AN ALMOST SURE LIMIT THEOREM FOR THE MAXIMA AND SUMS OF STATIONARY GAUSSIAN SEQUENCES

BY
MARCIN DUDZIŃSKI* (Warszawa)

Abstract

Let X_{1}, X_{2}, \ldots be some standardized stationary Gaussian process and let us put: $$
M_{k}=\max \left(X_{1}, \ldots, X_{k}\right), \quad S_{k}=\sum_{i=1}^{k} X_{i}, \quad \sigma_{k}=\sqrt{\operatorname{Var}\left(S_{k}\right)} .
$$

Our purpose is to prove an almost sure central limit theorem for the sequence ($M_{k}, S_{k} / \sigma_{k}$) under suitable normalization of M_{k}. The investigations presented in this paper extend the recent research of Csaki and Gonchigdanzan [1] and Dudzinski [2].

2000 Mathematics Subject Classification: Primary 60F15; Secondary 60 F 05 .

Key words and phrases: Extreme values, partial sums, almost sure central limit theorem, dependent stationary Gaussian sequences.

1. INTRODUCTION

Recently, in a number of papers the joint asymptotic distribution of the maxima $M_{k}=\max \left(X_{1}, \ldots, X_{k}\right)$ and partial sums $S_{k}=\sum_{i=1}^{k} X_{i}$ of weakly dependent random variables have been studied. Let $r(k)=\operatorname{Cov}\left(X_{1}, X_{1+k}\right)$, $\sigma_{k}=\sqrt{\operatorname{Var}\left(S_{k}\right)}$, and let Φ denote the standard normal distribution function. Ho and Hsing were concerned in [3] with the case when (X_{i}) is some standardized stationary Gaussian process. They proved that under certain additional assumptions

$$
\lim _{k \rightarrow \infty} P\left(a_{k}\left(M_{k}-b_{k}\right) \leqslant x, S_{k} / \sigma_{k} \leqslant y\right)=\exp \left(-e^{-x}\right) \Phi(y)
$$

for all $x, y \in(-\infty, \infty)$, where

$$
a_{k}=(2 \log k)^{1 / 2}, \quad b_{k}=(2 \log k)^{1 / 2}-\frac{\log \log k+\log 4 \pi}{2(2 \log k)^{1 / 2}}
$$

[^0]In our considerations, we will also concentrate on the case when $\left(X_{i}\right)$ is some stationary standard normal process.

It turns out that the more general property may be proved, namely: if $\left(u_{k}\right)$ is a numerical sequence, satisfying the condition

$$
\lim _{k \rightarrow \infty} k\left(1-\Phi\left(u_{k}\right)\right)=\tau \quad \text { for some } \tau, 0 \leqslant \tau<\infty
$$

then under some extra assumptions on $r(k)$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} P\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right)=e^{-\tau} \Phi(y) \quad \text { for all } y \in(-\infty, \infty) \tag{1}
\end{equation*}
$$

We will use this fact to prove the main result of our paper, i.e. the so-called almost sure central limit theorem for the sequence ($M_{k}, S_{k} / \sigma_{k}$). Namely, we will show that if (1) holds and some conditions on $r(k)$ are satisfied, then

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right)=e^{-\tau} \Phi(y) \text { a.s. }
$$

for all $y \in(-\infty, \infty)$, where I denotes the indicator function.
Our research is an extension of recent works by Csaki and Gonchigdanzan [1] and Dudziński [2]. In both papers the almost sure central limit theorems for the maxima of certain stationary standard normal sequences have been proved.

2. NOTATION AND ASSUMPTIONS

Throughout the paper X_{1}, X_{2}, \ldots is a standardized stationary Gaussian process. Let us introduce (or recall from the previous section) the following notation:

$$
\begin{gathered}
r(k)=\operatorname{Cov}\left(X_{1}, X_{1+k}\right), \quad M_{k}=\max \left(X_{1}, \ldots, X_{k}\right), \quad M_{k, l}=\max \left(X_{k+1}, \ldots, X_{l}\right), \\
S_{k}=\sum_{i=1}^{k} X_{i}, \quad \sigma_{k}=\sqrt{\operatorname{Var}\left(S_{k}\right)},
\end{gathered}
$$

Φ denotes the standard normal distribution function, and I means the indicator function. Furthermore, $f \ll g$ and $f \sim g$ will stand for $f=\mathcal{O}(g)$ and $f / g \rightarrow 1$, respectively.

In order to shorten the presentation of our results, we label the assumptions of our lemmas and theorems as follows:

$$
\begin{gather*}
\sup _{s \geqslant n} \sum_{t=s-n}^{s-1}|r(t)| \ll \frac{(\log n)^{1 / 2}}{(\log \log n)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 ; \tag{a1}\\
\sum_{t=1}^{n}(n-t) r(t) \geqslant 0 \quad \text { for all } n \in\{1,2, \ldots\} \tag{a2}
\end{gather*}
$$

(a3)

$$
\lim _{k \rightarrow \infty} r(k) \log k=0
$$

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k\left(1-\Phi\left(u_{k}\right)\right)=\tau \quad \text { for some } \tau, 0 \leqslant \tau<\infty \tag{a4}
\end{equation*}
$$

3. MAIN RESULT

The main result is an almost sure central limit theorem for the sequence of maxima and partial sums of certain standardized stationary Gaussian processes.

Theorem 1. Let X_{1}, X_{2}, \ldots be a standardized stationary Gaussian process. Suppose moreover that conditions (a1)-(a3) are fulfilled. Then:
(i) If the numerical sequence (u_{k}) satisfies (a4), we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right)=e^{-\tau} \Phi(y) \text { a.s. }
$$

for all $y \in(-\infty, \infty)$ and some $\tau \in[0, \infty)$.
(ii) If

$$
a_{k}=(2 \log k)^{1 / 2}, \quad b_{k}=(2 \log k)^{1 / 2}-\frac{\log \log k+\log 4 \pi}{2(2 \log k)^{1 / 2}}
$$

we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n_{k=1}^{n}} \sum_{k}^{n} \frac{1}{k} I\left(a_{k}\left(M_{k}-b_{k}\right) \leqslant x, S_{k} / \sigma_{k} \leqslant y\right)=\exp \left(-e^{-x}\right) \Phi(y) \text { a.s. }
$$

for all $x, y \in(-\infty, \infty)$.

4. AUXILIARY RESULTS

In this section we state and prove three lemmas, which will be useful in the proof of Theorem 1 .

Lemma 1. Let X_{1}, X_{2}, \ldots be a standardized stationary Gaussian process satisfying assumptions (a1)-(a3). Suppose moreover that condition (a4) holds for the numerical sequence $\left(u_{k}\right)$. Then for all $y \in(-\infty, \infty), k<l$ and some $\varepsilon>0$

$$
E\left|I\left(M_{l} \leqslant u_{l}, \frac{S_{l}}{\sigma_{l}} \leqslant y\right)-I\left(M_{k, l} \leqslant u_{l}, \frac{S_{l}}{\sigma_{l}} \leqslant y\right)\right| \ll \frac{1}{(\log \log l)^{1+\varepsilon}}+\frac{k}{l} .
$$

Proof. We will start with the following observations.
Let $1 \leqslant i \leqslant l$. Then

$$
\left|\operatorname{Cov}\left(X_{i}, \frac{S_{l}}{\sigma_{l}}\right)\right|=\frac{1}{\sigma_{l}}\left|\sum_{t=0}^{i-1} r(t)+\sum_{t=1}^{l-i} r(t)\right|<\frac{2}{\sigma_{l}} \sum_{t=0}^{l-1}|r(t)|
$$

Since in addition, by (a2),

$$
\sigma_{l}=\sqrt{l+2 \sum_{t=1}^{l}(l-t) r(t)} \geqslant l^{1 / 2}
$$

we have

$$
\left|\operatorname{Cov}\left(X_{i}, \frac{S_{l}}{\sigma_{l}}\right)\right|<\frac{2}{l^{1 / 2}} \sum_{t=0}^{l-1}|r(t)| \quad \text { for all } 1 \leqslant i \leqslant l
$$

This together with (a1) implies that
(2)

$$
\sup _{1 \leqslant i \leqslant l}\left|\operatorname{Cov}\left(X_{i}, \frac{S_{l}}{\sigma_{l}}\right)\right| \ll \frac{(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 .
$$

Since

$$
\lim _{l \rightarrow \infty} \frac{(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}}=0
$$

by (2) there exist numbers λ and l_{0} such that

$$
\begin{equation*}
\sup _{1 \leqslant i \leqslant l}\left|\operatorname{Cov}\left(X_{i}, \frac{S_{l}}{\sigma_{l}}\right)\right|<\lambda<1 \quad \text { for all } l>l_{0} \tag{3}
\end{equation*}
$$

Let us recall now the following property, proved in Subsection 4.3 of Leadbetter et al. [4]. It states that if $r(k) \rightarrow 0$, then $|r(k)|<1$ for all $k \geqslant 1$. Consequently, as (a3) is satisfied, we can write the relation

$$
\begin{equation*}
\sup _{t \geqslant 1}|r(t)|=\delta<1 \tag{4}
\end{equation*}
$$

Properties (2)-(4) will be intensively used in the following step of our proof.

Let y be an arbitrary real number and $k<l$. We have

$$
\begin{aligned}
E \mid I\left(M_{l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right) & -I\left(M_{k, l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right) \mid \\
= & P\left(M_{k, l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)-P\left(M_{l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)
\end{aligned}
$$

Let in addition Y_{l} be a random variable which has the same distribution as S_{l} / σ_{l} but is independent of $\left(X_{1}, \ldots, X_{i}\right)$. We can write that

$$
\begin{align*}
E \mid I\left(M_{l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant\right. & \leqslant)-I\left(M_{k, l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right) \mid \tag{5}\\
\leqslant & \left|P\left(M_{l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)-P\left(M_{l} \leqslant u_{l}\right) P\left(Y_{l} \leqslant y\right)\right| \\
& +\left|P\left(M_{k, l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)-P\left(M_{k, l} \leqslant u_{l}\right) P\left(Y_{l} \leqslant y\right)\right| \\
& +\left(P\left(M_{k, l} \leqslant u_{l}\right)-P\left(M_{l} \leqslant u_{l}\right)\right)=: A_{1}+A_{2}+A_{3} .
\end{align*}
$$

We now estimate all the components A_{1}, A_{2}, A_{3} in (5).

As Y_{l} is independent of $\left(X_{1}, \ldots, X_{l}\right)$, we have

$$
A_{1}=\left|P\left(X_{1} \leqslant u_{l}, \ldots, X_{l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)-P\left(X_{1} \leqslant u_{l}, \ldots, X_{l} \leqslant u_{l}, Y_{l} \leqslant y\right)\right| .
$$

Since $\left(X_{1}, \ldots, X_{l}, S_{l} / \sigma_{l}\right)$ as well as $\left(X_{1}, \ldots, X_{l}, Y_{l}\right)$ are standard normal vectors and conditions (3), (4) are satisfied, applying Theorem 4.2.1 in [4] (the so-called Normal Comparison Lemma) we obtain

$$
\begin{align*}
A_{1} & \ll \sum_{i=1}^{l}\left|\operatorname{Cov}\left(X_{i}, \frac{S_{l}}{\sigma_{l}}\right)\right| \exp \left(-\frac{u_{l}^{2}+y^{2}}{2\left(1+\left|\operatorname{Cov}\left(X_{i}, S_{l} / \sigma_{l}\right)\right|\right)}\right) \tag{6}\\
& <\sum_{i=1}^{l}\left|\operatorname{Cov}\left(X_{i}, \frac{S_{l}}{\sigma_{l}}\right)\right| \exp \left(-\frac{u_{l}^{2}}{2(1+\lambda)}\right),
\end{align*}
$$

where λ is such as in (3). From (6) and (2) we get

$$
\begin{equation*}
A_{1} \ll l \frac{(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}} \exp \left(-\frac{u_{l}^{2}}{2(1+\lambda)}\right)=\frac{l^{1 / 2}(\log l)^{1 / 2}}{(\log \log l)^{1+\varepsilon}} \exp \left(-\frac{u_{l}^{2}}{2(1+\lambda)}\right) \tag{7}
\end{equation*}
$$

As the sequence (u_{k}) satisfies assumption (a4), by relations (4.3.4 (i)) and (4.3.4 (ii)) in [4] we obtain

$$
\begin{equation*}
\exp \left(-\frac{u_{l}^{2}}{2(1+\lambda)}\right) \sim K \frac{(\log l)^{1 / 2(1+\lambda)}}{l^{1 /(1+\lambda)}} \tag{8}
\end{equation*}
$$

Using (7) and (8), we have

$$
\begin{equation*}
A_{1} \ll \frac{l^{1 / 2}(\log l)^{1 / 2}}{(\log \log l)^{1+\varepsilon}} \frac{(\log l)^{1 / 2(1+\lambda)}}{l^{1 /(1+\lambda)}}=\frac{(\log l)^{1 / 2+1 / 2(1+\lambda)}}{l^{1 /(1+\lambda)-1 / 2}(\log \log l)^{1+\varepsilon}} \tag{9}
\end{equation*}
$$

Since $0<\lambda<1$, we have $1 /(1+\lambda)-\frac{1}{2}>0$. Hence

$$
(\log l)^{1 / 2+1 / 2(1+\lambda)} \ll l^{1 /(1+\lambda)-1 / 2} .
$$

This together with (9) implies that

$$
\begin{equation*}
A_{1} \ll \frac{1}{(\log \log l)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 \tag{10}
\end{equation*}
$$

We now give the bound for the component A_{2} in (5). Since Y_{l} is independent of $\left(X_{k+1}, \ldots, X_{i}\right)$, we obtain

$$
A_{2}=\left|P\left(X_{k+1} \leqslant u_{l}, \ldots, X_{l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)-P\left(X_{k+1} \leqslant u_{l}, \ldots, X_{l} \leqslant u_{l}, Y_{l} \leqslant y\right)\right|
$$

Applying Theorem 4.2.1 in [4] again and arguing as in the estimation of A_{1}, we have

$$
\begin{equation*}
A_{2} \ll \frac{1}{(\log \log l)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 \tag{11}
\end{equation*}
$$

Thus, it remains to estimate the last term A_{3} in (5). It is easy to check that (see also the first lines in the proof of Lemma 2.4 from the paper of Csaki and Gonchigdanzan [1])

$$
\begin{align*}
A_{3} & \leqslant\left|P\left(M_{l} \leqslant u_{l}\right)-\Phi^{l}\left(u_{l}\right)\right|+\left|P\left(M_{k, l} \leqslant u_{l}\right)-\Phi^{l-k}\left(u_{l}\right)\right|+\left(\Phi^{l-k}\left(u_{l}\right)-\Phi^{l}\left(u_{l}\right)\right) \tag{12}\\
& =: B_{1}+B_{2}+B_{3} .
\end{align*}
$$

Since the covariance function $r(k)$ satisfies (4), by Theorem 4.2.1 in [4] we obtain

$$
\begin{align*}
B_{1} & \ll \sum_{1 \leqslant i<j \leqslant l}|r(j-i)| \exp \left(-\frac{u_{l}^{2}}{1+|r(j-i)|}\right) \tag{13}\\
& \leqslant l \sum_{t=1}^{l-1}|r(t)| \exp \left(-\frac{u_{l}^{2}}{1+|r(t)|}\right) \leqslant l \sum_{t=1}^{l-1}|r(t)| \exp \left(-\frac{u_{l}^{2}}{1+\delta}\right) \\
& <l \exp \left(-\frac{u_{l}^{2}}{1+\delta}\right) \sum_{t=0}^{l-1}|r(t)|,
\end{align*}
$$

where δ is such as in (4). It follows from (13), (8) and (a1) that

$$
B_{1} \ll l \frac{(\log l)^{1 /(1+\delta)}}{l^{2 /(1+\delta)}} \frac{(\log l)^{1 / 2}}{(\log \log l)^{1+\varepsilon}}=\frac{(\log l)^{1 /(1+\delta)+1 / 2}}{l^{2 /(1+\delta)-1}(\log \log l)^{1+\varepsilon}}
$$

Since, by property (4), $0 \leqslant \delta<1$, we obtain $2 /(1+\delta)-1>0$. Consequently, we have $(\log l)^{1 /(1+\delta)+1 / 2} \ll l^{2 /(1+\delta)-1}$ and

$$
\begin{equation*}
B_{1} \ll \frac{1}{(\log \log l)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 \tag{14}
\end{equation*}
$$

Using similar methods to those in the estimation of B_{1}, we can check that

$$
\begin{equation*}
B_{2} \ll \frac{1}{(\log \log l)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 \tag{15}
\end{equation*}
$$

In addition, from the estimation of D_{3} in the proof of Lemma 2.4 in [1] we obtain the following bound for B_{3} in (12):

$$
\begin{equation*}
B_{3} \leqslant k / l . \tag{16}
\end{equation*}
$$

By (12) and (14)-(16) we have

$$
\begin{equation*}
A_{3} \ll \frac{1}{(\log \log l)^{1+\varepsilon}}+\frac{k}{l} \quad \text { for some } \varepsilon>0 \tag{17}
\end{equation*}
$$

Relations (5), (10), (11) and (17) establish the assertion of Lemma 1. a

The following lemma will be also needed in the proof of our main result.
Lemma 2. Let X_{1}, X_{2}, \ldots be a standardized stationary Gaussian process satisfying assumptions (a1)-(a3). Suppose moreover that condition (a4) holds for the numerical sequence $\left(u_{k}\right)$. Then there exist positive numbers γ and ε such that if

$$
k<\frac{\gamma l(\log \log l)^{2+2 \varepsilon}}{\log l} \quad \text { and } \quad k<l,
$$

then

$$
\left|\operatorname{Cov}\left(I\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right), I\left(M_{k, l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)\right)\right| \ll \frac{k^{1 / 2}(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}}
$$

for all $y \in(-\infty, \infty)$.
Proof. Similarly to the proof of Lemma 1, we will begin with some observations.

Let $i \geqslant k+1$. By assumptions (a1) and (a2) we obtain

$$
\begin{align*}
\left|\operatorname{Cov}\left(X_{i}, \frac{S_{k}}{\sigma_{k}}\right)\right| & \leqslant \frac{1}{\sigma_{k}} \sum_{t=i-k}^{i-1}|r(t)| \tag{18}\\
& =\frac{\sum_{t=i-k}^{i-1}|r(t)|}{\sqrt{k+2 \sum_{t=1}^{k}(k-t) r(t)}} \ll \frac{(\log k)^{1 / 2}}{k^{1 / 2}(\log \log k)^{1+\varepsilon}} .
\end{align*}
$$

Since in addition

$$
\lim _{k \rightarrow \infty} \frac{(\log k)^{1 / 2}}{k^{1 / 2}(\log \log k)^{1+\varepsilon}}=0
$$

there exist numbers μ and k_{0} such that

$$
\begin{equation*}
\sup _{i \geqslant k+1}\left|\operatorname{Cov}\left(X_{i}, S_{k} / \sigma_{k}\right)\right|<\mu<1 \quad \text { for all } k>k_{0} . \tag{19}
\end{equation*}
$$

We now estimate $\left|\operatorname{Cov}\left(S_{k} / \sigma_{k}, S_{l} / \sigma_{l}\right)\right|$, where $k<l$. Using (a2), we have

$$
\begin{aligned}
\left|\operatorname{Cov}\left(\frac{S_{k}}{\sigma_{k}}, \frac{S_{l}}{\sigma_{l}}\right)\right| & =\left|\frac{1}{\sigma_{k} \sigma_{l}}\left(\sigma_{k}^{2}+\operatorname{Cov}\left(X_{1}+\ldots+X_{k}, X_{k+1}+\ldots+X_{l}\right)\right)\right| \\
& =\left|\frac{\sigma_{k}^{2}}{\sigma_{k} \sigma_{l}}+\frac{1}{\sigma_{k} \sigma_{l}}\left(\sum_{t=k}^{l-1} r(t)+\sum_{t=k-1}^{l-2} r(t)+\ldots+\sum_{t=1}^{l-k} r(t)\right)\right| \\
& <\frac{\sigma_{k}^{2}+k \sum_{t=0}^{l-1}|r(t)|}{\sigma_{k} \sigma_{l}} \leqslant \frac{k+2 \sum_{t=1}^{k}(k-t) r(t)+k \sum_{t=0}^{l-1}|r(t)|}{k^{1 / 2} l^{1 / 2}} \\
& \leqslant \frac{k^{1 / 2}}{l^{1 / 2}}+\frac{2 k}{k^{1 / 2} l^{1 / 2}} \sum_{t=1}^{k}|r(t)|+\frac{k^{1 / 2}}{l^{1 / 2}} \sum_{t=0}^{l-1}|r(t)|<\frac{k^{1 / 2}}{l^{1 / 2}}+3 \frac{k^{1 / 2}}{l^{1 / 2}} \sum_{t=0}^{l-1}|r(t)| .
\end{aligned}
$$

This and assumption (a1) imply that

$$
\begin{equation*}
\left|\operatorname{Cov}\left(\frac{S_{k}}{\sigma_{k}}, \frac{S_{l}}{\sigma_{l}}\right)\right| \ll \frac{k^{1 / 2}(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 \tag{20}
\end{equation*}
$$

By (20), there exist numbers C and l_{1} such that

$$
\left|\operatorname{Cov}\left(\frac{S_{k}}{\sigma_{k}}, \frac{S_{l}}{\sigma_{l}}\right)\right| \leqslant C \frac{k^{1 / 2}(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}} \quad \text { for all } l>k>l_{1} .
$$

Let ϱ be a fixed real number satisfying the condition $0<\varrho<1$. Let in addition $\gamma=(\varrho / C)^{2}$, where the constant C is defined in the inequality above. Then
(21) $\left|\operatorname{Cov}\left(\frac{S_{k}}{\sigma_{k}}, \frac{S_{l}}{\sigma_{l}}\right)\right|<\varrho<1 \quad$ if $k<\frac{\gamma l(\log \log l)^{2+2 \varepsilon}}{\log l}$ and $l_{1}<k<l$.

We will apply properties (19)-(21) in the following step of our proof.
Let y be an arbitrary real number and $k<l$. We have
$\left|\operatorname{Cov}\left(I\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right), I\left(M_{k, l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)\right)\right|$
$=\mid P\left(X_{1} \leqslant u_{k}, \ldots, X_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y, X_{k+1} \leqslant u_{l}, \ldots, X_{l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)$

$$
-P\left(X_{1} \leqslant u_{k}, \ldots, X_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right) P\left(X_{k+1} \leqslant u_{l}, \ldots, X_{l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)
$$

Let moreover $\left(\tilde{X}_{k+1}, \ldots, \tilde{X}_{l}, \tilde{Y}_{l}\right)$ be a random vector which has the same distribution as $\left(X_{k+1}, \ldots, X_{l}, S_{l} / \sigma_{t}\right)$ but is independent of $\left(X_{1}, \ldots, X_{k}, S_{k} / \sigma_{k}\right)$. Then

$$
\begin{aligned}
\mid & \operatorname{Cov}\left(I\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right), I\left(M_{k, l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)\right) \mid \\
= & \mid P\left(X_{1} \leqslant u_{k}, \ldots, X_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y, X_{k+1} \leqslant u_{l}, \ldots, X_{l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right) \\
& -P\left(X_{1} \leqslant u_{k}, \ldots, X_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y, \tilde{X}_{k+1} \leqslant u_{l}, \ldots, \tilde{X}_{l} \leqslant u_{l}, \tilde{Y}_{l} \leqslant y\right) \mid \\
= & \mid P\left(X_{1} \leqslant u_{k}, \ldots, X_{k} \leqslant u_{k}, X_{k+1} \leqslant u_{l}, \ldots, X_{l} \leqslant u_{l}, S_{k} / \sigma_{k} \leqslant y, S_{l} / \sigma_{l} \leqslant y\right) \\
& -P\left(X_{1} \leqslant u_{k}, \ldots, X_{k} \leqslant u_{k}, \tilde{X}_{k+1} \leqslant u_{l}, \ldots, \tilde{X}_{l} \leqslant u_{l}, S_{k} / \sigma_{k} \leqslant y, \tilde{Y}_{l} \leqslant y\right) \mid .
\end{aligned}
$$

Since $\left(X_{1}, \ldots, X_{k}, X_{k+1}, \ldots, X_{l}, S_{k} / \sigma_{k}, S_{l} / \sigma_{l}\right)$ and $\left(X_{1}, \ldots, X_{k}, \tilde{X}_{k+1}, \ldots, \tilde{X}_{l}\right.$, $\left.S_{k} / \sigma_{k}, \widetilde{Y}_{l}\right)$ are standard normal vectors and conditions (3), (4), (19) and (21) are satisfied, applying Theorem 4.2.1 in Leadbetter et al. [4] we can write

$$
\begin{align*}
\mid \operatorname{Cov}\left(I \left(M_{k}\right.\right. & \left.\left.\leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right), I\left(M_{k, l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)\right) \mid \tag{22}\\
& \ll \sum_{i=1}^{k} \sum_{j=k+1}^{l}|r(j-i)| \exp \left(-\frac{u_{k}^{2}+u_{l}^{2}}{2(1+|r(j-i)| \mid}\right) \\
& +\sum_{i=1}^{k}\left|\operatorname{Cov}\left(X_{i}, \frac{S_{l}}{\sigma_{l}}\right)\right| \exp \left(-\frac{u_{k}^{2}+y^{2}}{2\left(1+\left|\operatorname{Cov}\left(X_{i}, S_{l} / \sigma_{l}\right)\right|\right)}\right) \\
& +\sum_{i=k+1}^{l}\left|\operatorname{Cov}\left(X_{i}, \frac{S_{k}}{\sigma_{k}}\right)\right| \exp \left(-\frac{u_{l}^{2}+y^{2}}{2\left(1+\left|\operatorname{Cov}\left(X_{i}, S_{k} / \sigma_{k}\right)\right| \mid\right.}\right)+
\end{align*}
$$

$$
\begin{aligned}
& +\left|\operatorname{Cov}\left(\frac{S_{k}}{\sigma_{k}}, \frac{S_{l}}{\sigma_{l}}\right)\right| \exp \left(-\frac{y^{2}}{1+\left|\operatorname{Cov}\left(S_{k} / \sigma_{k}, S_{l} / \sigma_{l}\right)\right|}\right) \\
= & : D_{1}+D_{2}+D_{3}+D_{4} .
\end{aligned}
$$

We now estimate all the components $D_{1}, D_{2}, D_{3}, D_{4}$ in (22).
Using the notation on δ in (4), we obtain the following bounds for D_{1} :

$$
\begin{equation*}
D_{1} \leqslant k \sum_{t=1}^{l-1}|r(t)| \exp \left(-\frac{u_{k}^{2}+u_{l}^{2}}{2(1+|r(t)| \mid}\right)<k \exp \left(-\frac{u_{k}^{2}+u_{l}^{2}}{2(1+\delta)}\right) \sum_{t=0}^{l-1}|r(t)| . \tag{23}
\end{equation*}
$$

By (23), (8) and assumption (a1), for some $\varepsilon>0$ we have

$$
\begin{aligned}
D_{1} & \ll k \frac{(\log k)^{1 / 2(1+\delta)}(\log l)^{1 / 2(1+\delta)}}{k^{1 /(1+\delta)} l^{1 /(1+\delta)}} \frac{(\log l)^{1 / 2}}{(\log \log l)^{1+\varepsilon}} \\
& \ll \frac{(\log l)^{1 /(1+\delta)}}{k^{1 /(1+\delta)} l^{1 /(1+\delta)}} \frac{(\log l)^{1 / 2}}{(\log \log l)^{1+\varepsilon}}=\frac{k^{1-1 /(1+\delta)}(\log l)^{1 /(1+\delta)+1 / 2}}{l^{1 /(1+\delta)}(\log \log l)^{1+\varepsilon}} .
\end{aligned}
$$

Since, by (4), $0 \leqslant \delta<1$, we obtain $1-1 /(1+\delta)<\frac{1}{2}$ and $1 /(1+\delta)=\frac{1}{2}+\alpha$ for some $\alpha>0$. Therefore

$$
\begin{equation*}
D_{1} \ll \frac{k^{1 / 2}(\log l)^{1 /(1+\delta)+1 / 2}}{l^{1 / 2} l^{\alpha}(\log \log l)^{1+\varepsilon}} \ll \frac{k^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 . \tag{24}
\end{equation*}
$$

We now estimate the component D_{2}. Using its definition in (22) and the notation on λ in (3), we have

$$
\begin{equation*}
D_{2}<\exp \left(-\frac{u_{k}^{2}}{2(1+\lambda)}\right) \sum_{i=1}^{k}\left|\operatorname{Cov}\left(X_{i}, \frac{S_{l}}{\sigma_{l}}\right)\right| . \tag{25}
\end{equation*}
$$

It follows from (25), (8) and (2) that for some $\varepsilon>0$

$$
D_{2} \ll \frac{(\log k)^{1 / 2(1+\lambda)}}{k^{1 /(1+\lambda)}} k \frac{(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}}=\frac{k^{1-1 /(1+\lambda)}(\log k)^{1 / 2(1+\lambda)}(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}} .
$$

Since $0<\lambda<1$, we have $1 /(1+\lambda)-\frac{1}{2}>0$. Hence $(\log k)^{1 / 2(1+\lambda)} \ll k^{1 /(1+\lambda)-1 / 2}$ and

$$
\begin{equation*}
D_{2} \ll \frac{k^{1 / 2}(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 \tag{26}
\end{equation*}
$$

We now estimate the component D_{3}. From its definition in (22) and the notation on μ in (19) we obtain

$$
\begin{equation*}
D_{3} \leqslant \exp \left(-\frac{u_{l}^{2}}{2(1+\mu)}\right) \sum_{i=k+1}^{l}\left|\operatorname{Cov}\left(X_{i}, \frac{S_{k}}{\sigma_{k}}\right)\right| . \tag{27}
\end{equation*}
$$

Let us observe that

$$
\begin{aligned}
\sum_{i=k+1}^{l}\left|\operatorname{Cov}\left(X_{i}, \frac{S_{k}}{\sigma_{k}}\right)\right| & =\frac{1}{\sigma_{k}} \sum_{i=k+1}^{l}|r(i-1)+r(i-2)+\ldots+r(i-k)| \\
& \leqslant \frac{1}{\sigma_{k}}\left(\sum_{i=k+1}^{l}|r(i-1)|+\sum_{i=k+1}^{l}|r(i-2)|+\ldots+\sum_{i=k+1}^{l}|r(i-k)|\right) \\
& =\frac{1}{\sigma_{k}}\left(\sum_{i-1=k}^{l-1}|r(i-1)|+\sum_{i-2=k-1}^{l-2}|r(i-2)|+\ldots+\sum_{i-k=1}^{l-k}|r(i-k)|\right) \\
& =\frac{1}{\sigma_{k}}\left(\sum_{t=k}^{l-1}|r(t)|+\sum_{t=k-1}^{l-2}|r(t)|+\ldots+\sum_{t=1}^{l-k}|r(t)|\right)<\frac{k}{\sigma_{k}} \sum_{t=0}^{l-1}|r(t)| \\
& =\frac{k}{\sqrt{k+2 \sum_{t=1}^{k}(k-t) r(t)}} \sum_{t=0}^{l-1}|r(t)|
\end{aligned}
$$

By assumptions (a1) and (a2) we have

$$
\begin{equation*}
\sum_{i=k+1}^{l}\left|\operatorname{Cov}\left(X_{i}, \frac{S_{k}}{\sigma_{k}}\right)\right| \ll \frac{k^{1 / 2}(\log l)^{1 / 2}}{(\log \log l)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 \tag{28}
\end{equation*}
$$

From (27), (8) and (28) we obtain

$$
D_{3} \ll \frac{(\log l)^{1 / 2(1+\mu)}}{l^{1 /(1+\mu)}} \frac{k^{1 / 2}(\log l)^{1 / 2}}{(\log \log l)^{1+\varepsilon}}=\frac{k^{1 / 2}(\log l)^{1 / 2(1+\mu)+1 / 2}}{l^{1 /(1+\mu)}(\log \log l)^{1+\varepsilon}}
$$

Since $0<\mu<1$, we have $1 /(1+\mu)>\frac{1}{2}$. Hence $1 /(1+\mu)=\frac{1}{2}+\beta$ for some $\beta>0$. This yields that
(29) $\quad D_{3} \ll \frac{k^{1 / 2}(\log l)^{1 / 2(1+\mu)+1 / 2}}{l^{1 / 2} l^{\beta}(\log \log l)^{1+\varepsilon}} \ll \frac{k^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}} \quad$ for some $\varepsilon>0$.

Thus, it remains to estimate the last term D_{4} in (22). Obviously, we have

$$
D_{4} \leqslant\left|\operatorname{Cov}\left(S_{k} / \sigma_{k}, S_{l} / \sigma_{l}\right)\right|
$$

This and (20) imply the following property:

$$
\begin{equation*}
D_{4} \ll \frac{k^{1 / 2}(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 \tag{30}
\end{equation*}
$$

From (22), (24), (26), (29), (30) we infer that if

$$
k<\frac{\gamma l(\log \log l)^{2+2 \varepsilon}}{\log l} \quad \text { and } \quad k<l
$$

then

$$
\left|\operatorname{Cov}\left(I\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right), I\left(M_{k, l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)\right)\right| \ll \frac{k^{1 / 2}(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}}
$$

for all $y \in(-\infty, \infty)$ and some $\varepsilon>0$. This completes the proof of Lemma 2. a
In the proof of our main result we will also apply the following lemma.
Lemma 3. Let X_{1}, X_{2}, \ldots be a standardized stationary Gaussian process satisfying assumptions (a1)-(a3). Supppose moreover that condition (a4) holds for the numerical sequence $\left(u_{k}\right)$. Then

$$
\lim _{k \rightarrow \infty} P\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right)=e^{-\tau} \Phi(y)
$$

for all $y \in(-\infty, \infty)$ and some $\tau \in[0, \infty)$.
Proof. Let y be an arbitrary real number and let, for each natural k, Y_{k} denote the random variable which has the same distribution as S_{k} / σ_{k} but is independent of $\left(X_{1}, \ldots, X_{k}\right)$. From the estimation of A_{1} in the proof of Lemma 1 we have

$$
\left|P\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right)-P\left(M_{k} \leqslant u_{k}\right) P\left(Y_{k} \leqslant y\right)\right| \ll \frac{1}{(\log \log k)^{1+\varepsilon}}
$$

for some $\varepsilon>0$. This property and the fact that

$$
\lim _{k \rightarrow \infty} \frac{1}{(\log \log k)^{1+\varepsilon}}=0
$$

imply the following relation:

$$
\begin{equation*}
\lim _{k \rightarrow \infty} P\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right)=\lim _{k \rightarrow \infty} P\left(M_{k} \leqslant u_{k}\right) P\left(Y_{k} \leqslant y\right) . \tag{31}
\end{equation*}
$$

As X_{1}, X_{2}, \ldots is a standard normal process, the covariance function $r(k)$ and the sequence (u_{k}) satisfy assumptions (a3) and (a4), respectively, by Theorem 4.3.3 in Leadbetter et al. [4] we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} P\left(M_{k} \leqslant u_{k}\right)=e^{-\tau} \quad \text { for some } \tau, 0 \leqslant \tau<\infty \tag{32}
\end{equation*}
$$

Since in addition Y_{k}^{\prime} s have the standard normal distribution, from (31) and (32) we obtain

$$
\lim _{k \rightarrow \infty} P\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right)=e^{-\tau} \Phi(y)
$$

for all $y \in(-\infty, \infty)$ and some $\tau \in[0, \infty)$. This completes the proof of Lemma 3.

5. PROOF OF THE MAIN RESULT

We now give the proof of Theorem 1. It makes an extensive use of the results in Lemmas 1-3.

Proof of Theorem 1. The idea of this proof is similar to that of Theorem 1.1 in Csaki and Gonchigdanzan [1].

From Lemma 3 we infer that if $\left(u_{k}\right)$ satisfies (a4) with some $\tau \in[0, \infty)$, then

$$
\lim _{k \rightarrow \infty} P\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right)=e^{-\tau} \Phi(y) \quad \text { for all } y \in(-\infty, \infty)
$$

Hence, arguing as in the proof of Theorem 1.1 (i) in [1], in order to prove part (i) of Theorem 1, it is enough to show that

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{k=1}^{n} \frac{1}{k} I\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right)\right) \ll \frac{(\log n)^{2}}{(\log \log n)^{1+\varepsilon}} \tag{33}
\end{equation*}
$$

for all $y \in(-\infty, \infty)$ and some $\varepsilon>0$.
Let $\xi_{k}=I\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right)-P\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right)$. We have

$$
\begin{align*}
\operatorname{Var}\left(\sum _ { k = 1 } ^ { n } \frac { 1 } { k } I \left(M_{k} \leqslant u_{k}\right.\right. & \left.\left.\frac{S_{k}}{\sigma_{k}} \leqslant y\right)\right)=E\left(\sum_{k=1}^{n} \frac{1}{k} \xi_{k}\right)^{2} \tag{34}\\
& \leqslant \sum_{k=1}^{n} \frac{1}{k^{2}} E \xi_{k}^{2}+2 \sum_{1 \leqslant k<l \leqslant n} \frac{1}{k l}\left|E\left(\xi_{k} \xi_{l}\right)\right|=: F_{1}+F_{2} .
\end{align*}
$$

Since ξ_{k} 's are bounded, we get

$$
\begin{equation*}
F_{1} \ll \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty . \tag{35}
\end{equation*}
$$

We now estimate the component F_{2} in (34). Using similar methods to those in the estimation of $\left|E\left(\eta_{k} \eta_{l}\right)\right|$ in [1], it is easy to check that

$$
\begin{aligned}
\left|E\left(\xi_{k} \xi_{l}\right)\right| \ll & E\left|I\left(M_{l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)-I\left(M_{k, l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)\right| \\
& +\left|\operatorname{Cov}\left(I\left(M_{k} \leqslant u_{k}, S_{k} / \sigma_{k} \leqslant y\right), I\left(M_{k, l} \leqslant u_{l}, S_{l} / \sigma_{l} \leqslant y\right)\right)\right| .
\end{aligned}
$$

Lemmas 1 and 2 imply that for all natural k and l such that

$$
k<\frac{\gamma l(\log \log l)^{2+2 \varepsilon}}{\log l} \quad \text { and } \quad k<l
$$

as well as for all $y \in(-\infty, \infty)$ and some $\varepsilon>0$ we have

$$
\begin{gathered}
E\left|I\left(M_{l} \leqslant u_{l}, \frac{S_{l}}{\sigma_{l}} \leqslant y\right)-I\left(M_{k, l} \leqslant u_{l}, \frac{S_{l}}{\sigma_{l}} \leqslant y\right)\right| \ll \frac{1}{(\log \log l)^{1+\varepsilon}}+\frac{k}{l}, \\
\left|\operatorname{Cov}\left(I\left(M_{k} \leqslant u_{k}, \frac{S_{k}}{\sigma_{k}} \leqslant y\right), I\left(M_{k, l} \leqslant u_{l}, \frac{S_{l}}{\sigma_{l}} \leqslant y\right)\right)\right| \ll \frac{k^{1 / 2}(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}} .
\end{gathered}
$$

Consequently, we infer that if $k<\gamma l(\log \log l)^{2+2 \varepsilon} /(\log l)$ and $k<l$, then

$$
\left|E\left(\xi_{k} \xi_{l}\right)\right| \ll \frac{1}{(\log \log l)^{1+\varepsilon}}+\frac{k^{1 / 2}(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 .
$$

Hence

$$
\begin{align*}
F_{2} & \ll \sum_{\substack{1 \leqslant k<l \leqslant n, k<\gamma(l \log \log l)^{2}+2 \varepsilon /(\log l)}} \frac{1}{k l} \frac{1}{(\log \log l)^{1+\varepsilon}} \tag{36}\\
& +\sum_{\substack{1 \leqslant k<l \leq n, k<\gamma(\log \log l)^{2+2 \varepsilon} /(\log l)}} \frac{1}{k l} \frac{k^{1 / 2}(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}}+\sum_{\substack{1 \leq k<l \leq n, k \geqslant \gamma l(\log \log l)^{2}+2 \varepsilon /(\log l)}}-\frac{1}{k l} \\
= & : G_{1}+G_{2}+G_{3} .
\end{align*}
$$

Let us note that

$$
G_{1} \ll \sum_{l=3}^{n} \frac{1}{l(\log \log l)^{1+\varepsilon}} \sum_{k=1}^{l-1} \frac{1}{k} \ll \sum_{l=3}^{n} \frac{\log l}{l(\log \log l)^{1+\varepsilon}}
$$

Since $f(t)=(\log t) /(\log \log t)^{1+\varepsilon}$ is an increasing function for sufficiently large t, we obtain
(37) $\quad G_{1} \ll \frac{\log n}{(\log \log n)^{1+\varepsilon}} \sum_{l=1}^{n} \frac{1}{l} \ll \frac{(\log n)^{2}}{(\log \log n)^{1+\varepsilon}} \quad$ for some $\varepsilon>0$.

We have the following estimates for G_{2} :

$$
\begin{align*}
G_{2} & \ll \sum_{k=2}^{n-1} \sum_{l=k+1}^{n} \frac{1}{k l} \frac{k^{1 / 2}(\log l)^{1 / 2}}{l^{1 / 2}(\log \log l)^{1+\varepsilon}}<\frac{(\log n)^{1 / 2}}{(\log \log n)^{1+\varepsilon}} \sum_{k=1}^{n-1} \frac{1}{k^{1 / 2}} \sum_{l=k+1}^{\infty} \frac{1}{l^{3 / 2}} \tag{38}\\
& \leqslant \frac{(\log n)^{1 / 2}}{(\log \log n)^{1+\varepsilon}} 2 \sum_{k=1}^{n-1} \frac{1}{k} \ll \frac{(\log n)^{3 / 2}}{(\log \log n)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0
\end{align*}
$$

To estimate G_{3} in (36), let us note that, since $k \geqslant \gamma l(\log \log l)^{2+2 \varepsilon} /(\log l)$, we have

$$
\frac{1}{k l} \leqslant \frac{\log l}{\gamma l^{2}(\log \log l)^{2+2 \varepsilon}}
$$

Therefore, we can write that

$$
\begin{align*}
G_{3} & \leqslant \sum_{1 \leqslant k<l \leqslant n} \frac{\log l}{\gamma l^{2}(\log \log l)^{2+2 \varepsilon}} \ll \frac{\log n}{(\log \log n)^{2+2 \varepsilon}} \sum_{k=1}^{n-1} \sum_{l=k+1}^{\infty} \frac{1}{l^{2}} \tag{39}\\
& \leqslant \frac{\log n}{(\log \log n)^{2+2 \varepsilon}} \sum_{k=1}^{n-1} \frac{1}{k} \ll \frac{(\log n)^{2}}{(\log \log n)^{2+2 \varepsilon}} \quad \text { for some } \varepsilon>0 .
\end{align*}
$$

From (36)-(39) we obtain

$$
\begin{equation*}
F_{2} \ll \frac{(\log n)^{2}}{(\log \log n)^{1+\varepsilon}} \quad \text { for some } \varepsilon>0 \tag{40}
\end{equation*}
$$

Relations (34), (35) and (40) imply that condition (33) holds for all $y \in(-\infty, \infty)$ and some $\varepsilon>0$. Consequently, the assertion (i) of Theorem 1 is fulfilled.

In order to prove Theorem 1 (ii), let us observe that, by Theorem 4.3.3 (ii) in Leadbetter et al. [4],

$$
\lim _{k \rightarrow \infty} P\left(M_{k} \leqslant x / a_{k}+b_{k}\right)=\exp \left(-e^{-x}\right)
$$

This together with Theorem 4.3 .3 (i) in [4] implies that

$$
\lim _{k \rightarrow \infty} k\left(1-\Phi\left(x / a_{k}+b_{k}\right)\right)=e^{-x} .
$$

Thus, it is easily seen that the assertion (ii) of Theorem 1 is a special case of the assertion (i) of that theorem with $u_{k}=x / a_{k}+b_{k}, \tau=e^{-x}$.

Acknowledgement. I wish to thank Professor W. Dziubdziela for his comments and support.

REFERENCES

[1] E. Csaki and K. Gonchigdanzan, Almost sure limit theorems for the maximum of stationary Gaussian sequences, Statist. Probab. Lett. 58 (2002), pp. 195-203.
[2] M. Dudziński, An almost sure maximum limit theorem for certain class of dependent stationary Gaussian sequences, Demonstratio Math. 35 (4) (2002), pp. 879-890.
[3] H. C. Ho and T. Hsing, On the asymptotic joint distribution of the sum and maximum of stationary normal random variables, J. Appl. Probab. 33 (1996), pp. 138-145.
[4] M. R. Leadbetter, G. Lindgren and H. Rootzen, Extremes and Related Properties of Random Sequences and Processes, Springer, New York-Heidelberg-Berlin 1983.

Department of Mathematics and Information Science
Warsaw University of Technology
pl. Politechniki 1
00-661 Warsaw, Poland
E-mail: mdudzinski@poczta.onet.pl

Received on 20.5.2002;
revised version on 21.2.2003

[^0]: * Department of Mathematics and Information Science, Warsaw University of Technology.

