REMARKS ABOUT THE DUGUÍ PROBLEM

BY
WIESLAW KRAKOWIAK* (Wroclaw)

Abstract. The paper presents some new results of the Dugué problem of finding the characteristic functions ϕ_{1} and ϕ_{2} such that

$$
(1-c) \phi_{1}+c \phi_{2}=\phi_{1} \phi_{2}, \quad 0<c<1
$$

2000 Mathematics Subject Classification: 60E05, 60E15, 60E99.
Key words and phrases: Dugué problem, arithmetics of probability measures, characteristic functions.

1. INTRODUCTION

Let us consider a problem from the domain of arithmetics of probability measures given by Dugué (see [1], [2], p. 21). He was interested in finding couples (μ_{1}, μ_{2}) of probability measures satisfying the equation

$$
\begin{equation*}
\mu_{1} * \mu_{2}=\frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2} . \tag{1}
\end{equation*}
$$

A more general setting of the Dugué problem is contained in the question on couples $\left(\mu_{1}, \mu_{2}\right)$ of probability measures for which the condition

$$
\begin{equation*}
\mu_{1} * \mu_{2}=p \mu_{1}+(1-p) \mu_{2}, \quad 0<p<1 \tag{2}
\end{equation*}
$$

holds (see [3]).
Some examples of couples of probability measures satisfying (2) can be found in [1], [3], [7], and [5]. Equation (2) with $\mu_{2}=\overline{\mu_{1}}$ was discussed in [6] and equation (2) with $\operatorname{supp}\left(\mu_{2}\right) \subset(-\infty, 0]$ and $\operatorname{supp}\left(\mu_{1}\right) \subset[0,+\infty)$ was considered in [4] and [8].

2. PRELIMINARIES

Let $d_{p}: C \backslash\{1-p\} \rightarrow C, 0<p<1$, be a function defined by the formula

$$
\begin{equation*}
d_{p}(z)=\frac{p z}{z-(1-p)}=p+\frac{p(1-p)}{z-(1-p)} \tag{3}
\end{equation*}
$$

[^0]and let $g_{r}: C \backslash\{1 /(1-r)\} \rightarrow C, 0<r \leqslant 1$, be a function defined by the formula
\[

$$
\begin{equation*}
g_{r}(z)=\frac{r z}{1-(1-r) z} \tag{4}
\end{equation*}
$$

\]

Functions d_{p} and g_{r} have the following properties.
Lemma 2.1. (i) $d_{s} d_{t}=d_{t} d_{s}=g_{w}$ for $0<s, t<1$ with $s+t \leqslant 1$, where

$$
w=\frac{s t}{(1-s)(1-t)} .
$$

(ii) $g_{t} g_{s}=g_{s} g_{t}=g_{s t}$ for $0<s, t \leqslant 1$.
(iii) $d_{s} g_{t}=d_{w}$, where $w=s t /(1-s+t s)$ for $0<s, t<1$.

Proof. (i) Since

$$
\begin{aligned}
d_{s} d_{t}(z) & =d_{s}\left(\frac{t z}{z-(1-t)}\right)=\frac{\frac{s t z}{z-(1-t)}}{\frac{t z}{z-(1-t)}-(1-s)} \\
& =\frac{s t z}{t z-(1-s)(z-(1-t))}=\frac{s t z}{(1-s)(1-t)+(s+t-1) z}
\end{aligned}
$$

we have $d_{s} d_{t}=d_{t} d_{s}$.
If $0<s+t \leqslant 1$, then $d_{s} d_{t}=g_{w}$, where $w=s t /((1-s)(1-t))$.
(ii) We have

$$
\begin{aligned}
g_{s} g_{t} & =g_{s}\left(\frac{t z}{1-(1-t) z}\right)=\frac{\frac{s t z}{1-(1-t) z}}{1-\frac{(1-s) t z}{1-(1-t) z}} \\
& =\frac{s t z}{1-(1-t) z-(1-s) t z}=\frac{s t z}{1-(1-s t) z}=g_{s t} .
\end{aligned}
$$

(iii) Since

$$
\begin{aligned}
d_{s} g_{t} & =d_{s}\left(\frac{t z}{1-(1-t) z}\right) \\
& =\frac{\frac{s t z}{1-(1-t) z}}{\frac{t z}{1-(1-t) z}-(1-s)}=\frac{s t z}{t z-(1-s)(1-(1-t) z)}=\frac{s t z}{(1-s+t s) z-(1-s)}
\end{aligned}
$$

and

$$
\begin{aligned}
g_{t} d_{s}(z) & =\frac{t d_{s}(z)}{1-\left((1-t) d_{s}(z)\right)}=\frac{\frac{t s z}{z-(1-s)}}{1-\frac{(1-t) s z}{z-(1-s)}}=\frac{\frac{s t z}{z-(1-s)}}{\frac{(1-(1-t) s) z-(1-s)}{z-(1-s)}} \\
& =\frac{s t z}{(1-s+t s) z-(1-s)}
\end{aligned}
$$

we have $d_{s} g_{t}=g_{t} d_{s}=d_{w}$, where $w=s t /(1-s+t s)$.
Corollary 2.2. (i) If $0<r \leqslant p<1$, then

$$
d_{r}=g_{s} d_{p}, \quad \text { where } s=\frac{r(1-p)}{p(1-r)}
$$

(ii) If $0<p \leqslant s<1$, then

$$
d_{1-s} d_{p}=g_{r}, \quad \text { where } r=\frac{p(1-s)}{(1-p) s}
$$

(iii) If $0<p \leqslant s<1$ and $0<v \leqslant s<1$, then

$$
d_{v} d_{1-s} d_{p}=d_{w}, \quad \text { where } w=\frac{p v(1-s)}{s-v s-p s+v p} \text { and } 0<w \leqslant p
$$

(iv) $d_{p} d_{1-p}=I$.

Proof. (i) Since $p s /(1-p+s p)=r$, Lemma 2.1 (iii) shows that $d_{r}=g_{s} d_{p}$.
(ii) Since $p+(1-s) \leqslant 1$, by Lemma 2.1 (i) we have $d_{1-s} d_{p}=g_{r}$, where $r=p(1-s) /(1-p) s$.
(iii) The equality $d_{1-s} d_{p}=g_{r}$, where $r=p(1-s) /(1-p) s$, follows from (i). The assertion (ii) implies $d_{v} g_{r}=d_{t}$, where $t=v r /(1-v+r v)$. Hence $d_{v} d_{1-s} d_{p}=$ $d_{v} g_{r}=d_{t}$, where

$$
\begin{aligned}
t & =\frac{v r}{1-v+r v}=\frac{\frac{v p(1-s)}{(1-p) s}}{1-v+\frac{v p(1-s)}{(1-p) s}}=\frac{v p(1-s)}{(1-v)(1-p) s+v p(1-s)} \\
& =\frac{v p(1-s)}{s-v s-p s+v p}=p \frac{v(1-s)}{v(1-s)+(s-v)(1-p)} \leqslant p
\end{aligned}
$$

Lemma 2.3. A function $d_{p}, 0<p<1$, has the following properties:
(i) if $d_{p}(x)=x$, then $x \in\{0,1\}$;
(ii) a function d_{p} satisfies a functional equation of the form

$$
\begin{equation*}
z f(z)=p z+(1-p) f(z) \tag{5}
\end{equation*}
$$

(iii) a function d_{p} is an injection, $d_{p}(C \backslash\{1-p\})=C \backslash\{p\}$;
(iv) $d_{p}^{-1}=d_{1-p}$;
(v) $d_{p}(\boldsymbol{R} \backslash\{1-p\})=\boldsymbol{R} \backslash\{p\}$;
(vi) d_{p} is an increasing function on $(-\infty, 1-p)$ and $(1-p,+\infty)$.

The proof is immediate, and thus is omitted.
Lemma 2.4. Let $A_{p}=\left\{z:|z| \leqslant 1,\left|d_{p}(z)\right| \leqslant 1\right\}$. Then

$$
\begin{equation*}
A_{p}=\left\{z:|z| \leqslant 1,2 \mathfrak{R} z \leqslant(1-p)+(1+p)|z|^{2}\right\} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{p} \cap \boldsymbol{R}=[-1,(1-p) /(1+p)] \cup\{1\} . \tag{7}
\end{equation*}
$$

Moreover,
(i) $d_{p}\left(A_{p}\right)=A_{1-p}$;
(ii) $\{z:|z|=1\} \subset A_{p}$;
(iii) if $|z|=1$ and $\left|d_{p}(z)\right|=1$, then $z=1$;
(iv) $d_{p}([-1,0])=[0, p /(2-p)]$ and $d_{p}([0,(1-p) /(1+p)])=[-1,0]$.

Proof. Let $z=a+i b$. Since $\left|d_{p}(z)\right| \leqslant 1$, we see that $\left|p z_{1}\right| \leqslant\left|z_{1}-(1-p)\right|$, which implies

$$
p^{2}\left(a^{2}+b^{2}\right) \leqslant(a-(1-p))^{2}+b^{2}=a^{2}-2 a(1-p)+(1-p)^{2}+b^{2}
$$

and thus

$$
0 \leqslant-2 a+(1-p)+(1+p)\left(a^{2}+b^{2}\right)
$$

Corollary 2.5. Let $0<p<1$. Suppose that the numbers $z_{1}, z_{2} \in$ $C\left(\left|z_{1}\right| \leqslant 1,\left|z_{2}\right| \leqslant 1\right)$ satisfy the equation

$$
\begin{equation*}
z_{1} z_{2}=p z_{1}+(1-p) z_{2} . \tag{8}
\end{equation*}
$$

Then
(i) $z_{1} \neq 1-p$ and $z_{2} \neq p$;
(ii) $z_{2}=p z_{1} /\left(z_{1}-(1-p)\right)$ and $z_{1}=(1-p) z_{2} /\left(z_{2}-p\right)$;
(iii) $2 \mathfrak{R} z_{1} \leqslant(1-p)+(1+p)\left|z_{1}\right|^{2}$;
(iv) if $\left\{z_{1}, z_{2}\right\} \cap \mathbb{R} \neq \emptyset$, then $z_{1}, z_{2} \in \boldsymbol{R}$ and exactly one of the following conditions is satisfied:

- $z_{1}=z_{2}=1$;
- $z_{1}=z_{2}=0$;
- $z_{1} z_{2}<0$; in fact: either $z_{1} \in(0,(1-p) /(1+p)]$ and $z_{2} \in[-1,0)$ or $z_{1} \in[-1,0)$ and $z_{2} \in(0, p /(2-p)]$.

The next proposition will be used in the sequel.

Proposition 2.6. Let μ be a probability measure on \boldsymbol{R} and $0<r<1$. Then
(i) a measure $r \sum_{n=0}^{\infty}(1-r)^{n} \mu^{* n}$, where $\mu^{* 0}=\delta_{0}$, has a characteristic function of the form

$$
\begin{equation*}
\frac{r}{1-(1-r) \hat{\mu}} ; \tag{9}
\end{equation*}
$$

(ii) a measure $\mu * p \sum_{n=0}^{\infty}(1-p)^{n} \mu^{* n}$, where $\mu^{* 0}=\delta_{0}$, has a characteristic function of the form

$$
\begin{equation*}
g_{r}(\hat{\mu})=\frac{r \hat{\mu}}{1-(1-r) \hat{\mu}} \tag{10}
\end{equation*}
$$

The proof is immediate.
For every probability measure μ on \boldsymbol{R} we denote by $g_{r}(\mu)(0<r \leqslant 1)$ the probability measure with the characteristic function $g_{r}(\hat{\mu})$.

3. THE DUGUE PROBLEM

First we prove the following lemma.
Lemma 3.1. Let μ_{1}, μ_{2} be probability measures and $0<p<1$. Then the following conditions are equivalent:
(i) $\mu_{1} * \mu_{2}=p \mu_{1}+(1-p) \mu_{2}$, i.e. the couple $\left(\mu_{1}, \mu_{2}\right)$ is a solution of the equation (2);
(ii) $\hat{\mu}_{1} \neq 1-p$ and $d_{p}\left(\hat{\mu}_{1}\right)$ is a characteristic function;
(iii) $\hat{\mu}_{2} \neq p$ and $d_{1-p}\left(\hat{\mu}_{2}\right)$ is a characteristic function.

The proof is obvious.
For every probability measure μ on \boldsymbol{R} we define

$$
\begin{equation*}
\operatorname{Du}(\mu)=\{p \in(0,1): \mu * v=p \mu+(1-p) \nu \text { for some } \nu\} . \tag{11}
\end{equation*}
$$

The class of probability measures μ on \mathbb{R} with $\mathrm{Du}(\mu) \neq \varnothing$ will be denoted by \mathscr{D}.
For every probability measure $\mu \in \mathscr{D}$ we denote by $d_{p}(\mu)(p \in \operatorname{Du}(\mu))$ the probability measure with the characteristic function $d_{p}(\hat{\mu})$.

Corollary 3.2. Let μ be a probability measure on \boldsymbol{R}. Then, for every $a \in \mathbb{R} \backslash\{0\}$,

$$
\operatorname{Du}(\mu)=\operatorname{Du}\left(T_{a}(\mu)\right) .
$$

Corollary 3.3. Let μ be a probability measure on \boldsymbol{R} and $0<p<1$. Then the following conditions are equivalent:
(i) $p \in \mathrm{Du}(\mu)$;
(ii) $\hat{\mu} \neq 1-p$ and $d_{p}(\hat{\mu})$ is a characteristic function.

Corollary 3.4. If $p \in \operatorname{Du}(\mu)$, then $1-p \in \operatorname{Du}\left(d_{p}(\mu)\right)$ and

$$
\begin{equation*}
\hat{\mu} d_{p}(\hat{\mu})=p \hat{\mu}+(1-p) d_{p}(\hat{\mu}) . \tag{12}
\end{equation*}
$$

Corollary 3.5. Let μ be a probability measure on \boldsymbol{R}. Then $\mu \in \mathscr{D}$ iff there exist a probability measure v on \boldsymbol{R} and $0<p<1$ such that

$$
\begin{equation*}
\mu=v *\left(p^{-1} \mu-\left(p^{-1}-1\right) \delta_{0}\right) . \tag{13}
\end{equation*}
$$

Moreover, $v=d_{p}(\mu)$.
Lemma 3.6. Let μ be a probability measure on \mathbb{R} with $\operatorname{Du}(\bar{\mu}) \neq \varnothing$ and let $p \in \mathrm{Du}(\mu)$. Then exactly one of the following statements is satisfied:
(i) μ and $d_{p}(\mu)$ are absolutely continuous;
(ii) μ and $d_{p}(\mu)$ are singular;
(iii) μ and $d_{p}(\mu)$ are discrete.

Moreover, if μ is a lattice law given on the same lattice L with the origin as a lattice point, then $d_{p}(\mu)(L)=1$.

Proof. Lemma 3.6 follows from Corollary 2.5. a
Lemma 3.7. Let μ be a symmetric probability measure on \boldsymbol{R} with $\operatorname{Du}(\mu) \neq \varnothing$. Then, for every $p \in \operatorname{Du}(\mu), \mu=d_{p}(\mu)=\delta_{0}$.

Proof. Let $p \in \operatorname{Du}(\mu)$. Since $\hat{\mu} \cdot d_{p}(\hat{\mu})=p \hat{\mu}+(1-p) d_{p}(\hat{\mu})$, Corollary $2.5 \mathrm{im}-$ plies $\mu=d_{p}(\mu)=\delta_{0}$.

Lemma 3.8. Let $\mu \in \mathscr{D}$ be a probability measure with $\operatorname{supp}\left(\mu_{1}\right) \subset[0,+\infty)$. Assume that, for some $p \in \operatorname{Du}(\mu), \operatorname{supp}\left(d_{p}(\mu)\right) \subset[0,+\infty)$. Then $\mu=d_{p}(\mu)=\delta_{0}$.

Proof. By means of the Laplace transforms

$$
\phi_{1}(t)=\int_{0}^{\infty} e^{-t x} \mu_{i}(d x), \quad \phi_{2}(t)=\int_{0}^{\infty} e^{-t x} d_{p}(\mu)(d x), \quad t \geqslant 0,
$$

the condition (2) can equivalently be expressed by

$$
\phi_{1}(t) \phi_{2}(t)=p \phi_{1}(t)+(1-p) \phi_{2}(t) .
$$

Since $\phi_{i}(t)>0$, Corollary 2.5 implies $\mu=d_{p}(\mu)=\delta_{0}$. See also the proof of Theorem 2 of [8]. -

Theorem 3.9. Let μ be a probability measure on \boldsymbol{R}. Then one of the following statements is satisfied:
(i) $\mathrm{Du}(\mu)=\varnothing$;
(ii) $\operatorname{Du}(\mu)=(0,1)$;
(iii) $\operatorname{Du}(\mu)=(0, p]$ for some $0<p<1$.

Proof. Let $p \in \mathrm{Du}(\mu)$ and $0<r<p$. By Corollary 2.2 there is $d_{r}=g_{s} d_{p}$, where $s=r(1-p) / p(1-r)$. An application of Proposition 2.6 now implies that $g_{s} d_{p}(\hat{\mu})=d_{r}(\hat{\mu})$ is a characteristic function. Hence $r \in \mathrm{Du}(\mu)$.

Let $\left(p_{n}\right) \subset \mathrm{Du}(\mu)$ be an increasing sequence with $\lim _{n \rightarrow \infty} p_{n}=p<1$. Since $p_{n} \in \operatorname{Du}(\mu)$, we conclude that $\hat{\mu}(\boldsymbol{R}) \subset A_{p}$. Hence Lemma 2.4 implies $\hat{\mu}(\boldsymbol{R}) \cap \boldsymbol{R} \subset$ $\left[-1,\left(1-p_{n}\right) /\left(1+p_{n}\right)\right] \cup\{1\}$ for every n. Thus

$$
\hat{\mu}(\boldsymbol{R}) \cap \boldsymbol{R} \subset[-1,(1-p) /(1+p)] \cup\{1\} .
$$

In particular, $\hat{\mu} \neq 1-p$, which implies

$$
\lim _{n \rightarrow \infty} d_{p_{n}}(\hat{\mu})=d_{p}(\hat{\mu}) .
$$

Since $d_{p}(\hat{\mu})$ is a continuous function, we conclude that one is a characteristic function, and thus $p \in \mathrm{Du}(\mu)$.

Corollary 3.10. Let μ be a probability measure on \mathbb{R} with $\operatorname{Du}(\mu) \neq \varnothing$. Then
(i) if $\operatorname{Du}(\mu)=(0,1)$, then

$$
\Re \hat{\mu} \leqslant|\hat{\mu}|^{2} \quad \text { and } \quad\{\hat{\mu}(t): t \in \mathbb{R}\} \cap \mathbb{R} \subset[-1,0] \cup\{1\}
$$

(ii) if, for some $0<p<1, \operatorname{Du}(\mu)=(0, p]$, then

$$
\mathfrak{R} \hat{\mu} \leqslant \frac{1}{2}\left((1-p)+(1+p)|\hat{\mu}|^{2}\right)
$$

and

$$
\{\hat{\mu}(t): t \in \boldsymbol{R}\} \cap \boldsymbol{R} \subset[-1,(1-p) /(1+p)] \cup\{1\} .
$$

Theorem 3.11. Let μ be a probability measure on \boldsymbol{R}. Then $\operatorname{Du}(\mu) \neq \varnothing$ iff, for some (every) $0<r<1, \operatorname{Du}\left(g_{r}(\mu)\right) \neq \varnothing$ and

$$
\begin{equation*}
\operatorname{Du}\left(g_{r} \hat{\mu}\right)=\left\{p((1-p) r+p)^{-1}: p \in \operatorname{Du}(\mu)\right\} . \tag{14}
\end{equation*}
$$

In particular,
(i) $\operatorname{Du}(\mu)=(0,1)$ iff $\operatorname{Du}\left(g_{r}(\mu)\right)=(0,1)$ for every (some) $0<r<1$;
(ii) $\mathrm{Du}(\mu)=(0, p]$ for some $0<p<1$ iff for every (some) $0<r<1$ there exist $0<s_{r}<1$ with $\operatorname{Du}\left(g_{r}(\hat{\mu})\right)=\left(0, s_{r}\right]$. Moreover, $s_{r}((1-p) r+p)-p=0$.

Proof. We show that $\operatorname{Du}\left(g_{r} \hat{\mu}\right)=\left\{p((1-p) r+p)^{-1}: p \in \operatorname{Du}(\mu)\right\}$ for every $0<r<1$.

Let $p \in \operatorname{Du}(\mu)$. Hence $1-p \in \operatorname{Du}\left(d_{p}(\hat{\mu})\right)$. Define

$$
s=\frac{p}{(1-p) r+p} .
$$

Since $p<s$ by Theorem 3.9, we have $1-s \in \operatorname{Du}\left(d_{p}(\hat{\mu})\right)$, which implies $s \in \operatorname{Du}\left(d_{s-1} d_{p}(\hat{\mu})\right)$. We have $d_{s-1} d_{p}=g_{r}$. In particular, if $\operatorname{Du}(\mu) \neq \varnothing$, then $\operatorname{Du}\left(g_{\mathrm{r}} \hat{\mu}\right) \neq \varnothing$.

Let $\operatorname{Du}\left(g_{r} \hat{\mu}\right) \neq \emptyset$ and $s \in \operatorname{Du}\left(g_{r} \hat{\mu}\right)$. Hence $1-s \in \operatorname{Du}\left(d_{s} g_{r}(\hat{\mu})\right)$. Set

$$
p=\frac{r s}{1+r s-s} .
$$

This gives $s=p /((1-p) r+p)$. Since $p<s$, we conclude that $d_{1-s} d_{p}=g_{r}$, and thus $d_{p}(\hat{\mu})=g_{r} d_{s}(\hat{\mu})$ is a characteristic function. In particular, $p \in \operatorname{Du}(\hat{\mu})$.

Let us give some examples of measures μ with $\operatorname{Du}(\mu) \neq \varnothing$. We remark that if $\mu \in \mathscr{D}$, then
(i) $g_{r} \in \mathscr{D}$ and $\operatorname{Du}\left(g_{r} \hat{\mu}\right)=\left\{p((1-p) r+p)^{-1}: p \in \operatorname{Du}(\mu)\right\}$ for every $0<r \leqslant 1$;
(ii) $g_{r} \hat{\mu} d_{t} \hat{\mu}+s g_{r} \hat{\mu}+(1-s) d_{t} \hat{\mu}$, where $t=r s /(1-s+s r)$ for every $s \in \operatorname{Du}\left(g_{r} \hat{\mu}\right)$.

Example 3.1. Let $\mu=\delta_{0}$. We have $\hat{\mu} \equiv 1$. Moreover,

$$
\begin{equation*}
\operatorname{Du}\left(\delta_{0}\right)=(0,1) \quad \text { and } \quad d_{p}\left(\delta_{0}\right)=\delta_{0} \quad \text { for } 0<p<1 ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
g_{r}\left(\delta_{0}\right)=\delta_{0} \quad \text { and } \quad \operatorname{Du}\left(g_{r}\left(\delta_{0}\right)\right)=(0,1) . \tag{ii}
\end{equation*}
$$

Example 3.2. Let $\mu=\delta_{1}$ (see [5]). We have $\hat{\mu}(t)=e^{i t}$. Moreover,

$$
\begin{equation*}
\operatorname{Du}\left(\delta_{1}\right)=(0,1) ; \tag{i}
\end{equation*}
$$

(ii)

$$
d_{p}(\hat{\mu}(t))=\frac{p}{1-(1-p) e^{-i t}} \quad \text { and } \quad \operatorname{Du}\left(d_{p}(\hat{\mu}(t))\right)=(0,1-p]
$$

for $0<p<1$;
(iii) $g_{r}\left(e^{i t}\right)=\frac{r e^{i t}}{1-(1-r) e^{i t}} \quad$ and $\quad \operatorname{Du}\left(g_{r}\left(e^{i t}\right)\right)=(0,1) \quad$ for $0<r<1$.

Example 3.3. Let $\mu=(1-p) \delta_{0}+p \delta_{1}$ (see [3]). We have $\hat{\mu}(t)=(1-p)+p e^{i t}$. Moreover,

$$
\begin{equation*}
\mathrm{Du}\left((1-p) \delta_{0}+p \delta_{1}\right)=(0, p] ; \tag{i}
\end{equation*}
$$

(ii) $d_{w}(\hat{\mu}(t))=\left[(1-p)+p e^{i t}\right] \frac{(w / p) e^{-i t}}{1-(1-w / p) e^{-i t}} \quad$ and $\quad \operatorname{Du}\left(d_{w}(\hat{\mu})\right)=(0, w]$ for every $0<w \leqslant p ;$

$$
\begin{equation*}
g_{r}\left((1-p)+p e^{i t}\right)=\left[(1-p)+p e^{i t}\right] \frac{w}{1-(1-w) e^{i t}}, \tag{iii}
\end{equation*}
$$

where

$$
w=\frac{r}{r+p-p r}=\frac{1-s}{1-p} \quad \text { and } \quad \operatorname{Du}\left(g_{r}\left((1-p) \delta_{0}+p \delta_{1}\right)\right)=\left(0, p((1-p) r+p)^{-1}\right]
$$

for $0<r \leqslant 1$.
Example 3.4. Let μ be an exponential law with the density function $p(x)=e^{-x} I_{(0,+\infty)}(x)$ (see [1]-[3]). We have $\hat{\mu}(t)=1 /(1+i t)$. Moreover,

$$
\begin{equation*}
\mathrm{Du}\left(\frac{1}{1+i t}\right)=(0,1) \tag{i}
\end{equation*}
$$

(ii)

$$
d_{p}\left(\frac{1}{1+i t}\right)=T_{1 / p-1} \frac{1}{1-i t} \quad \text { and } \quad \operatorname{Du}\left(d_{p}\left(\frac{1}{1+i t}\right)\right)=(0,1)
$$

for $0<p<1$;
(iii)

$$
g_{r}\left(\frac{1}{1+i t}\right)=\frac{1}{1+i t / r} \quad \text { and } \quad \operatorname{Du}\left(g_{r}\left(\frac{1}{1+i t}\right)\right)=(0,1) \quad \text { for } 0<r \leqslant 1
$$

Theorem 3.12. Let μ be a probability measure with $\mathrm{Du}(\mu)=(0,1)$ and let $\operatorname{Du}\left(d_{r}(\mu)\right)=(0,1)$ for some $0<r<1$. Then μ is an exponential law.

Proof. We conclude from Corollary 3.10 that $\mathfrak{R} d_{p}(\hat{\mu}) \leqslant\left|d_{p}(\hat{\mu})\right|^{2}$. Consequently,

$$
\frac{p|\hat{\mu}|^{2}-p(1-p) \Re \hat{R}}{|\hat{\mu}-(1-p)|^{2}} \leqslant \frac{p^{2}|\hat{\mu}|^{2}}{|\hat{\mu}-(1-p)|^{2}}
$$

and, finally, $-\mathfrak{R} \hat{\mu} \leqslant-|\hat{\mu}|^{2}$. This gives $\mathfrak{R} \hat{\mu}=|\hat{\mu}|^{2}$, and hence, by Theorem 1 of [6], μ is an exponential law.

Theorem 3.13. Let $\mu \in \mathscr{D}$ be a probability measure such that $\operatorname{supp}(\mu)$ is bounded. Suppose that, for some $p \in \operatorname{Du}(\mu), \operatorname{supp}\left(d_{p}(\mu)\right)$ is also bounded. Then $\mu=\delta_{0}$ or $\mu=T_{a}\left((1-p) \delta_{0}+p \delta_{1}\right)(a \neq 0)$.

Proof. Let $\mu \neq \delta_{0}$. Suppose that $\operatorname{supp}(\mu) \cap(0,+\infty) \neq \varnothing$. Set

$$
a=\sup \operatorname{supp}(\mu) \quad \text { and } \quad b=\sup \operatorname{supp}\left(d_{p}(\mu)\right) .
$$

Since $\operatorname{supp}(\mu)+\operatorname{supp}\left(d_{p}(\mu)\right)=\operatorname{supp}(\mu) \cup \operatorname{supp}\left(d_{p}(\mu)\right)$, we conclude that $a+b \in$ $\operatorname{supp}(\mu) \cup \operatorname{supp}\left(d_{p}(\mu)\right)$, which implies $b \leqslant 0$ and, finally, $\operatorname{supp}(\mu) \subset[0,+\infty)$ and $\operatorname{supp}\left(d_{p}(\mu)\right) \subset(-\infty, 0]$. An application of Theorem 1 of [8] now implies that $\mu=T_{a}\left((1-p) \delta_{0}+p \delta_{1}\right)$.

The following result extends Theorem 4 of [8].
Theorem 3.14. Let μ be a probability measure on \mathbb{R} with $\mathrm{Du}(\mu) \neq \varnothing$ and let $p \in \operatorname{Du}(\mu)$. Then for every $r>0$ with $2 p-1 \leqslant r<p /(2-p)$
(i) $d_{1-s^{2}}\left(\left(d_{r}(\hat{\mu})\right)^{2}\right)=g_{w}(\hat{\mu}) d_{p}(\hat{\mu})$; in particular, $1-s^{2} \in \mathrm{Du}\left(\left(d_{r}(\hat{\mu})\right)^{2}\right)$;
(ii) $d_{s^{2}}\left(g_{w}(\hat{\mu}) d_{p}(\hat{\mu})\right)=d_{r}((\hat{\mu}))^{2}$; in particular, $s^{2} \in \mathrm{Du}\left(g_{w}(\hat{\mu}) d_{p}(\hat{\mu})\right)$, where

$$
s=\frac{r(1-p)}{p-r}, \quad w=\frac{p-2 r+p r}{(1-p)(1-r)}
$$

Proof. We have

$$
r=\frac{p s}{1+s-p}, \quad w=\frac{r(1-s)}{s(1-r)} \quad \text { and } \quad p=\frac{r(1+s)}{r+s} .
$$

First we show that $r \leqslant s<1$ and $2 p-1 \leqslant s$. Since $r(2-p)<p$, we see that $r-r p<p-r$, which implies $s<1$. Moreover, we have $p-r \leqslant 1-p$. Hence $1 \leqslant(1-p) /(p-r)$, and thus $r \leqslant s$. The inequality $2 p-1 \leqslant r \leqslant s$ is obvious.

Since

$$
\left(d_{r}(\hat{\mu})\right)^{2}=\left[\frac{r \hat{\mu}}{\hat{\mu}-(1-r)}\right]^{2}
$$

we conclude that

$$
\begin{aligned}
d_{1-s^{2}}\left(d_{r}(\hat{\mu})\right)^{2} & =\frac{\left(1-s^{2}\right)[r \hat{\mu} /(\hat{\mu}-(1-r))]^{2}}{[r \hat{\mu} /(\hat{\mu}-(1-r))]^{2}-s^{2}}=\frac{\left(1-s^{2}\right) r^{2}(\hat{\mu})^{2}}{(r \hat{\mu})^{2}-s^{2}(\hat{\mu}-(1-r))^{2}} \\
& =\frac{\left(1-s^{2}\right) r^{2}(\hat{\mu})^{2}}{[r \hat{\mu}-s(\hat{\mu}-(1-r))][r \hat{\mu}+s(\hat{\mu}-(1-r))]} \\
& =\frac{(1+s) r(1-s) r(\hat{\mu})^{2}}{(s(1-r)-(s-r) \hat{\mu})((r+s) \hat{\mu}-s(1-r))} \\
& =\frac{r(1-s) \hat{\mu}}{s(1-r)-(s-r) \hat{\mu}} \frac{(1+s) r \hat{\mu}}{(r+s) \hat{\mu}-s(1-r)}=g_{w}(\hat{\mu}) d_{p}(\hat{\mu})
\end{aligned}
$$

Corollary 3.15. Let μ be a probability measure on \mathbb{R} with $\operatorname{Du}(\mu) \neq \varnothing$ and let $p \in \operatorname{Du}(\mu)$. Then
(i) if $p>1 / 2$, then $d_{(2 p-1)^{2}}\left(\hat{\mu} d_{p}(\hat{\mu})\right)=\left(d_{2 p-1}(\hat{\mu})\right)^{2}$;
(ii) if $p<1 / 2$, then $d_{(2 p-1)^{2}}\left(\hat{\mu} d_{p}(\hat{\mu})\right)=\left(g_{(1-2 p) /(2(1-p))}(\hat{\mu})\right)^{2}$.

In particular, if $p \neq 1 / 2$, then $(2 p-1)^{2} \in \operatorname{Du}\left(\hat{\mu} d_{p}(\hat{\mu})\right)$.
Proof. (i) Let $p>1 / 2$. Let us write $r=2 p-1$. Hence $s=r$ and $w=1$. We have

$$
d_{1-(1-2 p)^{2}}\left(d_{2 p-1}(\hat{\mu})^{2}\right)=\hat{\mu} d_{p}(\hat{\mu}) .
$$

(ii) Let $p<1 / 2$. Hence $1-p>1 / 2$ and $1-p \in \operatorname{Du}\left(d_{p}(\hat{\mu})\right)$. Thus

$$
d_{1-(1-2 p)^{2}}\left(d_{1-2 p}\left(d_{p}(\hat{\mu})\right)^{2}\right)=\hat{\mu} d_{p}(\hat{\mu})
$$

Summing up, we have the following
Theorem 3.16. Let $\mu \in \mathscr{D}$. Then
(i) $\left\{T_{a} \mu\right\}_{a \in \mathbb{R}} \subset \mathscr{D}$;
(ii) $\left\{d_{p}(\mu)\right\}_{p \in \mathrm{Du}(\mu)} \subset \mathscr{D}$;
(iii) $\left\{g_{r}(\mu)\right\}_{0<r<1} \subset \mathscr{D}$;
(iv) if $\operatorname{Du}(\mu)=(0,1)$, then $\left\{\left(d_{r}(\mu)\right)^{2}\right\}_{0<r<1} \subset \mathscr{D}$;
(v) if $\mathrm{Du}(\mu)=(0, p]$ for some $0<p<1$, then $\left\{\left(d_{r}(\mu)\right)^{2}\right\}_{0<r<p /(2-p)} \subset \mathscr{D}$;
(vi) $\left\{\mu * d_{p}(\mu)\right\}_{p \in \mathrm{Du}(\mu) \backslash\{1 / 2\}} \subset \mathscr{D}$.

Proof. The theorem follows from Corollaries 3.2, 3.4 and 3.15 and Theorems 3.11 and 3.14.

Example 3.5. Since $\mu=\delta_{1} \in \mathscr{D}$, we have
(i)

$$
\frac{p^{2}}{1-2(1-p) e^{-i t}+(1-p)^{2} e^{-2 i t} \in \mathscr{D}} \quad \text { for } 0<p<1
$$

(ii)

$$
\frac{p e^{i 2 t}}{e^{i t}-(1-p)} \in \mathscr{D} \quad \text { for } 0<p<1, p \neq 1 / 2
$$

Example 3.6. Since $\mu=(1-p) \delta_{0}+p \delta_{1} \in \mathscr{D}$, we have

$$
\begin{equation*}
\left[(1-p)+p e^{i t}\right]^{2}\left(\frac{w e^{-i t}}{1-(1-w) e^{-i t}}\right)^{2} \in \mathscr{D} \quad \text { for } 0<w<(2-p)^{-1} \tag{i}
\end{equation*}
$$

(ii) $\quad\left[(1-p)+p e^{i t}\right]^{2} \frac{w e^{-i t}}{1-(1-w) e^{-i t}} \in \mathscr{D} \quad$ for $0<w \leqslant 1, w \neq 1 /(2 p)$;
in particular,

$$
(1-p)^{2} \delta_{-1}+2 p(1-p) \delta_{0}+p^{2} \delta_{1} \in \mathscr{D} \quad \text { for } p \neq 1 / 2
$$

Example 3.7. Let μ be an exponential law with the density function $p(x)=e^{-x} I_{(0,+\infty)}(x)$. Since $\mu \in \mathscr{D}$, we have

$$
\begin{equation*}
\frac{1}{1+(2 p-1) i t+p(1-p) t^{2}} \in \mathscr{D} \quad \text { for } 0<p<1, p \neq 1 / 2 \tag{i}
\end{equation*}
$$

(ii)

$$
\left(\frac{1}{1+i t}\right)^{2} \in \mathscr{D} .
$$

REFERENCES

[1] D. Dugué, Sur les fonctions méromorphes transformées Fourier de fonctions monotones, C. R. Acad. Sci. 208 (1939), p. 1547.
[2] D. Dugué, Arithmétique des lois de probabilités, Mém. Sci. Math. 137, Gauthier-Villars, Paris 1957.
[3] L. Kubik, Sur un problème de M. D. Dugué, Comment. Math. (Prace Mat.) 13 (1969), pp. 1-2.
[4] H. J. Rossberg, Characterization of the exponential and the Pareto distributions by means of some properties of the distributions which the differences and quotiens of order statistics are subject to, Math. Operationsforsch. Statist. 3 (1972), pp. 207-216.
[5] D. Szynal and A. Wolińska, On classes of couples of characteristic functions satisfying the condition of Dugué, Comment. Math. (Prace Mat.) 23 (1983), pp. 325-328.
[6] S. Vallander, I. Ibragimov and N. Lindtrop, On limiting distributions for moduli of sequential differences of independent variables (in Russian), Teor. Veroyatnost. i Primenen. 14 (1969), pp. 693-707.
[7] A. Wolińska, On a problem of Dugué, Lecture Notes in Math. 982, Springer, Berlin 1982, pp. 244-253.
[8] A. Wolińska-Wełcz, On a solution of the Dugué problem, Probab. Math. Statist. 7 (1986), pp. 169-185.

Institute of Mathematics
Wrocław University
pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland
E-mail: krakow@math.uni.wroc.pl

[^0]: * Institute of Mathematics, Wrocław University. The research is supported by KBN grant No. 2P03A 02914.

