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I. INTRODUCTION 

Let us consider a problem from the domain of arithmetics of probability 
measures given by Dugue (see [I], [2], p. 21). He was interested in finding 
couples (ply pz) of probability measures satisfying the equation 

A more general setting of the Duguk problem is contained in the question on 
couples (p,, p2) of probability measures for which the condition 

(2) P ~ * ~ Z = P P ~ + ( ~ - P ) P Z Y  O < P < ~ ,  
holds (see [3]). 

Some examples of couples of probability measures satisfying (2) can be 
found in [I], [3], [7], and [5]. Equation (2) with p2 = Jt; was discussed in C6] 
and equation (2) with supp (p2) c (- co, 01 and supp(p,) c [0, + co) was con- 
sidered in [4] and [S]. 

Let d,: C\(l -p) -r 6, 0 < p < 1, be a function defined by the formula 
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and let g,:  C\(1/(1 -r ) )  + C, 0 < r < 1, be a function defined by the formula 

Functions d, and g,  have the following properties. 

LEMMA 2.1. (i) d,dt = dt d, = g, for 0 < s ,  t < 1 with a+ t  d 1,  where 

'r 
(ii) gtgs = gBot =gst for 0 < S,  t  < 1. 
(iii) dsg, = d,, where w = st/(l  - S  + ts) for 0 < S ,  t < 1 ;  

Proof. ( i )  Since 

stz 

- st2 - stz 
7 

t z - (1 - s ) ( z - (1 - t ) )  - ( 1 - s ) ( l - t ) + ( s + t - l ) z '  

we have d ,  dt = d, d,. 
I f  0 < s + t  < 1, then dsdt = g,, where w = s t @ - s ) ( l - t ) ) .  
(ii) We have 

stz 
tz 1 - (1 - t ) z  

" 9 ' = g s ( l - ( l - t ) z ) =  1- ( I - s ) t z  
1 - ( 1 - t ) z  

- stz - st2 
- - - - Sst. 1 - ( I - 2 - 1 - s t  1 - (1 - s t ) z  

(iii) Since 

- - 1- (1 - t ) z  - - st2 - - stz 
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and 

tsz stz 

td&) - z-(1-s) - z-(1-s) st d s  lz) = - 
l-(U-t)ds@I) - 1- (1-t)sz (1-(1-t)s)z-(1-s) 

z-(1-8) 2-(1 -s) 

- stz - 
(1 -s+ts)z-(I -s)' 

- we have d,s, = gt d, = d,, where w = st/(l - s + ts). H 

COROLLARY 2.2. (i) If  0 < r < p < 1, then 

r(1 - P I  d, = gs dp, where s = - 
~ ( 1  -dm 

(ii) 1 .  0 < p < s < 1, then 

PO -s) 
4 - , d p = g , ,  where r = -  

( 1 - P I S '  

(iii) I f  O < p < s < l  and O < v < s < l ,  then 

d,dl-,d,=d,, where w =  pv(l-s' m d  O < w < p .  
s-vs-ps+vp 

(iv) d,d,-, = I .  

P r o  o f .  (i) Since ps/(T - p  +sp) = r ,  Lemma 2.1 (3) shows that d, = g, d,. 
(ii) Since p + (1 -s) < 1, b y  Lemma 2.1 (i) we have dl -, d, = g,, where 

r = p(1-s)/(l-p)s. 
(iii) The equality dl  -, d, = g,, where r = p ( 1  - s)/(l -p)  s ,  follows from (i). 

The assertion (ii) implies d, g ,  = d,, where t = vr/(l- v + rv). Hence d, dl -, d, = 
d, g, = d,, where 

LEMMA 2.3. A function dp, 0 < p < 1, has the following properties: 
(i) if d,(x) = x, then X E { O ,  1);  
(ii) a function dp satisfies a functional equation of the form 
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(iii) a function d, is an injection, dp(C\(l -p)) = C\(p); 
(iv) d; l = dl-,; 
(4 dpCW\f 1 - P I )  = R\(pI; 
(vi) d, is an increasing function on (-my l - p )  and ( l - p ,  + m). 

The proof is immediate, and thus is omitted. 

LEMMA 2.4. Let A, = {z:  121 < 1, Id,(z)( < 1). Then 

(6) A, = {z:  lzl < 1 ,  2932 6 ( l - p ) + ( l + p ) 1 ~ 1 ~ )  
- 

and 

Moreover, 
(0 dpWp1 = A1 - p ;  

(ii) {z :  I z I  = 11 c AP; 
(iii) if 121 = 1 and Idp(z)l = 1, then z = 1; 

(iv) dp([-1 ,  01) = CO, p/(2-p)l and d,(tO, Il-p)/Il+pll) = [-1,01. 

P r o o f .  Let z = a+ib.  Since Idp(z)l < 1, we see that lpzll < (z l - ( l  -p)l, 
which implies 

and thus 

COROLLARY 2.5. Let 0 < p < 1. Suppose that the numbers z l ,  z2 E 

C(lzll < 1, lz21 < 1 )  satisfy the equation 

Then 
(i) zl # l - p  and z2 + P ;  

(ii) z2 = pzl/(zl -(1 - P I )  and 21 = (1 - P) z2/(z2 - P I ;  
(iii) 2%z1 < (1-p)+(l +p)]z1l2; 

(iv) i f  {z,, z2j n R # O,  then z l ,  z2 E R and exactly one of the following 
conditions is satisfied: 

e z1 = z z  = 1; 
e Z 1  = Z2 = 0;  
e zl z2 < 0; in fact: either z ,  ~ ( 0 ,  (1 - p)/(l +F)] and z2 E [- 1 , O )  or 

z , ~ [ - l ,  0) and ~ 2 ~ ( 0 ,  P I P - P I ] .  
The next proposition will be used in the seque1. 
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PROPOSITION 2.6. Let p be a probability measure on R and 0 < r < 1. Then 
(i) a measure rxnw=, (1 -r)" pen, where jfo = aO, has a characteristic func- 

tion of the form 

(ii) a measure p * pcIm= ,, (1 -p)" p'", where p** = f i O ,  has a characteristic 
function of the form 

The proof is immediate. 

For every probability measure p on R we denote by g,(p) (0 < r 6 1 )  the 
probability measure with the characteristic function g, ( j i )  . 

First we prove the following lemma. 

LEMMA 3.1. Let pi, ,u2 be probability measures and 0  < p < 1. Then the 
following conditions are equivalent: 

(i) p1 * p2 = ppl + (1  -p)p2, i.e. the couple ( p l ,  p2) is a solution of the 
equation (2); 

(ii) # 1 -p and dp(P1) is a characteristic function; 
(iii) p2 # p and dl-, G2) is a characteristic function. 

The proof is obvious. 

For every probability measure p on R we define 

(1 1) Du(p) = ( p ~ ( 0 ,  1): p*v =pp+(l-p)v for some v). 

The class of probability measures p on R with Dub)  # 0 will be denoted by 9. 
For every probability measure p E 9 we denote by d,  (p) @ E DU (p)) the 

probability measure with the characteristic function dp($). 

COROLLARY 3.2. Let p be a probability measure on R. Then, for every 
~ E R \ ( O ) ,  

Dub) = Du (T, (PI). 
COROLLARY 3.3. Let p be a probability measure on R and 0 < p < 1. Then 

the following conditions are equivalent: 
6) P E Du(P)L); 
(ii) p # 1 -p and dp(@) is a characteristic function. 
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COROLLARY 3.4. If  p~ Du (p), then 1 - p  E Du (d,(p)) and 

COROLLARY 3.5. Let p be a probability measure on R. Then p E 9 ifl there 
exist a probability measure IJ on W and 0 c p < 1 such that 

Moreover, v = dp (p). 

LEW~MA 3.6. Let p be a probability measure on R with DU (2 # 0 and let 
p EDU (p). Then exactly one of the following statements is sati$ed: 

(i) p and d,(p) are absolutely continuous; 
(ii) p and d,(p) are singular; 
(iii) p a d  d,(p) are discrete. 
Moreover, if p is a lattice law given on the same lattice L with the origin as 

a lattice point, then d,  (p) (L) = 1. 

Proof. Lemma 3.6 follows from Corollary 2.5. H 

LEMMA 3.7. Let p be a symmetric probability measure on R with 
Du (p) # 0. Then, for every p E DU (p), p = da ( p )  = f i O .  

Proof. Let p EDU (IL). Since ,!in d,  (fi) = ppF. +(I - p ) d ,  (p),  Corollary 2.5 im- 
plies p = d,(p) = aO. rn 

LEMMA 3.8. Let p E 59 be a probability measure with supp (pl) c [O, + a). 
I 

Assume that, for some p E DU (p), supp (dp(p)) c LO, + a). Then p = d, Q = aO. 
I 

Proof. By means of the Laplace transforms 

the condition (2) can equivalently be expressed by 

Since #i(t) > 0, Corollary 2.5 implies p = d,(p) = aO. See also the proof of 
Theorem 2 of [8]. m 

THEOREM 3.9. Let f i  be a probability measure on R. Then one of the fol- 
lowing statements is satisfied: 

(i) D u b )  = O; 
(ii) Du (p) = (0, 1); 

(iii) Du(p) = (0,  p] for some 0 < p < 1. 

Pro of. Let p E DU (p) and 0 < r < p. By Corollary 2.2 there is d, = g,dp, 
where s = r (1 - p)/p (1 -r). An application of Proposition 2.6 now implies that 
g, d, (@) = d, (ii) is a characteristic function. Hence r E Du (p). 
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Let @,) c Du(p) be an increasing sequence with limn,, p, = p < 1. Since 
p, E DU (p), we conclude that P(R) c A,. Hence Lemma 2.4 implies fi (R) n R  c 
[ - 1, (1 - p,)/(l + p,)] u (1) for every n. Thus 

In particular, fl  # 1 -p, which implies 

lim dp, (fi) = dp  (g) . 
n-c m 

Since d, ( ) _ i s  a continuous function, we conclude that one is a characteristic 
function, and thus P E D u ~ ) .  rn 

COROLLARY 3.10. Let p be a probability measure on R with Dub)  # 0. Then 
(i) if Dub) = (0, I), then 

%$ < 1fi12 and (fi(t): t e R ) n R  c [-l,O]u{l); 

(ii) ij, for some. 0 < p < 1, Du (p) = (0, p], then 

flfi < 4((1-~)+(1 +pIIPl2) 
and 

{p(t ) :  t . ~ R ) n R c  [-I, (I-p)/(l+p)]u(l). 

THEOREM 3.11. Let p be a probability measure on 8. Then Dub)  # O i& 
for some (every) 0 < r < 1, Du (g, (p)) # 0 and 

In pmticular, 
(i) D u b )  = (0, 1) @ Du(gI(p)) = (0, 1) for every (some) 0 < r < 1; 
(ii) Du(p) = (0, p] for some 0 < p < 1 ifffor every (some) 0 < r < 1 there 

exist 0 < s, < 1 with Du (g, (P) )  = (0, s,]. Moreover, s, ((1 - p )  r + p) -p = 0. 

Proof. We show that Du(g,fi) = (p((l-p)r+p)-l: PEDU(~))  for every 
O < r < l .  

Let p E DU (p). Hence 1 - p E Du (d,  @)). Define 

Since p < s by Theorem 3.9, we have 1 -s E Du(d, (&)), which impIies 
s E Du (d,- d ,  (fi)). We have ds-, d, = g,. In particular, if Du (p) # PO, then 
Du(grP) + 0. 

Let Du(g,@) # 0 and s~Du(g,$).  Hence 1 -s~Du(d,g,(ji)). Set 

This gives s = p /((l - p) r + p). Since p < s, we conclude that d l  -, d, = g,, and 
thus d,  @) = g, ds (li) is a characteristic function. In particular, p E Du (@). 
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Let us give some examples of measures p with Du(p) # 0. We remark that 
if ~ € 9 ,  then 

(i) g r ~ I  and Du(g.fi) = (p((l-p)r+p)-l: ~ E D u M )  for every 0 < r 6 1; 
(ii) g, j id , f l+sg, j i+( l -s)d,f l ,  where t = rs/(l-s+sr)for every s ~ D u ( g ~ f i ) .  

EXAMPLE 3.1. Let p = 6,. We have fi = 1. Moreover, 

6) Du (a0) = (0, 1) and d,(6,) = 60 for 0 < p < 1; 

(4 gr (60) = 6, and Du (g, (60)) = (0, 1). - 

EXAMPLE 3.2. Let p = (see [5]). We have P ( t )  = a". Moreover, 

(i) DuId,) = (0, 1); 

(ii) P 
'~(fi(tlI = l-(l-p)e-it and DU (dp (Ci (0)) = @, 1 -PI 

I 
t for O < p <  1; 

reit 
(iii) g, (ei3 = 

1-(1 -r)eit 
and Du (g,(ei9) = (0, 1) for 0 c r < 1. 

EXAMPLE 3.3. Letp = (l-p)dO+pdl (see[3]). Wehave&(t)=(l-p)+peit. 
Moreover, 

(w/p) e - " 
(5) dw(fi(t)) = [(1-P)+pi?l l-(l-w,p)e-it and Du (d, @)) = (0, w] 

for every 0 c w < p; 

W 
(iii) gr ((1 - P) + pei) = ~1 -PI + peiil , -,, - w) eit, 

where 

r f -s 
W = =- and D ~ ( ~ , ( ( ~ - ~ ) ~ o + ~ ~ I ) ) = ( o , P ( ( ~ - P ) ~ + P ) - ' ]  

r+p-pr l -p 

for O < r < l .  

EXAMPLE 3.4. Let p be an exponential law with the density function 
p (x) = e-" I(, ,+ ,, (x) (see 111-[3]). We have j2 (t) = l/(l + it). Moreover, 
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for 0 < p <  1; 

1 
(iii) gl. (l:iJ - = --- and ( ( ) )  f o r o < r < l .  

THEOREM 3.12. Let p be a probability measure with Du (p) = (0, I) and let 
~u(d,(p)) = (0, 1) for some 0 < r < 1. Then p is an exponential h w .  

Proof. We conclude from Corollary 3.10 that Wd,@) < Id,(@)I2. Conse- 
I 

quently, 

and, finally, -%fi d -JfiI2. This gives %ji = 1flI2, and hence, by Theorem 1 of 
I [dly p is an exponential law. B 

THEOREM 3.13. Let p~ 9 be a probability measure such that supp (p) iis 

bounded. Suppose that, for some p E DU (p), supp (d, (p)) is also bounded. Then 
p = So or p = T,((l-p)So+pdl) (a # 0). 

P r o  of. Let p # 8, .  Suppose that supp (p) n(0, + GO) # 0. Set 

a = sup supp (p) and b = sup supp (d, (p)). 

Since supp (p) + supp (d,  &)) = supp (p) u supp (d, (p)), we conclude that a + b E 

supp (p) u supp (d, (p)), which implies b < 0 and, finally, supp (p) c [0, + m) 
and supp(d,(p)) c (-OD, 01. An application of Theorem 1 of [8] now implies 
that p = x((1 -p )~3~+p6~) .  1 

The following result extends Theorem 4 of [8]. 

THEOREM 3.14. Let p be a probability measure on R with Du (p) # 0 and 
kt  p E DU (p). Then for every r > 0 with 2 p  - 1 d r < p/(2 - p) 

(i) dl -s2 ((dr (P))') = g, (P) d&); in particular, 1 - s2 E DU ((dr (fl))'); 
(ii) d~ (g,,, ($1 dp (fi)) = d,  ((fl))'; in particular, s2 E Du (g, @) d, (P)), where 

Proof. We have 

PS r = - r(1 -s) w=-  r(1 +s) 
and p=-. 

1+s-p' s (L- r) r+s  
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First we show that r < s < 1 and 2p-  1 < s. Since r (2 - p )  < p, we see that 
r - rp .p p - r, which implies s < 1. Moreover, we have p - r < 1 -p. Hence 
1 < (1 -p) /Ip  - r ) ,  and thus r < s. The inequality 2 p  - 1 < r $ s is obvious. 

Since 

we conclude that 

( l - s21[rF/( f i - ( l  4 ) 1 2  - - (1 - s2) r2 ($7 
dl-sz(dr{fl))' = 

[r@/(fi - (1 - r))] - s2 (r,i,i12 - s2 (p - ( 1  - r))' 

COROLLARY 3.15. Let p be a probability measure on R with Du (p) # 0 and 
let p E DU (p). Then 

0) if P > 1/23 then 4 2 ,  - 111 (W, (PI) = (d2, - 1 ( ~ i ) ) ~  ; 
(ii) if P < 1/29 then 42, -  1 ) 2  ( 3 p  (PI) = (gtl- 2p) , (2 (1  - p ) )  (k))'. 

In particular, i f  p # 1/2, then (2p - E Du (@, (@)). 

Proof. (i) Let p > 1/2. Let us writer = 2p-1. Hence s = rand w = 1. We 
have 

dl -(I - 2p)Z (d2,- 1 @IZ) = $dp O. 
(ii) Let p < 112. Hence 1 - p > 112 and 1 -p E Du (d, @)). Thus 

Summing up, we have the following 

THEOREM 3.16. Let ~ € 9 .  Then 

(9 { Z P } E &  g; 
(ii) {dP(P)},U(,, 9; 
(ic) {gr@)}o<r<l cg; 
( iv )  if Dub) = (0, I), then {(d,  ( c ~ ) ) ~ ) o ~ , <  1 c 9; 
(<) if D u ( p )  = (0, p ]  f i r  some 0 < p < 1, then {(dr(p))2)~<,<,i(z-p1 ~ g ;  

(vi)  ( P  * d, ( ~ ~ l p ~ u c r c , \ r l l z ,  9. 
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P r o  of, The theorem follows horn Corollaries 3.2, 3.4 and 3.15 and Theo- 
rems 3.11 and 3.14. rn 

EXAMPLE 3.5. Since p = a1 E 9, we have 

for O < p c l ;  

pei2t ~a for o < p < i ,  p + 1 / 2 .  
eit - ( 1  - p) 

- 
EXAMPLE 3.6. Since p = (1 - p) So + pS ,  E 9, we have 

we - it 
Ii) ~ ( 1 - ~ ) + r * 1 2 ( ~ ( ~ ~ ) ~ - ~ ~  T ~ 5 3  for 0 < w < ( 2 - p ) - 1 ;  

(iil C ( l - ~ ) + ~ e ~ ~ 1 ~ ~ - ( ~ - ~ ) ~ - ~ ~  E for o < w  < 1, w + 1/(2p); 

in particular, 

( 1 - p ) 2 8 - 1 + 2 p ( l - p ) 6 0 + p 2 S 1 ~ ~  for p  # 112. 

EXAMPLE 3.7. Let p be an exponential law with the density function 
p (x) = e-xI t , ,  + ,, (x). Since p E 9, we have 

(ii) 

1  
2 ~ 9  for 0 < p  < 1, p #  112; 

1 + ( 2 p - l ) i t + p ( l - p ) t  
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