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Let U ( t l ,  t2 ,  t3)  = (U1 ( - ), . . ., Up(.)) '  be a wide-sense homogeneous and 
isotropic random field defined on the lattice Z3 and taking values in RP, p E N. 
Let (fgh(A, p, v ) ) , , ~=~ , . . . , ,  denote the spectral density matrix. In this paper, we 
shall be concerned with random fields such that the component functionshh (. ) 
satisfy, for some E > 0, 

(Im1) &@I = Lgh(loll) Ib/l""+"" for 1 1 ~ 1 1  < 8 ,  -3/2 < a,, ah 6 3/2, 

where o = (1, p,  v), 11.11 denotes Euclidean norm, and Lsh(lloll) is a complex- 
-valued scalar function whose modulus is bounded and bounded away from 
zero at the origin. Throughout the paper, the exact form of Lg,(JJwJJ) is assumed 
to be unknown. We write ugh for ug+ah; thus 

for a, > 0, 

lim f,, (a) = Lgg (0) > 0 for u,, = 0, 
llm11+0 1: for a, < 0. 

- 
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Hence we say that the random field U ( t , ,  t,, t,) has singular spectrum, i.e. it is 
long-range dependent for a,, # 0 and some g; the condition a,, > - 3 is needed 
to ensure integrability of the spectral density, and hence wide-sense homo- 
geneity of the field. U(.) may represent a scalar density field for p = 1 or 
a vector velocity field for p = 3. The equality (1.1) implies that U ( - 1  is isotropic, 
which is a standard assumption in the vast majority of physical applications. 

Random fields with spectral singularities are now known to arise in many 
cases of interest. Albeverio et al. [I] and many subsequent authors have stud- 
ied the asymptotic behaviour of solutions for Burgers' nonlinear differential 
equation in three dimensions, as motivated in particular by the znalysis of the 
distribution of self-gravitating matter in the late stages of the Universe. In 
particular, Albeverio et al. Cl] have shown heuristically that in the absence of 
long-range dependent behaviour these models imply that the density of matter 
is asymptotically uniform - an implication utterly contradicted by astronomi- 
cal data (see Shandarin and Zeldovich [22] and the references therein), where 
the presence of large voids and intermittent structures (Voronoi tessellations) is 
firmly established (see also Funaki et al. [5], Molchanov et al. 1171, Leonenko 
and Woyczynski [13]. In fact, in the astrophysical literature on matter dis- 
tribution (1.1) with p = 1 and a close to unity is often taken for granted, for 
instance by the highly popular Harrison-Zeldovich model (Peebles [18]). In 
the same context, Shandarin and Zeldovich 1221, p. 205, mention six alter- 
native proposals for f (a), all of them satisfying (1.1) with a > 0. Many other 
stochastic models outside Burgers' turbulence can produce long-range depen- 
dent behaviour in random fields; for instance, fractional and non-fractional 
diffusion-wave equations producing spectra1 singularities are considered by 
Anh et al. 121, Anh and Leonenko [3], [4] and others, with applications 
including wave diffusions in porous media, nonlinear acoustic shock waves and 
other types of irrotational flow. In all these cases the exact form of the spectral 
density can be quite complicated or even not yet known, depending on as many 
as sixteen parameters in some cosmological models, however typically (1.1) 
does hold around the origin. 

In the time series case, statistical inference and its mathematical foun- 
dations in the presence of long-range dependence have now been investigated 
in great detail, under both parametric and semiparametric conditions. On the 
other hand, although the probabilistic literature in the random field case has 
now reached a high level of sophistication, statistical inference procedure have 
not been developed to the same extent as for time series. The main references 
are Heyde and Gay [S], Leonenko and Woyczynski [14], [15], Ludena and 
Lavielle C161, each of these authors considering, under different assumptions, 
a fully parametric specification over the whole frequency band. Therefore, it 
seems that semiparametric procedures, which impose only the milder condition 
(l.l), i.e. which make assumptions only on an arbitrary small neighbourhood 
around zero frequency, have largely been neglected in the random field case. 
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Nevertheless, data sets which are candidates for long-range dependent behav- 
iour (like catalogs of galaxy redshifts in the astronomical context) are often 
characterized by an extremely high number of observations. Hence it can be 
computationally very hard to implement fully parametric estimates, which are 
typically not available in closed form and require lengthy iterations. More 
important, a full-band model entails by necessity a number of assumptions and 
approximations whose validity can be questioned, while many of them need 
not be necessary for the analysis of the behaviour of the system at the largest 
scale. The presence of observational error, moreover, can add a white noise 
additive component in the spectral density of the observables, so-that a full 
band model may be misspecified, whereas (1.1) may still be valid, at least for 
negative a. It is also important to remark how most physical models are devel- 
oped for continuous parameter fields, whereas observations are usually availa- 
ble on a lattice like Z3. Discretization procedures have a complicated nonlinear 
effect on the spectral density, which is often difficult to pin down exactly, 
especially as data collection is in many cases beyond the control of the statis- 
tician. The most common discretization procedures, however, such as neigh- 
bourhood smoothing or grid sampling, do not have effects at zero frequency, 
except at most some rescaling in the constants, and this provides in our opin- 
ion one further reason to favour local-to-zero specifications such as (1.1). The 
parameter a is often of considerable interest by itself; for instance, many geo- 
metric functionals of random fields commonly used as model checking devices 
are well-known to have asymptotic distribution depending only on u and L(O), 
see Ivanov and Leonenko [9]. Finally, estimates of a can be used as the bench- 
-mark to discriminate between alternative models, such as different inflationary 
scenarios for the very early Universe (Kolb and Turner [lo]). 

The purpose of this paper is to develop a semiparametric procedure for 
statistical inference on the long-range dependence parameters a, imposing only 
local-to-zero conditions. Our basic idea is to extend to the random field case 
the Whittle semiparametric procedure considered for long-range dependent 
time series by Kiinsch [ll] and Robinson [21]. As many semiparametric meth- 
ods, Whittle estimates rely only on the information at the smallest frequencies, 
and therefore have asymptotic efficiency zero with respect to procedures based 
on a correctly specified parametric model. In the presence of misspecification of 
the high-frequency component, however, a parametric model will generally 
lead to inconsistent estimates, whereas semiparametric procedures have robust- 
ness properties that seem desirable. Moreover, the loss of asymptotic efficiency 
seems acceptable in many random fields contexts, where data sets candidate for 
long-range dependent behaviour are often characterized by an extremely high 
number of observations (e.g. the ongoing Sloan Digital Survey on stellar dis- 
tribution aims at mapping the position of more than lo6 galaxies). Finally, from 
the computational point of view the procedure we advocate seems extremely 
convenient, requiring minimization of a globally concave univariate function, 
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a task which can be easily accomplished by several well-known optimization 
routines. 

The plan of the paper is as follows. In Section 2 we establish some results 
of independent interest on the asymptotic behaviour of the discrete Fourier 
transform of the vector field U(-). This materid extends to the random field 
case analogous results by Robinson [20] and Velasco [24], and we believe it 
may find applications in other semiparametric inference procedures in the pres- 
ence of spectral singularities. In Section 3 we focus more directly on statistical 
inference; in particular, we apply the results of Section 2 to the analysis of the 
Whittle semiparametric estimates, for which we prove consistenq and asymp- 
totic Gaussianity. Most proofs are rather lengthy and thus collected separately 
in Sections 4 and 5. In the sequel, we use C to denote a generic constant whose 
vaIue may vary from line to line. 

2. ASYMPTOTIC BEHAVIOUR 
QF THE DISCRETE FOURIER TRANSF(31RhaS 

For technical reasons, we need to strengthen (1.1) slightly and impose 
some additional smoothness condition; more precisely, we shall assume that 

ASSUMPTION A. Thew exist E > 0 such that, for JJwJJ < E, (1.1) holds, where 
Lgg(/loll) is differentiable with derivatives Holder continuous of degree j- 1 for 
1 < / 3 < 2 , g = l ,  ..., p. 

Assumption A is a mild local smoothness condition which covers most 
parametric models so far considered in the applications; note that we are only 
considering the terms on the main diagonal of the spectral density matrix, 
which are real valued. We stress that, as in Robinson 1201, [21], no condition 
whatsoever is imposed throughout the paper on f (w) outside a neigbourhood 
of the origin, except of course integrability which is implied by wide-sense 
homogeneity. The condition j < 2 is only convenient for notation, as any 
function such that Assumption A holds with > 2 would obviously satisfy 
Assumption A with /3 = 2 also. 

Define by 

the coherency of the field. For some results in the sequel, we need a further 
regularity condition on the behaviour of the cross-spectral density at the origin, 
namely, 

ASSUMPTION A'. Assumption A holds and there exists E > 0 such that, for 
lloll < & 3  
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By the Cauchy-Schwarz inequality, Reh(llwll) is bounded in modulus by 
unity, so Assumption A' is requiring little more than differentiability in a neigh- 
bourhood of the origin; note that (2.1) holds trivially for g = h, as in this case 
the left-hand side is identically zero. 

Now assume we have a sample of dimension nl x n2 x n3 from the random 
field U(-), i.e. we have observed U,( t , ,  t,, t,) for 1 < ti < ni, i = 1, 2, 3, 
g = 1, . . ., p. Define the row vectors t = Itl,  tz ,  t3}, mjkl = (Aj, pk, vl), where 
Aj ,  pk, v l  represent Fourier frequencies, i.e. (omitting for notational simplicity 
any reference to nl , nz , pa3)  

- 

and the tapered discrete Fourier transforms 

n 

(2.3) H = [ ( ~ ~ C ) ~ H , , H ~ , H , , ] ~ / ~ ,  H , =  c h i ,  
u = l  

ht = h,, h,, b3 representing the taper (or convergence factor); the untapered di- 
screte Fourier transform clearly corresponds to h, = 1, j = 1, 2, 3. Likewise, 
we define the tapered (cross-) periodogram 

the bar denoting complex conjugation, whence 

nl,nz,ns nl,nz.ns 

= H- C C j exp (i (t - S) (mjkl - w)') &,, (w) dm 
t l , t z , t 3  S l .Sz .83  T 

for T= [-R, nI3, s = (sl, s2, s3), K,T(w~~~-w).= K : ( A ~ - L } K : ( J I ~ - ~ ) K ; ( v ~ - v ) ,  
and 

Tapering is a well-known bias reduction technique, which is useful, but not 
strictly necessary, in the frequency domain analysis of long-range dependent 
time series. I t  becomes mandatory when random fields are considered, indeed it 
is known that, due to edge effects, the untapered periodogram is second-order 
biased even in the independent and identically distributed (i.i.d.) case, see Guyon 
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161 or Ludena and Lavielle [16] for details. In this paper, following ~elasco 
1241 and for convenience of computations we shall always use the asymmetric 
cosine bell taper, i.e. 

With this choice #,T(r) integrates to one, it is even, positive and satisfies (Han- 
nan [7], p. 265) 

--, - 

(2.4) sup~~~(t)/=~(min(n,n-55-6]), - K < { < X .  
r 

Other choices of tapers satisfying (2.4) are possible, but the cosine bell taper has 
the nice property to factorize the discrete Fourier transform as 

where wg(wIk,) corresponds to the discrete Fourier transform in the untapered 
case, and we define 

IC, k, I)-V', k', P)I = [j'-jl+Ikf-kl+II'-21. 

Hence the cosine bell taper has the orthogonality property when at least one of 
the coordinates is two or more fundamental frequencies further away, which is 
clearly convenient for many proofs, 

In the sequel, we shall need three user-chosen bandwidth parameters mi, 
i.e. three positive integers mi = m(nJ, i = 1, 2, 3, non-decreasing with ni; we 
write N = (n,, n2, n3), M = (ml, m2, m3), and we assume that 

ASSUMPTION B. llNll + cn in such a way that 0 < x1 d mi/llMII, nJItNII, 
i = 1 ,  2, 3. 

Assumption B imposes a mild restriction on the degree of elongation of 
the observed range of ( t , ,  t2, t,), with a corresponding constraint on the user- 
-chosen bandwidth parameters mi. In some authors' terminology, it relates to 
the notion of going to infinity in the Fischer sense, see for instance Ivanov and 
Leonenko [9]. 

The first result of this paper relates to the bias of the tapered periodo- 
gram at very low frequencies. For convenience, we write MI = max (j, k, l) and 
N1 = min(j, k, 0. 

THEOREM 1. Under Assumptions A and B, for -3 < a, < 3, g = 1, . . ., p ,  
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and assuming further that A' holds, for g, h = 1, 2, .. ., p we have 

Theorem 1, as Theorems 2-4 to follow, can be seen as an extension to the 
random field case of analogous results for time series by Robinson [20] and 
Velasco [24] in the untapered and tapered cases, respectively. Note that our 
method of proof for (2.6) would allow some slight improvement over the Velas- 
co result [24] even in the time series case, as the exponent of MI is -2, 
irrespective of the value of 8. The result for (2.7) is in a sense not 50 sharp as 
(2.61, as a consequence of the fact that Assumption A relates only to terms on 
the main diagonal of the spectral density matrix. Although it would be straight- 
forward to extend Assumption A to cover non-diagonal components, the 
present formulation of Theorem 1 is sufficient for our purposes and it affords 
the greatest generality of a priori conditions. The following result concerns the 
cross-products of two transforms. 

THEOREM 2. Under Assumptions A' and B, for g ,  h = 1, .. ., p, 

For the results to follow, we define 

~ z = m a x ( j 1 , j ~ , k ~ , k ~ , 1 ~ , ~ ~ ) ~  N2=minCj~,j2,kl,k2,I1,l2). 
THEOREM 3. Under Assumptions A' and B, and $ 

we have 

for ixgh < 0, whereas for ugh 2 0 

IEwT ( w j l k l l l )  *hT (~j2k21211 

THEOREM 4. Under Asstrnaptions A' and B, for olgh < 0 ,  
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and for agh 2 0 

In the proofs of Theorems 1 4  we borrow several ideas from the argu- 
ments of Robinson [20] and Velasco [24]. The random field setting, however, 
poses considerable extra dificulties, because in the three-dimensional case the 
Fourier frequencies satisfy only partial order relationships, and this introduces 
major technical problems, as confirmed by a careful analysis-of the proofs 
in ~ectidn 4. It is also important to stress that the error term which emerges 
in Theorem 1 when we approximate f (w) by Lgg(0)llwlla is of the order 
(I(MH/IINII)@, i.e, it is not improved in the random field case with respect to 
time series circumstances; on the other hand, the rates of convergence of our 
estimates, as we shall see in Section 3, is of the order (IM1[3/2, i.e. "much faster" 
(in a loose sense - a strict comparison is clearly meaningless) than the rate for 
the time series case, which in our notation would be llM111t2. In terms of 
applications, this implies that for our arguments in Section 3 to go through we 
need to provide a bound for the variance of a sum of discrete Fourier trans- 
forms, rather than more simply (but less efficiently) bounding each of the ele- 
ments of the sums itself (see Lemma 3 for more details). This is the main 
difference between our arguments and the arguments of Robinson [20], [21] 
and Velasco [24] for the time series case, and also the main motivation for the 
presence of the terms of order nm, ,(a2-al)-' in Theorem 3; such terms , . 
would not contribute to the bounds in any positive way for a fixed distance 
between a, and al,  but their role is crucial as we sum over these same in- 
dexes. For related reasons, we had to strengthen the smoothness condition 
in Assumption A to 8 > 1, whereas P > 0 can sufilce in time series circum- 
stances. 

3. ESTIMATTON OF THE SINGULARlTY PARAMETER 

The main purpose of the present paper is to analyze a semiparametric 
procedure for estimation and inference on the parameters agh. For simpli- 
city, and because this is by far the most relevant case for applications, we 
shall concentrate in this section on the case p = 1, i.e. the scalar environment 
(density fields, say); here it is also convenient to denote by a, the "true" value 
of the (unique) memory parameter of interest, and by ol any generic value. It 
is worthwhile to remark that even if we focus on the scalar case, cross- 
-periodogram terms do arise in the arguments to follow, so that, for instance, 
the cbmultivariate" result (2.7) is required explicitly in the proof of Lemma 3 
below. 
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We focus on an extension to random fields of the Whittle semiparametric 
procedure introduced by Kiinsch [I l l  and developed by Robinson [21]. Write 

z j k t  = 2 z cy 
j k l  

where we assume for simplicity that (mi-r)/3 is integer-valued, i = 1, 2, 3; the 
integers r, ,  r2 ,  r3 are user-chosen trimming numbers, motivated by the need to 
drop very low frequencies for the bound in Theorem 3 to become effective; 
trimming of low frequencies is imposed (with a different motivation) in Robin- 
son [20] and Velasco [24]. The consideration of only one fundamental frequen- 
cy ojk, out of three with respect to j, k, I is motivated by (2.51, which implies 
that with this device we are able to retain orthogonality among the tapered 
discrete Fourier transforms. Now take 

(3.4) (L, oi) = arg min Q(L, a) 
O < L < m  

a d  

for ((M((/((N(I -, 0, and 8 a compact subset of (-3, 31. Compactness is needed 
for the minimum to exist: in the absence of any a priori information on the 
range of values of a, 8 can be chosen to be C- 3 + 6, 31 for an arbitrary small, 
positive 6. The quantity Q(G, a) can be viewed as the Whittle approximation to 
the Gaussian likelihood, considered at the only frequencies where the parame- 
tric model f (l/wll) = L(0) llollaO is relied upon, i.e. on a degenerating band 
around the origin. 

Standard manipulations give 

1 a = arg min Z (a), Z(a)  = log d (a) + a dl f i 2  lir3 
a d  

rfill0g 1 1 ~ j k t 1 1 9  

It follows immediately from Proposition (2.15) in Vajda [23] that Z(a) is strict- 
ly concave, and this is very convenient for the derivation of 02, which of course 
must be obtained through a numerical optimization procedure. On the other 
hand, a rigorous analysis of the asymptotic behaviour of & requires some 
further assumptions. 

8 - PAMS 23.1 
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ASSUMPTION C. The field U( t )  is Gaussian. 

Gaussianity is needed in our argument to follow in order to bound con- 
veniently the fourth-order cumulant of normalized discrete Fourier transforms. 
In the time series context, Robinson [21] relaxes Gaussianity to a linear pro- 
cess condition driven by martingale difference innovations. Although it seems 
possible to extend his argument to the present setting, a linear representation 
with martingale difference innovations appears of little practical significance in 
a context without a temporal ordering such as the one we are considering. 

As .mentioned above, it is very hard to justify linearity as  a primitive 
condition for a random field; a linear representation for U(-), however, can 
indeed be derived as a nice consequence of Assumption C. More precisely, by 
the Wold representation theorem for random fields, we can write, as in Leo- 
n e & ~  and Woyczynski C14.1, 

where i = (i,, i,, i,) and the E (-, ', 4) are mean-zero, uncorrelated innovations 
with constant variance EE' = o:, and hence by Gaussianity i.i.d. Now, clearly, 

.I m 

f (m) = 71d(o)12 for i ( w )  = C lajz)exp(i.cw1}, z = (zl, z2, T ~ ) ,  
.(2n) T l , T Z , T 3  ' 1 

In the sequel, we shall write for brevity (see (2.2) and (2.3)) 

n1,nz1n3 

w,' (ujkl) = H- C ht E (t) exp (itw>k,), 
t11tz,t3= 1 

We now need to impose some conditions on the rate of increase of the trim- 
ming coefficients r and the bandwidth parameters rn. In the sequel, we let 
R = (TI, P z , ~ .  

A s s m n o ~  D. AS. llNll+ a, 

(3.5) r j = ( 1 )  for any i , j = l , 2 , 3 ,  

%In2 - lim - - lim - - 
IINII+m ml/n~ l l ~ l l - ~ m  

and 
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The conditions (3.5) and (3.6) seem natural in view of Assumption I3 and 
symmetry in law of the field with respect to the coordinates (recall that, of course, 
trimming and bandwidth parameters are user-chosen). (3.6) is not strictly neces- 
sary for the argument to follow, but it allows the derivation of a much neater 
expression for the asymptotic variance. (3.7) imposes a mild lower bound on 
the rate of increase of 11M11 with 1IN11, a significant upper bound on the rate of 
increase of the same IlMll, and a significant lower bound on the rate of increase 
of IIRII, Again, the condition I]RII/IIMII = o(1) is not strictly needed for our 
argument, but if the trimming rate grows more slowly than JJMJJ, asymptotic 
efficiency is undected. (3.7) is close to Assumptions 6 and A4' i f  Robinson 
[20] and [21], respectively; for instance, it is nice to remark from our ar- 
guments to follow how the factor 3 in the numerator of the third summand of 
(3.7) would correspond to unity in the time series case. A bandwidth choice 
satisfying Assumption D is granted by, for instance, 

where [ a ]  denotes integer part. In practice p is unknown; a practitioner, how- 
ever, can choose Q on the basis of a priori assumptions on the smoothness of the 
spectral density of the field of interest around the origin, the values of Q closer 
to 4 ensuring more robustness, the values closer to 4 entailing more eficient 
estimates. On the other hand, the results of this paper do not imply that 
trimming (i.e. llRl/ > 0) is necessary for the asymptotic theory to go through, 
indeed in the time series case trimming has recently been proved to be unne- 
cessary. As discussed above, however, trimming does not effect the asymptotic 
variance under Assumption D, whereas a careful inspection of the proofs to 
follow suggests that very low frequency periodogram ordinates are typically 
heavily biased, so that dropping such frequencies seems in any case desirable 
(see Robinson [20]). 

Now let us put 

we are now in the position to provide the main result of this paper, which is the 
following 

THEOREM 5. Under Assumptions A, B, C and D, as -, oo, for di defined 
by (3.3) and (3.4) we have 

where, for x = (xl, x,, x3), 
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P r  o of. The proof is similar to the argument in Robinson [21] ; we con- 
sider only the case n, = n2 = n3 = n, ~i, = tii, = hi3 = tn, rl = r2 = r3 = I ,  say, 
the general circumstances being only notationally more complicated under 
Assumption B. Consistency of di is established in Lemma 5 below, by a long 
but standard argument for extremum estimates. Then, by the Mean Value 
Theorem, 

for IE-uol < li-orol, provided the second derivative is non-zero. Now 

d Z  (a) el (a) 1 - - = v + - c -  logllmjklll, 
do! Go(cx) rn3 Jkf 

where we define 

Concerning (3.10), the consistency of d,  Slutsky's theorem and Lemma 4 below 
imply that, as n, rn -+ ao , 

1 j k l  j k 1  
= j k o 2 (  m3 ) { 1 0 ) }  - m > o y  

from integral approximation. Concerning (3.9), it is immediate to see that 
eo(ffo)-I: L(0). Hence to conclude the analysis of (3.8) it is enough to focus on 
the asymptotic distribution of 
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which equals 

because 

L A j k l  = Om 

We then need to show that, as n + coy 

1 151 , 
1 ( L o ) j k l o  - "jk' - + O7 1 f jk l  

The proofs of (3.11), (3.12) and (3.13) are consequences of Lemmas 2, 3 and 4 
(respectively), all three collected in the Appendix. rn 

Theorem 5 appears qualitatively analogous to Theorem 2 in Robinson 
[21]; to aid comparison, we note that our o: corresponds to 2d in the time series 
circumstances of Robinson [21], whose main result can be presented as 

m1/2(2d-2d)%N(0,1) a s n + c o .  

Note that in the time series case the inverse of the asymptotic variance is 
indeed provided by 

The limiting result in Theorem 5 is expressed in a form as compact as possible; 
an alternative formulation is 

where 

and l iml lNII+m 6 = @. It is easy to see from our argument in the proof of 
Lemma 2 that (3.14) and (5.1) are indeed equivalent; for any triplets 
(fil, fiZ7 fi3), (nl, a2, n,), the functional &is bounded and bounded away from 
zero and can be immediately computed. We conjecture that (3.14) may provide 
a better approximation to asymptotic distribution in finite samples. 



4. PROOFS FOE SECTION 2 

Proof  of Theorem 1. We start with the proof of (2.6), and we drop the 
subscripts from I; ( a), fgg ( a ) ,  Lgg (0) and ugg for notational simplicity. Consider 
first or < 0 and (without loss of generality) j < k d I .  We have 

EIT(~jkI)-L(0)II~plllQ = EIT(~jkI}-f ( ~ j h l ) + f  (mjkl)-L(O) IIojklllu, 

where, for ljNll large enough 

'as in Robinson [20] and Velasco [24]. 
Also, 

From (2.41, for lloll > E, we have easily the bound 

= O(IINII-3 ( 1  + l l ~ j k l l l Q ) )  = O ( M r 3  IImjkdIa), 

because lloll > E implies max (1, p, v ]  > e / f i  and for any a < 3 

Clearly, Ilwll c E implies - E 4 v 4 E ,  which can be decomposed in the four 
regions 

{ - E  4 v < - v ~ / ~ ~ v ( - I J J ~  < v < vr/2) u { v 1 / 2  < v < 3v1/2) u(3~J2 < v 4 E ) .  

We have 
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Exactly the same argument can be used for (3v1/2 < v 6 €1. Then we consider 
(- v1/2 < v < v J2}, subpartitioned as follows: 

The first element is bounded by 

where the second inequality follows from moving into polar coordinates, 
A = Q sin rp coss, p = e sin q~ sin 9, v = Q cos cp. For the second term, by (2.4) we 
have the bound 

Similarly, for the third and fourth term we obtain bounds of order 

respectively, and each of these teIYns is clearly 0 ( M T ~  Ilmjkllla) = 0 (M;' llmjklll@)- 

Finally, we consider 

and hence, using 
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we obtain 

The same argument can be applied to all but one terms in (4.2), giving 
bounds of order O(j- '  Ilwjkllla) or smaller. A different proof is needed only for 

3Xjj2 3pd2 3~112 IAj,, jI,, jVd2 , where the argument is mare delicate. Define fi = a/ia<; fol- 
lowing Velasco 1241 and by Assumption A, for G Aj/2, IpI 6 pd2, Ivl < vJ2, 
for some 0 < 8 < 1 

Now 

the same bound also holding for { = p ,  v. On the other hand, note that 

and hence 

Now for (4.4) we obtain the bound 
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where E = dL/d lloll, and recalling that, by Assumption A, E(Hojk1II) = 

o(IIwjkdIa-'), 

< C 1 I I ~ ~ M - ~ ~ ~ I I - I I ~ ~ M I I  IIujklJV-' Af + lbjklll'-l i llwll I I ~ ~ ~ ~ I I "  4) l\wjk1112 - 

= O(I I~ I I ' - '  Ilwjkllla+llojklllB-2 lIwlI IImjklIIIX) 
= 0 (llmlla-' I~~jkIl~a+llojkllla-2 11mll)~ 
by the Mean Value Theorem, the triangle inequality and ,Ij = 0 (Ilwjkill). Also, 

(4.5) I 1Imjkl- Balla- (Aj-oa)- I l ~ j k l l l ~ - ~  jZil L (ajkl)  

+1~(11~jk!-0~II)-~(II~jklll)l llwjk111a-2 aj 

4 c (IeJ-I Ii~jklIlLX-~LIwjtt)+ ( IIaj~l-@~Ilil-2-~~~jkl~~a-2(RjLI~fi~)J 
+ o(llwik1ll-l llwll llojkllla-2 nj)  

An identical argument holds for f, ( a )  and fv ( - ), and hence 
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because the first integral vanishes by symmetry of KT( . ) .  Standard manipula- 
tions yield 

ai/Z 8 k / Z  ~112 

j f j K F b )  lblla dm d C llNll-8; 
0 0 0  

hence 
3 A j / 2  3m12 3vz12 

$ Kz (ajkl -w)  {f (01 -f (a jkl) ]  dm 
Lji2 Pd2 Vl/Z 

Now let us focus on b: 2 0. For lloll > E, the argument is the same as 
before, recalling that lJNJ1-3 = 0 (JJqklJla/M:) always, for b: 6 3. Consider now 
the region 

where, for lvl 2 IAI, 1p1, 

and likewise we obtain the bounds 

for Id1 2 lpl, Ivl and Ip] 3 1A1, lull respectively. 
The remaining region is decomposed as 

where, for instance, 
A J / ~  ~ k / 2  ~ 1 / 2  

J' J' j KnT ( ~ j ~ l  -w)  {f (a)-f ( ~ j k l ) }  dm 
-flk/2 - v J / ~  
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as in (4.1). Similarly, 

because 14 = O (IIWjklll")hen a is positive. The proof for all remaining terms is 
similar, with the exception of - 

which follows in the same way as for a negative a. Thus (2.6) is established. 
To prove (2.71, we note that, under assumptions A and A', similarly to 

Robinson [20], Appendix B, 

whence 

because i?IJwll/d3, = A/llwll, and likewise 

Since f,, (a) - C Iloll"gh, the proof of (2.7) follows exactly from the same steps 
38d2 3Pk/2 3vl/2 with the exception of the term JAd2 I,, JVd2 . For this term, by (4.6) and (4.7) 

we have 
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P r o o f of T h e o re m 2. The proof is similar (indeed simpler) to the proof 
of Theorem 1, and hence omitted for brevity's sake. 

For the results to follow, let 

It is well known from Hannan [7] (see also Percival and Walden [19]) that 

(4.8) D.T(t) < CTnin{n, n - 2  1~3-~). - .  

~he'followin~ lemma will be exploited in the proof of Theorem 3 to follow. 

LEMMA 1. (i) Let t, = 27c2/n; for any -r2, TI, as n + ao , 

(ii) For any T ~ ,  TI, as n 4 a, 
X 

j IX( t , ,  - 511 lDf(4'- 5,JI I5 - tr,l dC = 0 (min(1 , -r, - z ~ ) - ~ ) .  
- X 

Proof. We have 
x (C,, + Fr,)/2 n 

1 lD,T (tz, - 511 lDnT (5 -  CrJ1 d5 = J + J 9 

-z -n (T,, + 5,,)/2 

where 

and 

For (ii), we have 

< C (n2 j lCl d t+n- '  J 151-'dC) = 0(1), 
- l j n  1 in 
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and also, considering without loss of generality zl > z2, 

I after the change of variable u = c,, -t, and because 

and 
- tz2)/2 X 

S ID: (41 I(t,, - C2) - 4 d t  G ID: (41 (lul+ 1(5,, - tz2)1) du 
-z - X 

Proof of Theorem 3. We have 

where we recall that 

Recall that only Fourier frequencies which are not closer than 3n/nl (mod 2x) 
are used in the sequel. Assume wihout Ioss of generality that l l ~ ~ ~ ~ ~ ~ ~ j l  2 I1mjlklllll, 
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j E j r ~ ~ l ~ j z k ~ l z  {feh ( ~ I - f g h  ( W ~ Z ~ Z Z Z ) )  dm' 
T 

Examine first the case a 6 0. Note that, by using (4.8) for T, # z, and under the 
assumption 15r,l, ltrzl < € 3  

sup H-'I3 D:(cr, -[) DT(c-Cr,) = 0 (PI-' E - ~ ) ,  
Itl'8 - 

and hence 

because 1, > j l .  For 2v12 < lloll < E ,  

where the first term, for instance, is bounded by 
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the first step following by 
X 

I lBf(5, t,,,c,2)1d5<n for any z,,~,, 
- X - 

by the Cauchy-Schwarz inequality. The argument for the other two terms on 
the right-hand side of (4.9) is identical. Next, we note that Assumptions A 
and A' imply (see (4.6) and (4.7)) 

Therefore, for (Aj1 + v1,)/2 < 1 < 2v,,, 0 < p, v < 2vl,, we have 

Recursive application of Lemma 1 gives 
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because 

Now recall we assumed without loss of generality that j ,  > j,; note that 

< A T u 2  . SUP {A+p+v)  = O @ ~ h - Z v I Z ) .  
h t i 2 ~ ~ ~ ( ~ j j  +vr2)l2,  llmll 6 2va2 

For Lj,/2 < A < (Ajl +v1,)/2, 0 6 p,  v  < 2v1,, we add and subtract f , , , ( ~ ~ ~ ~ ~ ~ ~ )  to 
obtain, by the same argument as before, 

Also, for j2 = j l ,  by Lemma 1 we have the bounds 

/ 

and likewise for k2 = kl , E 2  = E l .  
We also have a term of the form 
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which is bounded by 

(4.10) C llNll - 3  II~jlk,liHagh- l (Iajlklll -~jZkzlZI) 

- 
Hence the .right-hand side of (4.10) is 

Finally, for - 2v12 < d < Aj,/2, we consider first the case llwll 2 Aj/2, which entails 

Also, for Hwll G Aj1/2 

Now consider ugh > 0; again, we discuss only regions where a different treat- 
ment than for negative ol is required. For 2v12 < llwll < s, 

where the last term, for instance, is bounded by 

9 - PAMS 23.1 
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because 14, - 11 -3, 11 - Aj2j , l  < 1.21 > 2 v , ~ , / 5 ;  analogous bounds hold for 
the other two terms. Next, for (A,, +v12)/2 < R < 2v12, 0 4 p,  v 6 2v12, we obtain 
as before 

1 
Ilmj2kzllllagh- n {max (a2 - al ,  1) 

I2 a=j,k,l  

The remaining part of the argument is similar to that in the case of a negative 
E g h .  a 

P r o  of of The o r em 4. The proofs is similar (indeed slightly simpler) to 
that of Theorem 3, and hence omitted for brevity's sake, H 

5. PROOFS FOR SECTION 3 

LEMMA 2. Under Assumptions A, B, C and D we have 

Proof. We use the Lindeberg-Feller Central Limit Theorem for trian- 
gular arrays. Note that, by Gaussianity, 

where by i.i.d. (0, 1) we denote a sequence of independent and identically 
distributed random variables, with zero mean and unit variance. We need to 
show that 

(5.21 max (Apl( = o(liil rii2 lfig), 
j.kJ 
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for some p > 2, Now (5.2) is trivial, whereas for (5.3) we consider 

subtracting log2 ml/nl from both summands; by Assumption D and integral 
approximation we obtain 

+ j log2 ll(r)Jl dx-  [ j log ll(x)ll dx12 = @ as el, fi2, di3 + co. 
[0.113 [0,113 

The same argument holds for (5.4), for instance considering p = 4; thus 
Lemma 2 is established. 

LEMMA 3. Under Assumptions A, B, C and D, we have 

151 - I & ~ i i l ~  I:kt 0 )  for r = O ,  1,2 ,  
S j k l  

and 

P roof. The convergence (5.6) is an immediate consequence of (53, Lem- 
ma 2 and trivial manipulations; note that subtracting unity is vacuous for r = 1 
because the A,,,'s sum to zero. The expected value of the square of (5.5) is 

I bounded by 
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where, in view of the lsserlis formula for the fourth moment of  Gaussian 
variates, 

T 
E ( I L k l l i -  lhjlk11112 I z l k 1 1 1 )  (Ij2k212- ILij2k21Z\2 I:jk212) 

T 
= E I i k l l l  EI{klllEIej2k2lz-ldj1k11112 Ei$lkllI E I Z k 2 1 2  

T + Ihjiklll12 l ~ j 2 k Z l Z 1 2  E I Z l k l l l  E1$2k212 + E w L k l I l  W j z k z l ?  E * z k l l l  ~ E k 2 1 2  

T T 
f E w i A l l l  *;k212 E * i k l l l  w i k 2 1 2 -  lajl t l l l12 E ~ E j i k i l 1  Wjzkz lz  EG$lklll *Lk212 

T 
- Id j lk l l l12  E ~ 5 1 k 1 1 1  *Xk2l2  E ~ z l k l l l  Wjzk212 

- 

- ldj2kz1212 E w E k l l l  ~ ; z k d z  E*;kili $$zkzlz 

T 
-fj2k212 E w E k l l l  f i $ z k 2 1 g E f l K k l l l  wsjzkzlz 

+ Idjrkll 11' Idj2k21212 E ~ $ l k l l l  w&k212 E*$lkll~ q 5 2 k 2 l z  

- T T + I d j j k i l i l Z  ljijzkzlz12 Ew$lkll l  Wejzkz l2  Ew8jlkll l  wz2kzL2 

(5.8) = ( E I K k l ! l  - ~ ~ j l k l l l ~ 2 ~ ~ ~ l k l 1 1 ) ( ~ ~ ~ k 2 1 2 -  lij2k2tz12 E1:2k2121 

(5.9) 
T + l E w I k l l l  w L R ~ ~ ~ ~ ~  + IGjiki1112 Iqakz1212 I E w : ~ ~ ~ ~ ~  w ~ j z k z l 2 1 ~  

(5.10) I E w z k i l i  aEk21212 + I ~ j i k l l l ~ 2  Idj2kllz12 \ E w $ r k t l j  *$2k2121z 

15-11) - I d j l k i l i 1 2  IEw:iklll w ~ k 2 1 2 1 2 - l a j ~ k 1 1 1 1 2  I E w z ~ k 1 1 i ~ i k 2 1 2 1 2  

15-12] -ldj2kzr212 ~ $ 2 k 2 1 2 1 ~ - I ~ j 2 k 2 1 ~ 1 ~  IEwKklll  ~ : 2 k 2 1 2 1 ~ *  

Now for (5.8), as in Robinson [21], 

[ E 1 i k l L l  - l ~ j l k l l ~ 1 2  ~ ~ $ ~ k ~ l ~ l  ~ ~ ~ ~ k ~ l ~ - ~ ~ j ~ k ~ l ~ ~ ~  E I $ Z ~ Z ~ ~ I  

G {lE1:k1l1 - & ~ k ~ l i I +  ~ h l k l l l - ~ h j l k l l l ~ z  E I Z l k l l ~ l )  

{IEljT2k212 -.f;.2k2121 + lfj2k212 - Idj2k21~12 EIz2k2121) 

by Theorem 1 (recall that E w $ ~ ~  w $ ~ ~  = a:/(2~)~); here we write Ji = ( j , ,  ki, I , ) ,  
i =  l , 2 .  

Note that 

Hence, under Assumption D, 

log2' I I N I I  ~ j l k l l i  2j2k2fz h ~ ~ ~ i  .&A12 (";k1l1 -lijlkili12 E ' ~ i k l ~ l )  

(EIjT2k~12 - Idjzk21z12 EI$2k212) 



Random fields with singular spectrum 133 

For (5.9H5.12) we consider first the case where (j,, kl, I,) # (j,, k,, I,). 
T Note that, by the orthogonality properties of the taper, EW$,~,~, wEj2$.,12 = 0. By 

Theorem 4 we have 

For (5.10), we have again by the orthogonality properties of the taper 
I E W ~ ~ ~ ~ ~ ~  ~ $ ~ ~ ~ ~ ~ 1  = 0; by Theorem 3, for a, < 0, 

the summands corresponding to the cases 

{(A # jz7k l  +kzy 4 #12)}? 

{(jl =A7 k~ + k2, 11 # M(jl # j 2 ,  kl = k2, f l  # l2)(jl # j2, k l  # k2, ll = 12)}, 

and 

{(jl = j2 ,  kl = k2? 4 # ld(jl # j2 ,  kl = k2? ll = i2)(jl = j2, kl # k2, l1 = 12)}, 

respectively; the role of the indexes can clearly be permuted. The argument for 
c10 2 0 is entirely analogous, whence we have a bound of order o ( l l ~ 1 1 ~ )  under 
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Assumption D. Analogous bounds hold for (5.11) and (5.12), on the basis of 
Theorems 3 and 4. If instead (jl ,  kl, I1) = ( j , ,  k2, lZ), we rearrange terms in 
(5.9H5.12), to. obtain 

(5.13) and (5.14) are a(1) as an immediate application on Theorem 2. From 
Theorem 1, each of the four terms in (5.15H5.16) has the asymptotically ab- 
solute ~ a l u e f j ~ ~ , , ,  (1 + o (l)), whence (5.15) + (5.16) = o (1) also; note we are using 
here (2.71, whlch requires Assumption A': the latter is immediately seen to be 
s a t i ~ e d  when we consider the cross-spectral density between the field U(.), 

i 
i 

and its Wold innovations E( -). Hence the sum over ( j l ,  kl, Z1) is o (a, rii, G3), 
I and thus (5.5) is established. Finally, for (5.7) we note that 

Now 

follows easily from Theorems 1 and 2 and standard manipulations for fourth 
moments of Gaussian variates, whereas the proof that 

is very similar to the argument given for (5.5). Thus Lemma 3 is established. rn 

LEMMA 4. Under Assumptions A, B, C and D, for z = 0, 1 , 2  we hwe 

-(fil fi2 rfi3)-l zjkl logr llmjklll 30. 

Proof. Clearly, (5.17) can be rewritten as 

(5.19) + ( f i l e 2 f i 3 ) - 1 ~ j k ~ 1 0 g r ~ ~ a l ~ ~ ~ ~  " (0) ll"dao) "1 
(O) I l w j k l l p '  
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Now (5.18) is ~ ~ ( 1 )  as an immediate consequence of Lemma 3, whereas for 
(5.19) we have, by Theorem I, 

LEMMA 5. Under Assumptions A, B, C and D, as llNll 3 a, we have, for 
di defined b y  (3.3) and (3.4), 

ai 4 a,,. 

Proof, Again we give the proof for the case nl = n2 = n3 = n, f i ,  = 
- def fi2 = lfij = m, rl  = r2 = r3 = r .  Let N g  = {a: la-a,,~ > 61, 6 > 0. For S(a) = 

Z@)-2 (old, 
P(loi-sol > 6) < P(inf~(a)  < 0,  EN^). 

Now 

P(infS (a) G 0, a~ N5) G P (ISUP T (u)l 2 i n f ~ ( a ) ) ,  

where S (a) = U (a) - T (u) for 

and - means that the ratio between the left-hand and the right-hand side tends 
to one in view of Assumption 13. Note that G (a,) = L (0). Now U (a) is easily 
seen to be uniformly bounded below by some q = ?(a) 2 0, the inequality 
being strict for a + a, by Jensen's inequality and strict concavity of the loga- 
rithm function. Also, it is immediate to see that 

G (a,) sup log- - 
tffo) G (a01 

a I L ( o ) - ~ ~ ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~ ~  

By the same argument as in Robinson [21], we thus only need to prove that 
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Now we infer easily from Assumption D that 

Note that 

infB(ol) 2 C j Il~ll"-'~dx > c > 0 for a-a, > -3, 
I0,ll3 

IlMll x 271 

2 C 1 S S @a-aa~2dqd6dQ 3 C(m/~-) .0-~-~ for cco-a > 3 .  
I IRI 0 0 

Hence 

e (a) - G (a) 
G(a) 1 < C l sup A (a)l 

G (a) - G (a) 
G C lsup A(u)l 

Hence consistency will follow if we just show that 
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Now 

For the last term, we have 

the bound following from Lemma 3. For the other two terms, we have by 
Gaussianity and Lemmas 2 and 3, respectively, 

Thus consistency is established. r 
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