < m) if necessary, we can suppose 2 to be bounded on S,. We 
define a new measurable function f, as foIlows: 
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According to the decomposability assumption, 2, E 5. Now, following (2.2), 
we have 

For m sufficiently large, v(S, n A) > 0; hence (2.3) yields 

whch cdntradicts the optimality of x,. Therefore, z (s) = 0 a.e. and x, E S. 
Remark. As noticed in the proof above, if x, minimizes I f ( x )  on X n  5 

(S decomposable or  not), then x, minimizes i f r w k ( x )  on i. This is-a weaker 
result than (b) in Theorem 2.1 but it will play a key role in the sequel. 

Necessary conditions for x, E X n F to be a solution of (9') will be derived 
via necessary conditions for optimality in (P),,,. For that, kt us fix first the 
duality framework. The underlying space L = E,, endowed with the norm 
topology, is paired with its topological dual space fi which is supposed to be 
equipped with a topology compatible with respect to the pairing. If 1 G p 

I 

< m,  the canonical pairing between E' and Ep (l/p+ 1/q = 1) is simply 

apd one can consider equipped with the norm topology whenever 1 < p 
< oo. In the situations we will encounter, functionals on L> will have nice 
properties with respect to the norm topology. The space equipped with the 
norm topology, has a dual space which is identified as follows: Z*E(L",* is 
said to be singular if there is an increasing sequence S, (k = 1 ,  2, .. .) of 
measurable sets covering S and such that, whenever XEL; is a function 
vanishing a.e. outside of some S,, we have z* (x) = 0. The set of these singular 
functionals will be denoted by I?'. For each X* €(Lm&*, we exhibit the 
"absolutely continuous part" y* and the "singular part" z*. Under the pairing 

(x,ly4,z*)) = (x,y*)+z*(x) for X E L ; , ( Y * , Z * ) E ~ ~ ~ X E ~ ,  

the relation 
(L>)* = EP@L"$ 

holds isometrically (see 171 and 181). Actually, the elements of (L>)* we will 
produce as elements of the generalized gradient of a certain integral functional 
on L",ill be in Ep. 

The following statement is the synthesis of results in 1141 and [3] 
concerning the generalized gradient of a Lipschitz integral functional on E, 
(1 < p G a). 
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PROFQSITION 2.2. Ler g be a measurable integrand on S x Wn a d  let x, E E,. 
We suppose that 

(a )  f ( s ,  -) is Lipschitz in a neighborhood of XO(S) a.e., 
(b) rhe integral functional I, is finitely defined at x,, 
(c)  there exisls a ~ E E ~ ,  satisfying 

for all x ,  y in a neighborhood of x ,  in Ep. 
Then I, is Lips~hitz in a neighborhood of xx, and 

Moreover, i f g  is tangentially convex at x,, then I ,  is tangentiaily convex at 
x, ;nd equality holds in (2.4). 

B 
The intermediate step in deriving (2.4) is in proving that 

I: ( x ,  ; d )  < J go ( s ,  x0 (s) ; d (s))dv(s) , for all d E Ep.  
S 

Then the general statements giving the subdifferential of integral convex 
functionals yield the desired inclusion. We observe that I," : d I+ I,"(x, ; d) is 
continuous at d = 0 in the norm topology of E'; hence in the L",ase, the 
subdifferential of I," at 0 (which is nothing but the generalized gradient of I, 
at x,) consists of elements of I?fl (see [7]). 

Now, we turn back to the problem of deriving necessary conditions for 
optimaiity of (fl under the assumptions described earlier. 

THEOREM 2.2. Suppose that If is finite at some X E 9. If x, E E, minimizes Is 
on X n 9, then there exists an X*  EL^, satisfying 

(a) - x* 
(b) X* (3) E g(s, X O ( S ) )  and llx* (s)jl ,< k ( s )  a.e. 

Proof.  According to .the Remark following Theorem 2.1, x ,  minimizing I/ 
on %n F minimizes I,,,k on A?. Since Ifr,k is LipschitZ on Ep, we then 
necessarily have 0 E di,,, (x,) + X, (x,) (see 123 and [5f). Thus, there exists an 
x* E Lp such that 

- x* E A"; (xg) and x* (s) E dfr,k (S  , X ,  ( 5 ) )  a.e. 

The result (b) is then deduced from inclusion (1.4) in Theorem 1.3. 
Remarks.  One might try to go further in relation (b) and write, undef ' 

suitable assumptions, that 

d ! ( ~  3 xo (4) df (s  9 x o  (5 ) )  + J G ( S ,  ( x o  (5))  - 
Conditions on the initial integrand f and on the multifunction r for the 
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I above inclusion to hold are fully developed in 1101. Moreover, when r (s) has a 
representation in terms of equalities and inequalities, i.e. 

r(s) = { x E R ~ I J ~ ; . ( s , x )  < 0, i = 1 ,  ..., 2, and h , ( s , x )  = O , j  = 1, ..., P ) ,  
regularity conditions do exist allowing us to compare results between 
J V , ,  (x, ( s ) )  and the cones BPhj ( s ,  x, (s)) ,  R+ 8J ( S  , x0 ( s ) )  (see 151 and [lo]). 

3. NECESSARY CONDITIONS FOR OPTIMALITY 
IN a MULTISTAGE NONCONVEX STOCHASTIC PROGRAM 

3.1. Th proltrlem and Bb data. For k = 1, .. . . , N , let 5 ,  E R'' and u, E R"k 
represent the observation and decision associated with stage k of a sequential 
decision process. The result of observations 

and of the sequences of decisions 

is a "cost" denoted byf,(t, u) .  The goal is to find a decision rule (or a recourse 
function) 5 I+ ~ ( 4 . )  whch minimizes the expected value of this cost subject to 
certain constraints. An essential constraint on the nature of u is that u must be 
nonanticipative, i.e. the decision u, at stage k depends only on the past 
observations t , ,  ..., t k ,  but not on the future & + , ,  ..., 5,.  The problem of 
finding such an optimal u is called the optimal recourse problem (in discrete 
time). Our aim here is to derive necessary conditions for the optimality of a 
certain uo in the case of costs satisfying Lipschitz assumptions with respect to 
the decision variables. Actually, assumptions are decomposed into assumptions 
on the underlying probability space, on the class of decision rules to be 
considered, and on the objective f. 

A. The probability space. The underlying probability space associated with 
the random elements of the problem is (&, gz, P), where 3 is a Borel subset of 
Rv, &IE is the Borel field on E, and P is a regular Borel probability measure on 
(3, Bs). 

B. The class of decision rules. A decision rule u is said to be esse~ttialiy 
mnanticipative if it is Borel-measurable and differs only on a set of P-measure 
zero from some (Borel) measurable function ii of the form 

For k = 1 ,  . . ., N, let Bk be the a-field generated by the "past" E l ,  .. ., 5, 
and completed with respect to P. Then {Bk) is an increasing finite sequence of 
complete a-fields with BN = &E (completion of BE with respect to P) and 
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a function u is essentially rwnanticipative if and only $for k = 1, . . . , N the 
component function Y: 3 -, R~~ is A?k-measurable ([12], I). As in [El, we 
adopt the latter property as the genera1 definition of nonanticipativity aad 
work in this notational framework. 

In addition to the nonanticipativity constraint, we shall require that the 
decision rules satisfy almost surely (a.s.) 

where r : E 2 dP"& nonempty closed-valued measurable multifunction. One 
can always reduce a state constraint to an abstract formulation Wte (3.1). The 
handiness of r and the determination of concepts associated with it (like 
normal cone) depend heavily on the representation of T; In that respect, T (c) 
represented by equality and inequality constraints is easier to handle than r(5) 
solution set of the variational equality 0 E @(x, c). In our multistage program, 
we are concerned with decision rules which are in E, (1 < p g m). AS in the 
p v i o u s  section, we suppose that all the measurable selections of r are in Ep 
(L-F c Ep). 

C. The objectiue function. The function .f,: 3 x RR" + R is an integrand 
Lipschtz an r and we assume that the function 5 ++ ] J l f , ( { ,  . ) / ) I  is in L4,, 
(l /p+l/q = 1)- 

The multistage stochastic program can then be expressed as 

(9) minimize If, (u) on JITp n .F, 

where NP represents the constraint of nonanticipativity: 

"4'; = { u  = (ul, . . ., u ~ ) E @ ~  I Uk is Bk-measurable for k = 1,  .. ., N ) .  

To avoid somewhat degenerate cases, it will also be assumed that 4 n 9 
is nonempty and that 

J If0 (S, ~(5))l  dP(5)  < + co for some i i ~  T. - 
For purposes of comparison with other hypotheses in stochastic 

programming, observe that under the assumptions described above, a decision 
rule which associates sequences of acceptable decisions with almost all 5 should 
have an expected cost. Thus, ifh is the integrand defined as 

( 5 ,  X) + d ( t ,  X) = fo( t ,  ~ ) + d r ( ~ ) ( ~ ) ,  
then 

1~~ (u) < + co - u (5) E r (5) a.s. 
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3.2. Naessary conaliltioms for optimdity. 
I THEOREM '3.1. If u o ~ E R R  is an optimal decision rule for the multistage 

stochastic program (9), then 
(a) U, EN, and uo(0 E r(0 a.s.7 
(b) there exists a Q* = (Q: , . . . , ~ $ 1  E satisfying 

(3.2) Q* ( 5 ) ~ ~  ( 5 ,  u ,  It)) and lle* (OII G k ( 0  a s .  

and also 

(3.3) E { ~ f I - g i )  = O a.s. for k = 1 ,..., N. 
I . . 

Proof.  .Np is a linear subspace of E',. Therefore, the normal cone to Jp at 
u,  EN^ is independent of u, and amounts to the orthogonal subspace in the 
topological dual space of E, under the pairing described in Section 2. Let 
I < p < ,m ; as noticed in [ I l l  and [12], the annihilator subspace Nj 
consists of elements p* = (pf , . . . , p$) E L4, (Q: E E ) which satisfy the 

mnL rnartingule property 

E{e,*liBk] = 0 as.  for k = 1 ,..., N .  

In the case where p = m, those elements in (L",* which are in can be 
described with the same martingale property. 

According to Theorem 2.2, if u,  is an optimal solution to problem (g), then 
there exists a Q* E E ~  such that (3.2) holds and -Q* EN;.  Hence the 
announced optimaiity conditions are derived from the above description 
of $$,I. 

When the given problem has some more structural characteristics, 
necessary conditions may be made more precise and thereby more informatory. 
We shall especially examine the case where 

(3.4) r ( < )  = { x ~ R " / ~ ( ~ , x ) < O f o r  i = 1 ,..., a 

and J ( c ,  x) = 0 for i = a+1, ..., p)nro(t). 
-. 

A. f i e  locally Lipschitz case. We suppose here that for all x ~ r ( 5 )  

(3.5) 
fd [<, .), fi  (< , 9, . . . , f, (E , .) are Lipschitz around x, 
f. + ( 5 ,  .) , . . . , fa (t , .) are continuously differentiable at x. 

The multifunction r, entering in the definition of the additional constraint 
is supposed to be nonempty, closed-valued, and measurable. Note that the 
local Lipschitz property off, (< , .) in (3.5) ensures that f ,  (5 ,  .) is Lipschitz on 
r(<) whenever r(c) is bounded. In addition to the assumptions laid out above 
and earlier, representation (3.4) is supposed to satisfy the following constraint 
qualification : 

3 - Prob. Math Statist. 3(1) 
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(CQ) for all u E , N ~  n .F, VPfh+ (<, u ({I), . . , V '  ( T ,  u ( 5 ) )  are linearly 
independent a.s. and there exists a A :  c" + i? such that 

Under these conditions, relation (b) in Theorem 3.1 takes the form 

(b') There exists-a Q' = (qf , . . ., q i )  E Ew satisfying (3.3) a d  there exist 
A,,' ..., IEp in Lq, such that 

h, (<) B 0, A, ( { ) A  (i, u,( ( ) )  = 0 a s ,  for i = 1 ,: . ., x ,  

The proof is simply a matter of decomposition and representation of 
normal cones; all the necessary ingredients are laid out in [4]. Moreover, the 
reader will find himself the generalization of (CQ) for the special structure that 
would be the "directionally Lipschitz case"; all the material for that purpose 
may be found in [lo]. 

B. The separable case. In order to gain insight into this case without being 
wrapped in technical assumptions, we shall simplify our approach by 
presupposing we are in the locally Lipschitz situation (case A above) and by 
dropping the additional constraint T o  (<). By a separable problem we mean that 

N 

(i) A(<,  u)  = 1 J q k ( S ,  uk) for i = 0, 1 ,  ..., #?, 
k =  1 

(ii) J,, : < H J , ~  (t , uk) are ak-measurable functions for i = 0,  1 , . . . , 
and k = 1, ..., N .  

In such a situation, part (b) of necessary conditions for optimality in 
Theorem 3.1 takes a "decomposed form. 

THEOREM 3.2. If uo E Lqp, is an oprirnul decision rule for problem (9), supposed 
separable, r hen 

(a) for UOE. Cp,L(5, uo(<))  < 0 a.s.for i = 1 ,  ..., a atzdA(5, uo(< ) )  = 0 
a s .  for i = a + l ,  ..., p ;  

(b") there exist 1,  , . . ., A,, in L4,, such that 

A,(<) 2 0 ,  Ai(C)J ( S ,  ~ ~ ( 2 ) )  = 0 a.s. for i = 1 ,  . . . , x ,  
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B 
+ E i I k V , k ( , u , k )  a for k = 1 ,,..$ N .  

i = u + l  

Proof .  Due to the separable structure of all the functions involved in the 
problems, we have 

N 

A ,  = , for u = ( u l  ,..., I+,). 
k =  1 

By rewriting relation (3.6) of (b') in such a context, we get 
. -  - 

+ C Ai(<)F'j;,k(<,~o,k(iJ) as. for 6 = 1 ,..., N .  
i = * + l  

Since 5 b u ~ , ~ ( < )  is ak-measurable, so are the multifunction 

, k ~ , k ( ) )  for i = 1 ,..., x 

and the mapping 

t~ V J q k ( < , ~ o , k ( < ) )  for i = x+l, ..., f i .  
Now, we use a result concerning the conditional expectation of 

multifunctions [15J which claims that if A : 3 3 R" is a convex compact- 
IS as. valued 28-measurable multifunction (with 98 P-complete), then E(d j .3) ' 

equal to A .  
By plugging the relation E (Q: 1 ak) = 0 into (3.81, we get the desired 

condition. 
Remarks.  In the convex case (i.e. (5, -) convex for i = 1 , . . . , r and 

J (5, -) affine for i = x + 1, . . . , p), relation (3.7) can be translated in terms of 
pointwise minimization using information pertinent to stage k .  For the salient 
features of these conditions in the "decomposed" form in the theoretical aspect 
as well as from the computational viewpoint, consult E121, $ 3.A. In our 
approach, the "conditional multipliers" have been obtained in a rather 
mechanical way and this process does not have the flavour of the duality 
approach in the convex case [12]. 
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