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AN M O S T  SURE L I ~ T  WEOREM FOR MAXIMA 
ANID SUMS OF STATIONARY GAUSSIAN SEQUENCES 

Abstract. Let XI, X,, . . . be some standardized stationary Gaus- 
sian process and let us put: 

Our purpose is to prove an almost sure central limit theorem for the 
sequence (Mk, St/sh under suitable normalization of M,. The inves- 
tigations presented in this paper extend the recent research of Csaki 
and Gonchigdanzan [lj and Dudzinski [2]. 
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Recently, in a number of papers the joint asymptotic distribution of 
the maxima MI = man (X,, . . ., Xk) and partial sums Sk = x:=, Xi of weakly 
dependent random variables have been studied. Let r (k) = Cov (XI, XI +,), 
4 = Jw, and let @ denote the standard normal distribution function. 
Ho and Hsing were concerned in [3] with the case when (Xi) is some stand- 
ardized stationary Gaussian process. They proved that under certain addition- 
al assumptions 

lim P (a, ( M ,  - bk) 6 x, 6 y) = exp ( - e-") 6, (J) 
k-tm 

for all x, YE(-ao, ao), where 

log log k + log 4n: 
ak = (2 log k)'t2, bk = (2 log k)1/2 - 

2 (210g k)'I2 . 
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In our considerations, we will also concentrate on the case when (Xi) is 
some stationary standard normal process, 

It turns out that the more general property may be proved, namely: if (uk) 
is a numerical sequence, satisfying the condition 

limkll-@(uk))=z for some z, O < z < m ,  
k- r  m 

then under some extra assumptions on r (k )  we have 

( 1  l imP(Mk<u, ,SJckdy)=e- '@(y)  for ally^(-m,oo). 
ic- m 

We will use this fact to prove the main result of our paper, i.e. the so-called 
almost sure central limit theorem for the sequence (Mk, Sk/crk). Namely, we will 
show that if (1) holds and some conditions on r ( k )  are satisfied, then 

1 n l  
lim - - I  (Mk 6 uk, Sk/ak G y)  = e-'@ (y) a.s. 
n + r n l ~ g n ~ = ~  k 

for all y E (- co, a), where I denotes the indicator function. 
Our research is an extension of recent works by Csaki and Gonchigdan- 

zan [I] and Dudzihski [21. In both papers the almost sure central limit theo- 
rems for the maxima of certain stationary standard normal sequences have 
been proved. 

2. NOTATION AND ASSUMPTIONS 

Throughout the paper XI, X,, . . . is a standardized stationary Gaussian 
process. Let us introduce (or recall from the previous section) the following 
notation: 

r(k) = COV (XI, XI +A), Mk = max (XI, . . . , Xk), Mk,' = max (Xk + , , . . . , x~), 

Q1 denotes the standard normal distribution function, and I means the indica- 
tor function. Furthermore, f 4 g and f - g will stand for f = O (g) and f/g -, 1, 
respectively. 

In order to shorten the presentation of our results, we label the assump- 
tions of our lemmas and theorems as follows: 

S-1 (log n)'l2 
for some E > 0; 

s 3 a  t=s-n 

(n-t)r(t)>O for all n ~ ( 1 , 2 ,  ...); 
t=l 
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lim r ( k )  log k = 0; 
k-' m 

(a41 limk(1-@(u$)=t for some t, Od.r:<co. 
k -  m 

3 hum RESULT 

The main result is an almost sure central limit theorem for the sequence of 
maxima and partial sums of certain standardized stationary Gaussian processes. 

THEOREM 1. Let XI, X2, . . . be a standardized stationary Gaussian process. 
Suppose moreover that conditions (alHa3) are fulfilled. Then: 

(i) r f  the numerical sequence (uk) satisfies (ad), we have 

for ail Y E ( - C O ,  ao) and some T E [ O ,  KO). 

(i? Jf 
log log k +log 4x 

i t k  = (2 log k)'/', bk = (2 log k)1/2 - 
2 (2 log k)lI2 ' 

we have 

1 " 1  
lim - C -I (ak(Mk-bk) < X ,  Sk/nk < y) = exp (-e-") @(y) a.s. 

n-m Iogn,=, k 

for all x, ye(-ao,  a). 

4 AUXILIARY RESULTS 

In this section we state and prove three lemmas, which wil l  be useful in the 
proof of Theorem 1. 

LEMMA 1. Let XI, X,, .. . be a standardized stationary Gaussian process 
satisfying assumptions (alHa3). Suppose moreouer that condition (a4) holds for 
the numerical sequence (uk). Then for all y E(- oo, a), k < 1 and some E > 0 

Proof. We will start with the following observations. 
Let 1 < i < I. Then 

1 '-1 I- i  2 1-1 

Cov Xi, - = - I C r (t) + C r (t)( < - C Ir (t)t. I ( 31 o l t = o  t= l Dl t = O  



Since in addition, by (a2), 

crt = ,/I+ 2 ~ '  ( i  -t)r (t)  2 j112, 
I =  1 

we have 

This together with (al) implies that 
- 

(2) 
(log E ) l j 2  

SUP I c O Y ( X . ~  :)I ~ p , z ~ o g l o g o l + l  for some E > 0. 
1 <is1 

Since 

lirn 
(log 

= 0, 
$4 rn (log log 1)' +" 

I by (2) there exist numbers A and E o  such that 

<,I < 1 for all I >  1,. 
l C i Q l  

Let us recall now the following property, proved in Subsection 4.3 of 
Leadbetter et al. [4]. It states that if r(k) + 0, then Ir(k)l < 1 for all k > 1. 
Consequently, as (a3) is satisfied, we can write the relation 

sup lr (t)l = 6 < 1. 
t 3  1 

Properties (2H4) will be intensively used in the following step of our 
proof. 

Let y be an arbitrary real number and k < I. We have 

Let in addition E; be a random variable which has the same distribution as Sl/cl 
but is independent of (XI, . . ., Xi). We can write that 

(5)  E I I ( M I ~ ~ I , S J ~ I < Y ) - I ( M R . ~ < U I , S J ~ I < Y ) I  

< IP(M, G U I ,  S J a l  < y)- P (Ml < UI)P (E; < y)l 

+ IP(Mk.1 < ul, SJol d Y)-P(Mk,t ui) p (x < y)l 

+(P(Mk,l< UI)-P(M~ < ui))=:Al+A2+A3. 

We now estimate all the components All A,, A, in (5). 
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As Y; is independent of (XI, . . . , XI), we have 

Since (XI, . . ., Xi, S,/or) as well as (X,, . . ., X,, x) are standard normal vectors 
and conditions (3), (4) are satisfied, applying Theorem 4.2.1 in [4] (the so-called 
Normal Comparison Lemma) we obtain 

where R is such as in (3). From (6) and (2) we get 

(log I)li2 Ell2 (log 1)li2 MI" 

(7) A ~ * r l l , 2 ~ o g l o g l ) l + . ~ ~ p ( - & ) = ~ o g l o g 0 ~ + . e ~ ~ ( - m ) ~  

As the sequence (uA) satisfies assumption (a4), by relations (4.3.4 (i)) and 
(4.3.4 (3)) in [4] we obtain 

Using (7) and (8), we have 

1112 (log 1)112 (log E)1'2(1 +A1 (log i)1/2+ 1/2 (1  f A) 

(9) A1 4 (loglogE)l+& ill(l+A) ~ I ( I  +A)-112 (log log 1)l + e .  
- - 

Since 0 < I < 1, we have l/(1 +A)-$ > 0. Hence 

(log 1)1/2+ 1/2(1 +A) 4 11/(1+"- 112 

This together with (9) implies that 

1 
A1 -4 for some E > 0. 

(10glogl)~+" 

We now give the bound for the component A, in (5). Since Y; is indepen- 
dent of (Xk+ l, . . ., XI), we obtain 

Applying Theorem 4.2.1 in [4] again and arguing as in the estimation of A,, we 
have 

1 
A2 4 for some E > 0. 

(log log 1)l+ " 
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Thus, it remains to estimate the last term A, in (5). It is easy to check that 
(see also the first lines in the proof of Lemma 2.4 from the paper of Csaki and 
Gonchigdanzan [I]) 

Since the covariance function r (k) satisfies (4), by Theorem 4.2.1 in [4] we 
obtain - 

where 6 is such as in (4). It follows from (13), (8) and (al) that 

(log E)l/(l (log 1)lI2 - (log 1)11(1 +&I' 1/2 

B 1 6 1  pKl+@ floglog~)l+e-~llll+d)-l (log log Z)l 

Since, by property (4), 0 < S < 1, we obtain 2/(1+ 6 ) -  1 > 0. Consequently, we 

I have (log E)1i(1+6)+ ,+ 121(1 +a)- 1 and 

1 
31 -4 for some E > 0, 

(log log l) l  + 

Using similar methods to those in the estimation of B,,  we can check that 

1 
3 2  < (log log I)l+ 

for some E > 0. 

In addition, from the estimation of D ,  in the proof of Lemma 2.4 in [I] we 
obtain the following bound for 3, in (12): 

(16) B3 < k/l. 

By (12) and (14H16) we have 

1 
A3 4 

k 
(log log l)l+e+i 

for some E > 0. 

Relations (5), (lo), (11) and (17) establish the assertion of Lemma 1. 
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The following lemma will be also needed in the proof of our main result. 

LEMMA 2. Let XI, X2, . . . be a standardized stationary Gaussian process 
satisfying assumptions (alHa3). Suppose moreover that condition (a4) holds for 
the numerical sequence (uk). Then there exist positive numbers y and E such that if 

yl  (log log 1)2 + 
k < and k < 1, 

log I 
then 

k112 (log-l) l j2  
ICov(I(Mk $ uk, Sdnk Y), I@' f , ,  < %, Sd01 < y))l 4 i l / t  (loglog 

far call YE(-oo, a). 

Proof. Similarly to the proof of Lemma 1, we will begin with some 
observations. 

Let i 2 k+ 1. By assumptions (a l )  and (a2) we obtain 

- - x:lt!- lr(t)l (log k)'I2 

J k f 2 z k  t = l  (k-t)r(t)' k'"(loglogk)'t.' 
Since in addition 

lim 
(log k)lI2 

= 0, 
k+m k1I2 (log log k)"" 

there exist numbers p and k, such that 

(19) sup ICov(Xi, SA/cA)I < p < 1 for all k > ko. 
i>k+l 

We now estimate ICov (SJcrk, SJo,)l, where k < I.  Using (a2), we have 

10 - PAMS 23.1 



. . 
This and assumption (al) imply that 

k112 (log i)lI2 
( 2 ~ )  JcOv($ $1 4 11,2 (log loC + E  for some E > 0. 

By (201, there exist numbers C and E l  such that 

k1I2 (log z)1'2 Icov (:, :)I 4 11,2 bBlog for all l > k > E l .  

Let g be a fixed real number satisfying the condition 0 < Q < 1. Let in addition 
y = (Q/C)~,  where the constant C is defined in the inequality above. Then 

2+2e  

(21) Ic~~(:, :)I< < I if k < y'(lOglogz) log 1 and I, < k < 1. 

We will apply properties (19H21) in the following step of our proof. 
Let y be an arbitrary real number and k < 1. We have 

ICov (1 (Mk C uk, s J g k  < Y), I (M,,, C a,, SJa, < Y))I 
= IP (Xi < ~ k ,  . . ., Xk < uk, S J J ~ ~  < Y, Xk+ 1 6 ~ 1 ,  . . . , XI < UI, S J G ~  6 Y) 

-P(X1 <Uk,...,Xk<uk,SJ~k<y)P(Xk+~ . , . , X I < U ~ ,  SJdl<~) l .  

Let moreover ((k + . . . , a , ,  x )  be a random vector which has the same dis- 
tribution as (Xk+ ,, . . . , XI, S JoI) but is independent of (XI, . . ., Xk, SJak). Then 

l C o v ( ~ ( ~ k  4 4 ,  Sk/ck < Y), I (MkJ %, Sl/gl /a, Y))I 

= IP(X1 < Uk, ..-, Xk < Uky Sk/~k < yy Xk+l < u1, =.-, XI< ul, Sl/fll < Y) - 
-P(X1 < ~ k ,  * . - ,  Xk < uk, SJck < yr Xk+l < ~ 1 ,  ..-, 21 < UIY E < y)l 

=IP(X1 <Uk, ...,Xk<Uk, Xk+l < U I ,  ..., XI< Ul, SA/ok <Y,SJdl <y)  - 
-P(x~ < ~ k ,  ..., ~k < ~ k ,  x k + l  < ~ 1 ,  ..., 3 1  < 111, s k / ~ k  < y, 8 < ~ 1 1 .  

Since (XI, ..., Xk, Xk+l, ..., XI, Skjak, S1/o1) and (XI, ..., Xk, 3k+l, ..., TI, 
SJak, $) are standard normal vectors and conditions (31, (4), (19) and (21) 
are satisfied, applying Theorem 4.2.1 in Leadbetter et al. [4] we can write 

(22) ICov(l(Mk < u k ,  Sk/ak < y), I(Mk,, 4 ul, sdol 6 ~ ) ) l  
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We now estimate all the components Dl, D2, D3, D4 in (22). 
Using the notation on S in (4), we obtain the following bounds for Dl: 

By (23), (8) and assumption (al), for some E > 0 we have 

f l o g y / ( 1 + 8 )  flogI)1/2 kl-1/(1+8) (log i)ll(l +S+ 112 
- 

g k kl"1 I" pl(1 +a1 (log log 1)l +" - + b, (log log I)l+' 
' 

Since, by (4), 0 6 S < 1, we obtain 1 - 1/(1+ 6) < $ and l/(l + 6) = 4 + o! for 
some u > 0. Therefore 

kl/2 (log ~)1/(1+8)+ 112 k1/2 

(24) 
@ l1I2 P (log log I)' +' z1/2 (log log 1)' +' for some E > 0. 

We now estimate the component D,. Using its definition in (22) and the 
notation on R in (31, we have 

It follows from (25), (8) and (2) that for some 8 > 0 

(log k)1/2(1 +A) (log kl- 1/(1 + A )  (log k)f '2'1 +A) 
- (log I)lI2 

D2 @ kl/(l f 4 11/2 flog log 01 + E  - 1 (log log 1)l+ " 

Since 0 < d < 1, we have 1/(1 +A) -4 > 0. Hence (log k)lj2(l +a) @ klN' + a)--1/2 

and 

k1I2 (log I)ll2 
D2 e 

Ell2 (log log E)l+" 
for some E > 0. 

We now estimate the component D3.  From its definition in (22) and the 
notation on p in (19) we obtain 



Let us observe that 

By assumptions (al) and (a21 we have 

k1J2 (log 1)1'2 
for some E > 0. 

i = k + l  (log log 1)l +" 

From (27), (8) and (28) we obtain 

Since 0 < p < 1, we have 1/(1+ p) u) >. Hence 1/(1+ p) = $+/I for some p > 0. 
This yields that 

klI2 (log 1)1/2(f +PI  f 112 klJz 
for some E > 0. 

Thus, it remains to estimate the last term D, in (22). Obviously, we have 

This and (20) imply the following property: 

k1l2 (log I)ll2 
D4 lit2 (log log 1 ) l + &  

for some E > 0. 

From (22), (24), (26), (29), (30) we infer that if 

y 1 (log log + 2E 

k < and k < I, 
log I 
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then 

for all y E (- co, a) and some E > 0. This completes the proof of Lemma 2. ra 

In the proof of our main result we will also apply the following lemma. 

LEMMA 3. Let XI, XZ , . . . be a standardized stationary Gaussian process 
satisfying assumptions (alj(a3). Sispppose moreover that condition (a4) holds for 
the nurnericaI sequence (%). Then - 

for aII y E (- m, m) a d  some T E [0, a). 

Proof. Let y be an arbitrary real number and let, for each natural k, 
Y ,  denote the random variable which has the same distribution as S JD, but is 
independent of (XI, . . ., Xk). From the estimation of A, in the proof of Lem- 
ma 1 we have 

1 
IP(Mk < u k ,  Slr/~k 6 ~)-p(Mk 6 u k ) P ( &  < Y)I < (log log k)' +' 

for some E > 0. This property and the fact that 
1 

lim 
I 

= 0 
k + m  (log log k)l+" 

imply the following relation: 

(31) lim P(Mk < uk, Sk/ok < y) = lim P ( M k  < uk)P(& < y). 
k + m  k+ w 

As XI,  X,, . .. is a standard normal process, the covariance function r(k) 
and the sequence (u,) satisfy assumptions (a3) and (a4), respectively, by Theo- 
rem 4.3.3 in Leadbetter et al. [4] we have 

(32) l i m P ( M k < ~ k ) = e - r  for some z, O < z < m .  
k+ w 

Since in addition Y,'s have the standard normal distribution, from (31) and (32) 
we obtain 

lim P(Mk < isk, SJok 6 y) = e-'a($ 
A +  w 

for all YE(-- ca, a) and some T E  [0, co). This completes the proof of Lem- 
ma 3. 



5. PROOF OF THE MAIN RESUL,T 

We now give the proof of Theorem 1. It makes an extensive use of the 
results in Lemmas 1-3. 

P r o  of of Theorem 1. The idea of this proof is similar to that of Theo- 
rem 1.1 in Csaki and Gonchigdanzan [I]. 

From Lemma 3 we infer that if (uk) satisfies (a4) with some z E [O, a ) ,  then 

lirnP(Mk<uk, S J t ~ ~ < y ) = e - ~ @ ( y )  for all YE(-oo, oo). 
k-rm - 

Hence, arguing as in the proof of Theorem 1.1 (i) in [I], in order to prove part 
(i) of Theorem 1, it is enough to show that 

for all Y E ( - - m , ~ )  and some E > O .  
Let tk = I(M, < uk, SJgk 6 y ) -P (Mk  4 uk, Sdnk < y). We have 

Since Ck)s are bounded, we get 

We now estimate the component F ,  in (34). Using similar methods to 
those in the estimation of IE(qrql)l in [I], it is easy to check that 

IE (tk t1)1 < E II(MI < Uty S I / ~ I  4 Y) -I(Mk,l < UI? Sd01 < Y)I 

Lemmas 1 and 2 imply that for all natural k and 1 such that 

yl (log log I ) 2  + 2 E  

k <  log1 
and k < l 

as we11 as for a11 YE(- oo, co) and some E > 0 we have 

k1IZ (log 1 ) l I 2  
4 

p ; 2  (log log 1)1 +'- 
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Consequently, we infer that if k < yl (log log I)'+ "/(log 2 )  and k < 1, then 

1 k1Iz (log 1)'/' 
IE(ckb)I 4 (loglogl)~+E+ LIZ loglog~)i+e 1 ( 

for some e > 0. 

Hence 

C 
1 
- 

1 
(36) F Z  < 

~ < ~ < I S R ,  kI (Iog log I)'+" 
R < yl(loglogl)2 + z=/(log I )  

C 
1 kLlz (log 1)'/' 

C 
- 1 + - + - 

I G k c l d n ,  kE 11j2 (log log El1 +" l G k < l S n  kl 
k < yl(logiogl)2 + q ( l o g  I )  k 3 yl(1og log 1)2 + &/(logl) 

Let us note that 
n 1 1-11 n log I 

GI-% C 
,=3 

Since f (t) = (log t)/(iog log t)'+Vs an increasing function for sufficiently large t, 
we obtain 

logn " 1  
(37) GI 4 

(1% n12 for some E > 0. 
(log log nll +' 7 -4 (log log n)' +' 

We have the following estimates for G2: 
n - 1  n 1 kLIZ (log l)ll2 

(38) '2 4 C C i;i ll/z uog log 111 +E " 
k = 2  1 = k + l  

(10gn)~I' "-l 1 (log n)3/2 < 2 c -< for some E > 0. 
(log log n)'+\=, k (log log n)'+" 

To estimate G 3  in (36), let us note that, since k 2 yl( l~glogI)~+~~/( log  I), we 
have 

1 log l 
- 6 kl y l2 (log log 1)'+"* 

Therefore, we can write that 

log I 1 
(3 9) -4 

l$k<l$n~12(10g10g1)2f '" (l"glogn) k = l  ,=,+I 

logn < (log nI2 for some E > 0. 
(log log n)'+ze zl i ' (log log nI2+ 2' 



From (36)-(39) we obtain 

~a -4 (log n)2 for some E > 0. (log log n)' "' 
Relations (34), (35) and (40) imply that condition (33) holds for all y E ( - cc , m) 
and some E > 0. Consequently, the assertion (i) of Theorem 1 is fulfilled. 

In order to prove Theorem 1 (ii), let us observe that, by Theorem 4.3.3 (ii) 
in Leadbetter et al. [4], 

lim P ( M k  d x/ak+bk) = exp(-e-?. - 
k+m 

This together with Theorem 4.3.3 (i) in [4] implies that 

Thus, it is easily seen that the assertion (ii) of Theorem I is a speciaI case of the 
assertion (i) of that theorem with uk = x/ak+bk,  z = e-x. 
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