LIMIT DISTRIBUTIONS OF DIFFERENCES AND QUOTIENTS OF NON-ADJACENT k-TH RECORD VALUES

BY
MARIUSZ BIENIEK* AND DOMINIK SZYNAL* (LUBLIN)

Abstract

Let $\left\{Y_{n}^{(k)}, n \geqslant 1\right\}$ denote the sequence of k-th record values of the sequence $\left\{X_{n}, n \geqslant 1\right\}$ of i.i.d. random variables with an absolutely continuous distribution function F. Fix $r \in N$. We show that, for some very broad class of distributions F, the limit distribution of the sequence

$$
k\left(Y_{n+r}^{(k)}-Y_{n}^{(k)}\right), \quad k \geqslant 1,
$$

is the gamma distribution with pdf

$$
f_{r, \lambda}(x)=\frac{\lambda^{r}}{(r-1)!} x^{r-1} \exp (-\lambda x), \quad x \geqslant 0
$$

where $\lambda>0$ is a parameter which depends on F. We prove the similar result for k-th lower record values $Z_{n}^{(k)}$. Moreover, we discuss the asymptotic behaviour of quotients of these quantities.

1. INTRODUCTION

Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent identically distributed random variables with a common distribution function (cdf) F and probability density function (pdf) f. Moreover, let $X_{1: n}, \ldots, X_{n: n}$ denote the order statistics of a sample X_{1}, \ldots, X_{n}.

For a fixed $k \geqslant 1$ we define the k-th (upper) record times $U_{k}(n), n \geqslant 1$, of the sequence $\left\{X_{n}, n \geqslant 1\right\}$ as $U_{k}(1)=1$,

$$
U_{k}(n+1)=\min \left\{j>U_{k}(n): X_{j: j+k-1}>X_{U_{k}(n): U_{k}(n)+k-1}\right\}, \quad n \geqslant 1,
$$

and the k-th upper record values as $Y_{n}^{(k)}=X_{U_{k}(n): U_{k}(n)+k-1}$ for $n \geqslant 1$ (cf. [3]).
Note that for $k=1$ we have $Y_{n}^{(1)}=X_{U_{1}(n): U_{1}(n)}:=R_{n}$ (upper) record values of the sequence $\left\{X_{n}, n \geqslant 1\right\}$ and that $Y_{1}^{(k)}=X_{1: k}=\min \left(X_{1}, \ldots, X_{k}\right)$.

[^0]Similarly, for a fixed $k \geqslant 1$ we define the k-th lower record times $L_{k}(n)$, $n \geqslant 1$, of the sequence $\left\{X_{n}, n \geqslant 1\right\}$ as $L_{k}(1)=1$,

$$
L_{k}(n+1)=\min \left\{j>L_{k}(n): X_{k: j+k-1}<X_{k: L_{k}(n)+k-1}\right\}, \quad n \geqslant 1
$$

and the k-th lower record values as $Z_{n}^{(k)}=X_{k: L_{k}(n)+k-1}$ for $n \geqslant 1$.
Note that for $k=1$ we have $Z_{n}^{(1)}=X_{1: L_{1}(n)}:=R_{n}^{\prime}-$ (lower) record values of the sequence $\left\{X_{n}, n \geqslant 1\right\}$ and that $Z_{1}^{(k)}=X_{k: k}=\max \left(X_{1}, \ldots, X_{k}\right)$.

In [4] it has been shown that if F is an absolutely continuous distribution function "with probability density function f, concentrated on the interval $S \subset \mathbb{R}$, and if $h(x)=f(x) /(1-F(x))$ is a differentiable function with a bounded first derivative, then

$$
k\left(Y_{n+1}^{(k)}-Y_{n}^{(k)}\right) \xrightarrow{D} W_{n}, \quad k \rightarrow \infty,
$$

(D - in distribution), where W_{n} is exponentially distributed for all n with the df

$$
F_{\lambda}^{*}(x)=1-\exp (-\lambda x), \quad x \geqslant 0
$$

and $\lambda=h\left(x_{0}^{+}\right)$(the right limit of $h(x)$ at the point $\left.x_{0}\right), x_{0}=\inf S$, and F_{0}^{*}, F_{∞}^{*} denote the distribution concentrated at zero and the improper distribution concentrated at infinity, respectively.

Moreover, it is shown in [2] that, under suitable assumptions, the limit distributions of sequences

$$
k\left(Z_{n}^{(k)}-Z_{n+1}^{(k)}\right), k \geqslant 1
$$

and

$$
n\left(Y_{n+1}^{(k)} / Y_{n}^{(k)}-1\right), n \geqslant 1, \quad n\left(Z_{n}^{(k)} / Z_{n+1}^{(k)}-1\right), n \geqslant 1
$$

are exponential distributions with appropriate parameters depending on F.
In this paper we extend those results and we show that for a large class of distributions F for any fixed $n, r \in N$, the sequences

$$
k\left(Y_{n+r}^{(k)}-Y_{n}^{(k)}\right), k \geqslant 1, \quad \text { and } \quad k\left(Z_{n}^{(k)}-Z_{n+r}^{(k)}\right), k \geqslant 1,
$$

converge in distribution as $k \rightarrow \infty$ to some gamma distributed random variables, respectively. Moreover, we show that for any fixed $k, r \in N$, the sequences

$$
n\left(Y_{n+r}^{(k)} / Y_{n}^{(k)}-1\right), n \geqslant 1, \quad \text { and } \quad n\left(Z_{n}^{(k)} / Z_{n+r}^{(k)}-1\right), n \geqslant 1
$$

converge weakly as $n \rightarrow \infty$ to gamma or negative gamma distribution. We illustrate our results with examples of limit behaviour of differences and quotients of k-th records. In the last section we discuss alternative proofs of the main results of the paper.

Notation. Throughout the paper $\Gamma(\alpha, \beta)$, where $\alpha>0, \beta>0$, denotes a gamma distributed random variable with the pdf

$$
f_{\alpha, \beta}(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp (-\beta x), \quad x \geqslant 0
$$

If $\beta=0$, then $\Gamma(\alpha, \beta)$ is improper distribution concentrated at ∞, and if $\beta=\infty$, then $\Gamma(\alpha, \beta)$ is the distribution concentrated at zero. Similarly, $\mathrm{N} \Gamma(\alpha, \beta)$, where $\alpha>0, \beta>0$, denotes a negative gamma distribution with the pdf

$$
\bar{f}_{\alpha, \beta}(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}|x|^{\alpha-1} \exp \beta x, \quad x \leqslant 0
$$

Moreover, let $\bar{F}(x)=1-F(x)$ and

$$
H(x)=-\log (\bar{F}(x)), \quad h(x)=f(x) / \bar{F}(x)=H^{\prime}(x)
$$

denote the hazard function and the hazard rate of F, respectively. Similarly, let

$$
\bar{H}(x)=-\log \bar{F}(x), \quad \bar{h}(x)=f(x) / F(x)=-\bar{H}^{\prime}(x)
$$

We also define

$$
q(x)=-\frac{f(x)}{\bar{F}(x) \log \bar{F}(x)} \quad \text { and } \quad \bar{q}(x)=-\frac{f(x)}{F(x) \log F(x)} .
$$

2. PROBABILITY DISTRIBUTIONS OF $Y_{n+r}^{(k)}-Y_{n}^{(k)}$ AND $Z_{n}^{(k)}-Z_{n+r}^{(k)}$

It is known that the pdf of $Y_{n}^{(k)}$ is

$$
\begin{equation*}
f_{Y_{n}^{(k)}}(x)=\frac{k^{n}}{(n-1)!}(H(x))^{n-1}(\bar{F}(x))^{k-1} f(x), \quad x \in R \tag{2.1}
\end{equation*}
$$

and the joint pdf of $\left(Y_{m}^{(k)}, Y_{n}^{(k)}\right), m<n$, is

$$
\begin{align*}
f_{Y_{m}^{(k)}, Y_{n}^{(k)}}(x, y)= & \frac{k^{n}}{(m-1)!(n-m-1)!}(H(x))^{m-1} h(x) \tag{2.2}\\
& \times\left(-\log \frac{\bar{F}(y)}{\bar{F}(x)}\right)^{n-m-1}(\bar{F}(y))^{k-1} f(y)
\end{align*}
$$

for $x<y$ and it is 0 for $x \geqslant y$ (cf. [5]).
Moreover, the pdf of $Z_{n}^{(k)}$ is

$$
\begin{equation*}
f_{Z_{n}^{(k)}}(x)=\frac{k^{n}}{(n-1)!}(\bar{H}(x))^{n-1}(F(x))^{k-1} f(x), \quad x \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

and the joint pdf of $\left(Z_{m}^{(k)} ; Z_{n}^{(k)}\right), m<n$, is

$$
\begin{align*}
f_{Z_{m}^{(k)}, Z_{n}^{(k)}}(x, y)= & \frac{k^{n}}{(m-1)!(n-m-1)!}(\bar{H}(x))^{m-1} \bar{h}(x) \tag{2.4}\\
& \times\left(-\log \frac{F(y)}{F(x)}\right)^{n-m-1}(F(y))^{k-1} f(y)
\end{align*}
$$

for $x \geqslant y$ and it is 0 otherwise.
Lemma 1. The distribution function of the random variable $\Delta_{n, r}^{(k)}=Y_{n+r}^{(k)}-Y_{n}^{(k)}$ is of the form

$$
F_{\Delta_{n, r}^{(k)}}(x)=1-\sum_{i=0}^{r-1} \frac{k^{i}}{i!} \int_{S}\left(-\log \frac{\bar{F}(u+x)}{\bar{F}(u)}\right)^{i}\left(\frac{\bar{F}(u+x)}{\bar{F}(u)}\right)^{k} d F_{Y_{n}^{(k)}}(u)
$$

for $x \geqslant 0$ and it is 0 otherwise.
Proof. Using (2.2) we see that the pdf of $\Delta_{n, r}^{(k)}$ is

$$
\begin{align*}
f_{\Delta_{n, r}^{(k)}}(w)= & \frac{k^{n+\boldsymbol{r}}}{(n-1)!(r-1)!} \int_{\mathbf{R}}(-\log (\bar{F}(u)))^{n-1} \frac{f(u)}{\bar{F}(u)} \tag{2.5}\\
& \times\left(-\log \frac{\bar{F}(w+u)}{\bar{F}(u)}\right)^{r-1}(\bar{F}(w+u))^{k-1} f(w+u) d u
\end{align*}
$$

for $w \geqslant 0$. Therefore, the df of $\Delta_{n, r}^{(k)}$ is

$$
\begin{aligned}
F_{\Delta \Delta_{n, r}^{(k)}}(x)= & \frac{k^{n+r}}{(n-1)!(r-1)!} \int_{R}(-\log (\bar{F}(u)))^{n-1}(\bar{F}(u))^{k-1} f(u) \\
& \times\left\{\int_{\alpha}^{1}(-\log t)^{r-1} t^{k-1} d t\right\} d u,
\end{aligned}
$$

where

$$
\alpha:=\alpha(u, x)=\bar{F}(u+x) / \bar{F}(u) .
$$

Since

$$
\int(-\log t)^{r-1} t^{k-1} d t=t^{k}\left\{\sum_{i=0}^{r-1} \frac{(r-1)!}{i!k^{r-i}}(-\log t)^{i}\right\}+C,
$$

we have

$$
\begin{equation*}
\int_{\alpha}^{1}(-\log t)^{r-1} t^{k-1} d t=\frac{(r-1)!}{k^{r}}-\alpha^{k}\left\{\sum_{i=0}^{r-1} \frac{(r-1)!}{i!k^{r-i}}(-\log \alpha)^{i}\right\} \tag{2.6}
\end{equation*}
$$

and

$$
F_{\Delta_{n, r}^{(k)}}(x)=\frac{k^{n}}{(n-1)!} \int_{R}(-\log (\bar{F}(u)))^{n-1}(\bar{F}(u))^{k-1} f(u)
$$

$$
\begin{aligned}
& -\frac{k^{n}}{(n-1)!} \int_{R}(-\log (\bar{F}(u)))^{n-1}(\bar{F}(u))^{k-1} f(u) \\
& \times\left(\frac{\bar{F}(u+x)}{\bar{F}(u)}\right)^{k}\left\{\sum_{i=0}^{r-1} \frac{k^{i}}{i!}\left(-\log \frac{\bar{F}(u+x)}{\bar{F}(u)}\right)^{i}\right\} d u \\
= & 1-\int_{S}\left(\frac{\bar{F}(u+x)}{\bar{F}(u)}\right)^{k}\left\{\sum_{i=0}^{r-1} \frac{k^{i}}{i!}\left(-\log \frac{\bar{F}(u+x)}{\bar{F}(u)}\right)^{i}\right\} d F_{Y_{n}^{(k)}}(u),
\end{aligned}
$$

which completes the proof of Lemma 1.
Using (2.3) and (2.4) instead of (2.1) and (2.2) we prove the similar result for k-th lower records.

Lemma 2. The distribution function of the random variable $D_{n, r}^{(k)}=Z_{n}^{(k)}-Z_{n+r}^{(k)}$ is of the form

$$
F_{D_{n, r}^{(k)}}(x)=1-\sum_{i=0}^{r-1} \frac{k^{i}}{i!} \int_{S}\left(-\log \frac{F(u-x)}{F(u)}\right)^{i}\left(\frac{F(u-x)}{F(u)}\right)^{k} d F_{Z_{n}^{(k)}}(u)
$$

for $x \geqslant 0$ and it is 0 otherwise.
Proof. Using (2.4) we see that the pdf of $D_{n, r}^{(k)}$ is (after similar evaluations as in Lemma 1)

$$
\begin{align*}
f_{D_{n, r}^{(k)}}(w)= & \frac{k^{n+r}}{(n-1)!(r-1)!} \int_{\mathbb{R}}(-\log F(u))^{n-1} \bar{h}(u) \tag{2.7}\\
& \times\left(-\log \frac{F(u-w)}{F(u)}\right)^{r-1}(F(u-w))^{k-1} f(u-w) d u
\end{align*}
$$

for $w \geqslant 0$. Therefore the df of $D_{n, r}^{(k)}$ is

$$
\begin{aligned}
F_{D_{n, r}(k)}(x)= & \frac{k^{n+r}}{(n-1)!(r-1)!} \int_{\mathbb{R}}(-\log F(u))^{n-1}(F(u))^{k-1} f(u) \\
& \times\left\{\int_{\beta}^{1}(-\log t)^{r-1} t^{k-1} d t\right\} d u
\end{aligned}
$$

where

$$
\beta:=\beta(u, x)=F(u-x) / F(u) .
$$

Using (2.6) we easily complete the proof of Lemma 2.
3. PROBABILITY DISTRIBUTIONS OF $Y_{n+r}^{(k)} / Y_{n}^{(k)}$ AND $Z_{n}^{(k)} / Z_{n+r}^{(k)}$

We start this section with the following lemma.
Lemma 3. For all real numbers $A, B, C, 0 \leqslant A<B \leqslant C$, and $n, r \in N$,

$$
\begin{aligned}
& \int_{A}^{B} u^{n-1}(C-u)^{r-1} d u \\
& \quad=\frac{\Gamma(n) \Gamma(n)}{\Gamma(n+r)} \sum_{i=0}^{r-1}\binom{n+r-1}{i}\left\{B^{n+r-1}\left(\frac{C}{B}-1\right)^{i}-A^{n+r-1}\left(\frac{C}{A}-1\right)^{i}\right\} .
\end{aligned}
$$

Now let us state and prove the results on the probability distributions of quotients $Y_{n+r}^{(k)} / Y_{n}^{(k)}$ and $Z_{n}^{(k)} / Z_{n+r}^{(k)}$.

Lemma 4. The distribution function of the random variable $U_{n, r}^{(k)}=Y_{n+r}^{(k)} / Y_{n}^{(k)}$ is of the form
(3.1) $\quad F_{U_{n, r}^{(k)}}(z)$

$$
= \begin{cases}p_{n}^{\prime}-\sum_{j=0}^{r-1}\binom{n+r-1}{j} \int_{0}^{\infty} R^{n+r-1}(y, z)\left(R^{-1}(y, z)-1\right)^{j} d F_{Y_{n}^{(k+r}+r}(y) & \text { for } z \leqslant 0, \\ p_{n}^{\prime}+\sum_{j=0}^{r-1}\binom{n+r-1}{j} \int_{-\infty}^{0} R^{n+r-1}(y, z)\left(R^{-1}(y, z)-1\right)^{j} d F_{Y_{n}^{(k)+}}(y) & \text { for } 0<z<1, \\ p_{n}^{\prime \prime}-\sum_{j=0}^{r-1}\binom{n+r-1}{j} \int_{0}^{\infty} R^{n+r-1}(y, z)\left(R^{-1}(y, z)-1\right)^{j} d F_{Y_{n}^{(k+r} r}(y) & \text { for } z \geqslant 1,\end{cases}
$$

where

$$
p_{n}^{\prime}=P\left\{Y_{n}^{(k)}<0, Y_{n+r}^{(k)}>0\right\}, \quad p_{n}^{\prime \prime}=P\left\{Y_{n}^{(k)}<0\right\}+P\left\{Y_{n+r}^{(k)}>0\right\}
$$

and

$$
R(y, z)=H(y / z) / H(y)
$$

Proof. Note that if (X, Y) is an absolutely continuous random vector with a pdf $f(x, y)$ such that $X \leqslant Y$, then the distribution function of the random variable $Z=Y / X$ is

$$
\begin{align*}
& F_{Z}(z) \tag{3.2}\\
& = \begin{cases}P\{X<0, Y>0\}-\int_{0}^{\infty} \int_{-\infty}^{y / z} f(x, y) d x d y & \text { for } z \leqslant 0, \\
P\{X<0, Y>0\}+\int_{-\infty}^{0} \int_{-\infty}^{y / z} f(x, y) d x d y & \text { for } 0<z<1, \\
P\{X<0\}+P\{Y>0\}-\int_{0}^{\infty} \int_{-\infty}^{y / z} f(x, y) d x d y & \text { for } z \geqslant 1\end{cases}
\end{align*}
$$

Put $X=Y_{n}^{(k)}$ and $Y=Y_{n+r}^{(k)}$; then $Z=U_{n, r}^{(k)}$ and we obtain (3.1) combining (3.2) with (2.2) and Lemma 3. For instance, for $z<0$

$$
\begin{aligned}
F_{U_{n, r}^{(k)}}(z) & =p_{n}^{\prime}-\frac{k^{n+r}}{\Gamma(n) \Gamma(r)} \int_{0}^{\infty}(\bar{F}(y))^{k-1} f(y)\left\{\int_{-\infty}^{y / z}(H(x))^{n-1}(H(y)-H(x))^{r-1} h(x) d x\right\} d y \\
& \left.=p_{n}^{\prime}-\frac{k^{n+r}}{\Gamma(n) \Gamma(r)} \int_{0}^{\infty}(\bar{F}(y))^{k-1} f(y)\left\{\int_{0}^{H(y / z)} u^{n-1}(H(y)-u)\right)^{r-1} d u\right\} d y .
\end{aligned}
$$

Using Lemma 3 with $A=0, B=H(y / z)$ and $C=H(y)$ we obtain

$$
\begin{aligned}
F_{U_{n, r}^{(k)}}(z) & =p_{n}^{\prime}-\int_{0}^{\infty}(\bar{F}(y))^{k-1} f(y)\left\{\sum_{i=0}^{r-1}\binom{n+r-1}{i}(H(y / z))^{n+r-1}\left(\frac{H(y)}{H(y / z)}-1\right)^{i}\right\} d y \\
& =p_{n}^{\prime}-\sum_{j=0}^{r-1}\binom{n+r-1}{j} \int_{0}^{\infty}\left(\frac{H(y / z)}{H(y)}\right)^{n+r-1}\left(\frac{H(y)}{H(y / z)}-1\right)^{j} d F_{Y_{n+r}^{(k)}}(y)
\end{aligned}
$$

The remaining cases $0<z<1$ and $z \geqslant 1$ may be treated similarly. a
In the same way we prove the following result.
LEmma 5. The distribution function of the random variable $T_{n, r}^{(k)}=Z_{n}^{(k)} / Z_{n+r}^{(k)}$ is of the form

$$
\begin{aligned}
& F_{T_{n, r}^{(k)}}(z) \\
= & \left\{\begin{array}{c}
\sum_{j=0}^{r-1}\binom{n+r-1}{j} \int_{-\infty}^{0} \bar{R}^{n+r-1}(y, z)\left(\bar{R}^{-1}(y, z)-1\right)^{j} d F_{Z_{n+r}^{(k)}}(y) \quad \text { for } z<1, \\
1-\sum_{j=0}^{r-1}\binom{n+r-1}{j} \int_{0}^{\infty} \bar{R}^{n+r-1}(y, z)\left(\bar{R}^{-1}(y, z)-1\right)^{j} d F_{Z_{n}^{(k+r}}(y)
\end{array} \text { for } z \geqslant 1,\right.
\end{aligned}
$$

where $\bar{R}(y, z)=\bar{H}(y z) / \bar{H}(y)$.

4. LIMIT DISTRIBUTIONS OF DIFFERENCES OF k-TH RECORD VALUES

Theorem 1. Let F be an absolutely continuous distribution function with density f and the interval $S \subset \mathbb{R}$ as the support, such that $h(x)=f(x) /(1-F(x))$ is a differentiable function with bounded first derivative

$$
\begin{equation*}
\left|h^{\prime}(x)\right| \leqslant M, \quad x \in S \tag{4.1}
\end{equation*}
$$

Let us fix $r \in N$ and assume that $\left\{F_{k}, k \geqslant 1\right\}$ is a sequence of distribution functions of the form

$$
F_{k}(x)=1-\sum_{i=0}^{r-1} \frac{k^{i}}{i!} \int\left(-\log \frac{1-F(u+x / k)}{1-F(u)}\right)^{i}\left(\frac{1-F(u+x / k)}{1-F(u)}\right)^{k} d G_{k}(u)
$$

for $x \geqslant 0$ and it equals 0 otherwise, where $\left\{G_{k}, k \geqslant 1\right\}$ is a sequence of distribution functions such that

$$
\begin{equation*}
G_{k} \rightarrow G, \quad k \rightarrow \infty, \tag{4.2}
\end{equation*}
$$

and G is a distribution concentrated at a point $x_{0} \in \partial S$. Then

$$
F_{k} \rightarrow F_{r, \lambda}^{*}, \quad k \rightarrow \infty,
$$

where $F_{r, \lambda}^{*}$ is the df of $\Gamma(r, \lambda)$ random variable and

$$
\lambda= \begin{cases}\lim _{x \rightarrow x_{0}^{+}} h(x) & \text { if } x_{0}=\inf S \\ \lim _{x \rightarrow x_{0}^{-}} h(x) & \text { if } x_{0}=\sup S\end{cases}
$$

Proof. Applying Taylor's formula to the function $s(z)=-\log (1-F(z))$ we obtain

$$
-\log \frac{1-F(u+x / k)}{1-F(u)}=s\left(u+\frac{x}{k}\right)-s(u)=h(u) \frac{x}{k}+h^{\prime}\left(u+\frac{\theta x}{k}\right) \frac{x^{2}}{k^{2}}
$$

where $0<\theta<1$. Therefore

$$
\begin{aligned}
1-F_{k}(x)= & \sum_{i=0}^{r-1} \frac{1}{i!} \int\left(x h(u)+h^{\prime}\left(u+\frac{\theta x}{k}\right) \frac{x^{2}}{k}\right)^{i} \\
& \times \exp (-x h(u)) \exp \left(-h^{\prime}\left(u+\frac{\theta x}{k}\right) \frac{x^{2}}{k}\right) d G_{k}(u)
\end{aligned}
$$

By (4.1) we have

$$
H_{k, r}(x) \exp \left(-\frac{M x^{2}}{k}\right) \leqslant 1-F_{k}(x) \leqslant H_{k, r}(x) \exp \left(\frac{M x^{2}}{k}\right),
$$

where

$$
H_{k, r}(x)=\sum_{i=0}^{r-1} \frac{1}{i!} \int_{S}\left(x h(u)+h^{\prime}\left(u+\frac{\theta x}{k}\right) \frac{x^{2}}{k}\right)^{i} \exp (-x h(u)) d G_{k}(u) .
$$

Let us fix $i \in\{0,1, \ldots, r-1\}$. Using the binomial formula we obtain

$$
\begin{aligned}
& \int_{S}\left(x h(u)+h^{\prime}\left(u+\frac{\theta x}{k}\right) \frac{x^{2}}{k}\right)^{i} \exp (-x h(u)) d G_{k}(u) \\
& \quad=\int_{S}(x h(u))^{i} \exp (-x h(u)) d G_{k}(u) \\
& \quad+\sum_{j=0}^{i-2}\binom{i-1}{j} \int_{S}(x h(u))^{j}\left(h^{\prime}\left(u+\frac{\theta x}{k}\right) \frac{x^{2}}{k}\right)^{i-1-j} \exp (-x h(u)) d G_{k}(u) \\
& \quad:=I_{1}+I_{2},
\end{aligned}
$$

say. Now, by (4.2) we have

$$
I_{1} \rightarrow(\lambda x)^{i} \exp (-\lambda x), \quad k \rightarrow \infty,
$$

and by (4.1) again

$$
\left|I_{2}\right| \leqslant \sum_{j=0}^{i-2}\binom{i-1}{j}\left(\frac{M x^{2}}{k}\right)^{i-1-j} \int_{S}(x h(u))^{j} \exp (-x h(u)) d G_{k}(u) \rightarrow 0, \quad k \rightarrow \infty,
$$

where λ is given by (4.3) below. This proves that for $x \geqslant 0$

$$
\lim _{k \rightarrow \infty} H_{k, r}(x)=\sum_{i=0}^{r-1} \frac{1}{i!}(\lambda x)^{i} \exp (-\lambda x)
$$

which is the tail of $\Gamma(r, \lambda)$ distribution function.
Using Lemma 1 one can see (cf. Example 1 in Section 6) that if $f(x)=\lambda \exp (-\lambda x), \quad x \geqslant 0$, then for all $n, r \in N$ the random variable $k\left(Y_{n+r}^{(k)}-Y_{n}^{(k)}\right)$ has the gamma $\Gamma(r, \lambda)$ distribution. The following theorem states that for a broad class of distributions F the asymptotic distribution of $k\left(Y_{n+r}^{(k)}-Y_{n}^{(k)}\right)$ is also $\Gamma(r, \lambda)$ with λ depending on F.

Theorem 2. Suppose that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of i.i.d. random variables with $d f F$ and $p d f f$, with the interval $S \subset \boldsymbol{R}$ as the support, and that $h(x)=f(x) / \bar{F}(x)$ is a differentiable function with bounded first derivative. Then for any fixed $n, r \in N$

$$
k\left(Y_{n+r}^{(k)}-Y_{n}^{(k)}\right) \xrightarrow{D} \Gamma(r, \lambda), \quad k \rightarrow \infty,
$$

where

$$
\begin{equation*}
\lambda=\lim _{x \rightarrow x_{0}^{+}} h(x) \tag{4.3}
\end{equation*}
$$

and $x_{0}=\inf S$.
Proof. By Lemma 1 the df of $k \Delta_{n, r}^{(k)}$ is

$$
F_{k \Delta_{n, r}^{(k)}}(x)=1-\sum_{i=0}^{r-1} \frac{k^{i}}{i!} \int_{S}\left(-\log \frac{1-F(u+x / k)}{1-F(u)}\right)^{i}\left(\frac{1-F(u+x / k)}{1-F(u)}\right)^{k} d G_{k}(u)
$$

where G_{k} is the distribution function of $Y_{n}^{(k)}$. Since $Y_{n}^{(k)} \xrightarrow{D} x_{0}=\inf S$ as $k \rightarrow \infty$, Theorem 1 implies the result.

Remark 1. For $r=1$ we obtain results of [4].
In the same way, but using Lemma 2 instead of Lemma 1, we can study limit behaviour of $k\left(Z_{n}^{(k)}-Z_{n+r}^{(k)}\right)$.

Theorem 3. Let F be an absolutely continuous distribution function with density f and the interval $S \subset \mathbb{R}$ as the support, such that $\bar{h}(x)=f(x) / F(x)$ is
a differentiable function with bounded first derivative

$$
\begin{equation*}
\left|\hbar^{\prime}(x)\right| \leqslant M, \quad x \in S . \tag{4.4}
\end{equation*}
$$

Let us fix $r \in N$ and assume that $\left\{F_{k}, k \geqslant 1\right\}$ is a sequence of distribution functions of the form

$$
F_{k}(x)=1-\sum_{i=0}^{r-1} \frac{k^{i}}{i!} \int_{S}\left(-\log \frac{F(u-x / k)}{F(u)}\right)^{i}\left(\frac{F(u-x / k)}{F(u)}\right)^{k} d G_{k}(u)
$$

for $x \geqslant 0$ and it equals 0 otherwise, where $\left\{G_{k}, k \geqslant 1\right\}$ is a sequence of distribution functions such that

$$
\begin{equation*}
G_{k} \rightarrow G, \quad k \rightarrow \infty, \tag{4.5}
\end{equation*}
$$

and G is a distribution concentrated at a point $x_{0} \in \partial S$. Then

$$
F_{k} \rightarrow F_{r, \bar{\lambda}}^{*}, \quad k \rightarrow \infty,
$$

where

$$
\bar{\lambda}= \begin{cases}\lim _{x \rightarrow x_{0}^{+}} \bar{h}(x) & \text { if } x_{0}=\inf S \\ \lim _{x \rightarrow x_{0}^{-}} \bar{h}(x) & \text { if } x_{0}=\sup S\end{cases}
$$

Proof. Applying Taylor's formula to the function $\bar{s}(z)=\log F(z)$ we obtain

$$
\log \frac{F(u-x / k)}{F(u)}=\bar{s}\left(u-\frac{x}{k}\right)-\bar{s}(u)=-\bar{h}(u) \frac{x}{k}+\overline{h^{\prime}}\left(u-\frac{\theta x}{k}\right) \frac{x^{2}}{k^{2}}
$$

where $0<\theta<1$. Therefore

$$
\begin{aligned}
1-F_{k}(x)= & \sum_{i=0}^{r-1} \frac{1}{i!} \int\left(x \bar{h}(u)+\bar{h}^{\prime}\left(u-\frac{\theta x}{k}\right) \frac{x^{2}}{k}\right)^{i} \\
& \times \exp (-x \bar{h}(u)) \exp \left(-\overline{h^{\prime}}\left(u+\frac{\theta x}{k}\right) \frac{x^{2}}{k}\right) d G_{k}(u) .
\end{aligned}
$$

By (4.4) we have

$$
\bar{H}_{k, r}(x) \exp \left(-\frac{M x^{2}}{k}\right) \leqslant 1-F_{k}(x) \leqslant \bar{H}_{k, r}(x) \exp \left(\frac{M x^{2}}{k}\right),
$$

where

$$
\bar{H}_{k, r}(x)=\sum_{i=0}^{r-1} \frac{1}{i!} \int\left(x \bar{h}(u)-h^{\prime}\left(u+\frac{\theta x}{k}\right) \frac{x^{2}}{k}\right)^{i} \exp (-x \bar{h}(u)) d G_{k}(u) .
$$

Let us fix $i \in\{0,1, \ldots, r-1\}$. Using the binomial formula we obtain

$$
\begin{aligned}
& \int_{S}\left(x \bar{h}(u)-\bar{h}^{\prime}\left(u+\frac{\theta x}{k}\right) \frac{x^{2}}{k}\right)^{i} \exp (-x \bar{h}(u)) d G_{k}(u) \\
& \quad=\int_{S}(x \bar{h}(u))^{i} \exp (-x \bar{h}(u)) d G_{k}(u) \\
& \quad+\sum_{j=0}^{i-2}\binom{i-1}{j} \int_{S}(x \bar{h}(u))^{j}\left(-\overline{h^{\prime}}\left(u+\frac{\theta x}{k}\right) \frac{x^{2}}{k}\right)^{i-1-j} \exp (-x \bar{h}(u)) d G_{k}(u) \\
& \quad:=I_{1}+I_{2}
\end{aligned}
$$

say. Now, by (4.5) we have

$$
I_{1} \rightarrow(\bar{\lambda} x)^{i} \exp (-\bar{\lambda} x), \quad k \rightarrow \infty,
$$

and by (4.4) again

$$
\left|I_{2}\right| \leqslant \sum_{j=0}^{i-2}\binom{i-1}{j}\left(\frac{M x^{2}}{k}\right)^{i-1-j} \int_{s}(x \bar{h}(u))^{j} \exp (-x \bar{h}(u)) d G_{k}(u) \rightarrow 0, \quad k \rightarrow \infty
$$

where $\bar{\lambda}$ is given by (4.3). This proves that for $x \geqslant 0$

$$
\lim _{k \rightarrow \infty} \bar{H}_{k, r}(x)=\sum_{i=0}^{r-1} \frac{1}{i!}(\bar{\lambda} x)^{i} \exp (-\bar{\lambda} x)
$$

which is the tail of $\Gamma(r, \bar{\lambda})$ distribution function.
Theorem 4. Suppose that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of i.i.d. random variables with df F and pdf f, with the interval $S \subset \mathbb{R}$ as the support, and that $\bar{h}(x)=f(x) / F(x)$ is a differentiable function with bounded first derivative. Then for any fixed $n, r \in N$

$$
k\left(Z_{n}^{(k)}-Z_{n+r}^{(k)}\right) \xrightarrow{D} \Gamma(r, \bar{\lambda}), \quad k \rightarrow \infty,
$$

where $\bar{\lambda}=\lim _{x \rightarrow x_{0}^{-}} \bar{h}(x)$ and $x_{0}=\sup S$.
Proof. By Lemma 2 the df of $k D_{n, r}^{(k)}$ is

$$
F_{D_{n, r}^{(k)}}(x)=1-\sum_{i=0}^{r-1} \frac{k^{i}}{i!} \int_{S}\left(-\log \frac{F(u-x / k)}{F(u)}\right)^{i}\left(\frac{F(u-x / k)}{F(u)}\right)^{k} d G_{k}(u),
$$

where G_{k} is the distribution function of $Z_{n}^{(k)}$. Since $Z_{n}^{(k)} \xrightarrow{\boldsymbol{D}} x_{0}=\sup S$ as $k \rightarrow \infty$, Theorem 3 implies the result. a

Remark 2. For $r=1$ we obtain results of [2].

5. LIMIT DISTRIBUTIONS OF QUOTIENTS OF k-TH RECORD VALUES

Theorem 5. Let F be an absolutely continuous distribution function with density f and the interval $S \subset \boldsymbol{R}$ as the support and suppose that $q(s)$ is a differentiable function such that

$$
\begin{equation*}
\left|x^{2} q^{\prime}(x)\right| \leqslant M, \quad x \in S \tag{5.1}
\end{equation*}
$$

Let $\left\{G_{n}, n \geqslant 1\right\}$ be a sequence of distribution functions such that

$$
G_{n} \rightarrow G, \quad n \rightarrow \infty
$$

and G is a distribution concentrated at a point $x_{0}=\sup S$. Let us fix $r \in N$ and assume that $\left\{F_{n}, n \geqslant 1\right\}$ is a sequence of distribution functions of the form
(5.2) $\quad F_{n}(x)$

$$
= \begin{cases}p_{n}^{\prime}-\sum_{j=0}^{r-1}\binom{n+r-1}{j} \int_{0}^{\infty} R_{n}^{n+r-1}(y, x)\left(R_{n}^{-1}(y, x)-1\right)^{j} d G_{n+r}(y) & \text { for } x \leqslant-n, \\ p_{n}^{\prime}+\sum_{j=0}^{r-1}\binom{n+r-1}{j} \int_{-\infty}^{0} R_{n}^{n+r-1}(y, x)\left(R_{n}^{-1}(y, x)-1\right)^{j} d G_{n+r}(y) & \text { for }-n<x \leqslant 0, \\ p_{n}^{\prime \prime}-\sum_{j=0}^{r-1}\binom{n+r-1}{j} \int_{0}^{\infty} R_{n}^{n+r-1}(y, x)\left(R_{n}^{-1}(y, x)-1\right)^{j} d G_{n+r}(y) & \text { for } x>0,\end{cases}
$$

where $p_{n}^{\prime}=G_{n}(0)-G_{n+r}(0), p_{n}^{\prime \prime}=1+G_{n}(0)-G_{n+r}(0)$, and

$$
R_{n}(y, x)=H \frac{(y /(1+x / n))}{H(y)}
$$

Let

$$
\begin{equation*}
\mu=\lim _{x \rightarrow x_{0}^{-}} x q(x) \tag{5.3}
\end{equation*}
$$

Then:
(1) if $x_{0}>0$, the sequence $\left\{F_{n}\right\}$ converges weakly to $F_{r, \mu}^{*}$ as $n \rightarrow \infty$, where $F_{r, \mu}^{*}$ is the df of $\Gamma(r, \mu)$ distribution;
(2) if $x_{0} \leqslant 0$, the sequence $\left\{F_{n}\right\}$ converges weakly to $F_{r,-\mu}^{*}$ as $n \rightarrow \infty$, where $F_{r, v}^{*}$ is the df of $\mathrm{N} \Gamma(r, v)$ distribution.

Proof. Let us consider the function $\underline{s}(x)=\log H(u)$. Applying Taylor's formula we obtain

$$
\log R_{n}(y, x)=\underline{s}\left(\frac{y}{1+x / n}\right)-\underline{s}(u)=-y q(y) \frac{x}{n+x}+\frac{1}{2} q^{\prime}\left(\frac{y}{1+\theta x / n}\right)\left(\frac{y x}{n+x}\right)^{2}
$$

where $0<\theta<1$. Therefore

$$
R_{n}(y, x)=\exp \left(-y q(y) \frac{x}{n+x}\right) \exp \left(\frac{1}{2} y^{2} q^{\prime}\left(\frac{y}{1+\theta x / n}\right)\left(\frac{x}{n+x}\right)^{2}\right)
$$

By (5.1) we have

$$
\left|y^{2} q^{\prime}\left(\frac{y}{1+\theta x / n}\right)\right| \leqslant M\left(1+\frac{x}{n}\right)^{2}
$$

which gives

$$
\exp \left(-y q(y) \frac{x}{n+x}\right) \exp \left(-\frac{M x^{2}}{2 n^{2}}\right) \leqslant R_{n}(y, x) \leqslant \exp \left(-y q(y) \frac{x}{n+x}\right) \exp \left(\frac{M x^{2}}{2 n^{2}}\right)
$$

Now fix $j \in\{0,1, \ldots, r-1\}$. Then

$$
\begin{aligned}
& \exp \left(-\frac{M x^{2}(n+r-1)}{n^{2}}\right) E \underline{f}_{n}\left(Z_{n}\right) I_{\left[Y_{n+r} \in A\right]} \\
& \leqslant\binom{ n+r-1}{j} \int_{A} R_{n}^{n+r-1}(y, x)\left(R_{n}^{-1}(y, x)-1\right)^{j} d G_{n+r}(y) \\
& \leqslant \exp \left(\frac{M x^{2}(n+r-1)}{n^{2}}\right) E \bar{f}_{n}\left(Z_{n}\right) I_{\left[Y_{n+r} \in A\right]}
\end{aligned}
$$

where $Z_{n}=Y_{n+r} q\left(Y_{n+r}\right)$, with Y_{n} having the df G_{n},

$$
\bar{f}_{n}(z)=\binom{n+r-1}{j} \exp \left(-\frac{z x(n+r-1)}{n+x}\right)\left(\exp \left(\frac{z x}{n+x}+\frac{M x^{2}}{2 n^{2}}\right)-1\right)^{j}
$$

and

$$
\underline{f}_{n}(z)=\binom{n+r-1}{j} \exp \left(-\frac{z x(n+r-1)}{n+x}\right)\left(\exp \left(\frac{z x}{n+x}-\frac{M x^{2}}{2 n^{2}}\right)-1\right)^{j}
$$

By (4.2) and (5.3) we have $Z_{n} \xrightarrow{D} \mu$ as $n \rightarrow \infty$. Moreover,

$$
\bar{f}_{n}(z) \rightarrow e^{-z x} \frac{(z x)^{j}}{j!}, \quad n \rightarrow \infty
$$

and

$$
\underline{f}_{n}(z) \rightarrow e^{-z x} \frac{(z x)^{j}}{j!}, \quad n \rightarrow \infty
$$

Consider two possible cases:
(1) $x_{0}=\sup S>0$. Then $p_{n}^{\prime} \rightarrow 0$ as $n \rightarrow \infty, \mu>0$ and, for n sufficiently large, $Y_{n}>0$. Therefore $F_{n}(x)=0$ for $x<0$, and for $x>0$

$$
F_{n}(x) \rightarrow 1-\sum_{j=0}^{r-1} e^{-\mu x} \frac{(\mu x)^{j}}{j!}, \quad n \rightarrow \infty
$$

which is the df of $\Gamma(r, \mu)$.
(2) $x_{0}=\sup S \leqslant 0$. Then $p_{n}=0, \mu<0$ and $F_{n}(x)=1$ for $x>0$. Therefore for $-n \leqslant x \leqslant 0$

$$
F_{n}(x) \rightarrow \sum_{j=0}^{r-1} e^{-\mu|x|} \frac{(-\mu|x|)^{j}}{j!}, \quad n \rightarrow \infty
$$

which is the df of $\mathrm{N} \Gamma(r,-\mu)$.
Theorem 6. Suppose that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of i.i.d. random variables with $d f F$ and pdf f, with the-interval $S \subset \mathbb{R}$ as the support, and that $q(x)$ is a differentiable function satisfying (5.1). Then for any fixed $k, r \in N$

$$
n\left(\frac{Y_{n+r}^{(k)}}{Y_{n}^{(k)}}-1\right) \stackrel{D}{\rightarrow} \begin{cases}\Gamma(r, \mu) & \text { if } \sup S>0 \\ \mathrm{~N} \Gamma(r,-\mu) & \text { if } \sup S \leqslant 0\end{cases}
$$

as $n \rightarrow \infty$, where μ is given by (5.3).
Proof. By Lemma 4 the distribution function of $n\left(Y_{n+r}^{(k)} / Y_{n}^{(k)}-1\right)$ is of the form (5.2) with G_{n} being the df of $Y_{n}^{(k)}$. Since $Y_{n}^{(k)} \xrightarrow{D} x_{0}=\sup S$ as $n \rightarrow \infty$, the result follows from Theorem 5 .

In the same way we can study limit behaviour of quotients of k-th lower records.

Theorem 7. Let F be an absolutely continuous distribution function with density f and the interval $S \subset \mathbb{R}$ as the support and assume that $\bar{q}(x)$ is a differentiable function such that

$$
\begin{equation*}
\left|x^{2} \bar{q}^{\prime}(x)\right| \leqslant M, \quad x \in S \tag{5.4}
\end{equation*}
$$

Let $\left\{G_{n}, n \geqslant 1\right\}$ be a sequence of distribution functions such that

$$
G_{n} \rightarrow G, \quad n \rightarrow \infty,
$$

and G is a distribution concentrated at a point $x_{0}=\inf S$. Let us fix $r \in N$ and assume that $\left\{F_{n}, n \geqslant 1\right\}$ is a sequence of distribution functions of the form

$$
\begin{aligned}
& F_{n}(x) \\
& =\left\{\begin{array}{c}
\sum_{j=0}^{r-1}\binom{n+r-1}{j} \int_{-\infty}^{0} \bar{R}_{n}^{n+r-1}(y, x)\left(\bar{R}_{n}^{-1}(y, x)-1\right)^{j} d F_{Z_{n}^{(k)+r}}(y) \quad \text { for } x<0, \\
1-\sum_{j=0}^{r-1}\binom{n+r-1}{j} \int_{0}^{\infty} \bar{R}_{n}^{n+r-1}(y, x)\left(\bar{R}_{n}^{-1}(y, x)-1\right)^{j} d F_{Z_{n+r}^{(k)}}(y) \quad \text { for } x \geqslant 0,
\end{array}\right.
\end{aligned}
$$

where

$$
\bar{R}_{n}(y, x)=\frac{\bar{H}(y(1+x / n))}{\bar{H}(y)}
$$

Let

$$
\begin{equation*}
\bar{\mu}=\lim _{x \rightarrow x_{0}^{-}} x \bar{q}(x) . \tag{5.5}
\end{equation*}
$$

Then:
(1) if $x_{0}>0$, the sequence $\left\{F_{n}\right\}$ converges weakly to $F_{r, \bar{\mu}}^{*}$ as $n \rightarrow \infty$;
(2) if $x_{0} \leqslant 0$, the sequence $\left\{F_{n}\right\}$ converges weakly to $F_{r,-\bar{\mu}}^{*}$ as $n \rightarrow \infty$.

Theorem 8. Suppose that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of i.i.d. random variables with df F and pdff, with the interval $S \subset \mathbb{R}$ as the support, and that $\bar{q}(x)$ is a differentiable function satisfying (5.4). Then for any fixed $k, r \in N$

$$
n\left(\frac{Z_{n}^{(k)}}{Z_{n+r}^{(k)}}-1\right) \stackrel{D}{\rightarrow} \begin{cases}\Gamma(r, \bar{\mu}) & \text { if } \inf S>0 \\ \mathrm{~N} \Gamma(r,-\bar{\mu}) & \text { if } \inf S \leqslant 0\end{cases}
$$

as $n \rightarrow \infty$, where $\bar{\mu}$ is given by (5.5).
Remark 3. For $r=1$ we obtain results of [2].

6. EXAMPLES

In this section we give examples of asymptotic behaviour of differences and quotients of k-th record values from particular distributions.

Example 1. Consider exponential $\operatorname{Exp}(\lambda)$ and negative exponential $\mathrm{NExp}(\lambda)$ distribution functions given by

$$
F(x)= \begin{cases}1-e^{-\lambda x} & \text { for } x \geqslant 0 \\ 0 & \text { for } x<0\end{cases}
$$

and

$$
G(x)= \begin{cases}e^{\lambda x} & \text { for } x \leqslant 0 \\ 1 & \text { for } x>0\end{cases}
$$

respectively. Then using (2.5) we see that the density function of $\Delta_{n, r}^{(k)}$ from F is

$$
f_{\Delta_{n, r}^{(k)}}(x)=\frac{\lambda^{r}}{(r-1)!}(k x)^{r-1} e^{-k \lambda x}, \quad x \geqslant 0
$$

This implies that $k \Delta_{n, r}^{(k)}$ from the df F has the gamma $\Gamma(r, \lambda)$ distribution for all $k \in N$. Similarly, using (2.7) we see that $k D_{n, r}^{(k)}$ from the df G has also the gamma $\Gamma(r, \lambda)$ distribution for all $k \in N$.

Further on, using Theorems 2 and 4 we see that $k \Delta_{n, r}^{(k)}$ from G as well as $k D_{n, r}^{(k)}$ from F both converge, as $k \rightarrow \infty$, to improper distribution concentrated at ∞.

Example 2. Let f_{1} and f_{2} be probability density functions. Write

$$
f(x)=p f_{1}(x)+q f_{2}(x)
$$

where $p=1-q \in(0,1)$ with

$$
\begin{aligned}
f_{1}(x) & =a e^{a x} I_{(-\infty, 0)}(x), \\
f_{2}(x) & =\frac{p a}{q} \exp \left(-\frac{p a}{q} x\right) I_{[0, \infty)}(x), \quad a>0 .
\end{aligned}
$$

Note that $f(x)=\left(f_{1} * f_{2}\right)(x)$, i.e. f_{1} and f_{2} satisfy the Dugué condition (cf. [6]). Now

$$
q(x)=\frac{p a}{p a x-q \log q} \text { for } x>0 \quad \text { and } \quad \lim _{x \rightarrow \infty} x q(x)=1
$$

and by Theorem 6 we have

$$
n\left(Y_{n+r}^{(k)} / Y_{n}^{(k)}-1\right) \xrightarrow{D} \Gamma(r, 1), \quad n \rightarrow \infty .
$$

Moreover,

$$
\bar{q}(x)=\frac{a}{a x-\log p} \text { for } x<0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} x \bar{q}(x)=1
$$

which by Theorem 8 gives

$$
n\left(Z_{n}^{(k)} / Z_{n+r}^{(k)}-1\right) \xrightarrow{D} \Gamma(r, 1), \quad n \rightarrow \infty
$$

On the other hand,

$$
\lim _{x \rightarrow-\infty} h(x)=\lim _{x \rightarrow \infty} \bar{\infty}(x)=0,
$$

and by Theorems 2 and 4 the limit distributions of differences $k \Delta_{n, r}^{(k)}$ and $k D_{n, r}^{(k)}$ are improper distributions concentrated at ∞.

Example 3: Define the following distribution functions:

$$
\left.\begin{array}{l}
F_{1}(x)=\left\{\begin{array}{ll}
1-e^{-\lambda x} & \text { for } x \geqslant 0, \\
0 & \text { for } x<0,
\end{array} \quad \lambda>0\right.
\end{array}\right\} \begin{array}{ll}
1-e^{\mu / x} & \text { for } x<0, \\
1 & \text { for } x \geqslant 0,
\end{array} \quad \mu>0 . ~ \$ ~ . ~(x)=\left\{\begin{array}{l}
1
\end{array}\right.
$$

Then $H_{1}(x)=\lambda x$ for $x>0$, and by Lemma 4 we see that the distribution function of quotients of k-th upper record values from F_{1} is $F_{U_{n, r}^{(k)}}(z)=0$ for
$z \leqslant 1$ and

$$
F_{U_{n, r}^{(k)}}(z)=1-\sum_{j=0}^{r-1}\binom{n+r-1}{j} z^{-(n+r-1)}(z-1)^{j} \quad \text { for } z>1
$$

Therefore for $x \geqslant 0$

$$
F_{n\left(U_{n, r}^{(k)}-1\right)}(x)=1-\left(1+\frac{x}{n}\right)^{-(n+r-1)} \sum_{j=0}^{r-1} \frac{x^{j}}{j!} \frac{(n+r-1)!}{n^{j}(n-j-1)!} \rightarrow 1-e^{-x} \sum_{j=0}^{r-1} \frac{x^{j}}{j!}, \quad n \rightarrow \infty,
$$ or $n\left(U_{n, r}^{(k)}-1\right) \xrightarrow{D} \Gamma(r, 1), n \rightarrow \infty$.

For quíotients of k-th records from F_{2} we have $H_{2}(x)=-\lambda / x$ for $x<0$ and by Lemma 4 we see that $F_{n\left(U_{n, r}^{(k)}-1\right)}(x)=1$ for $x \geqslant 0$ while for $-n \leqslant x<0$

$$
F_{n\left(U_{n, r}^{(k)}-1\right)}(x)=\left(1+\frac{x}{n}\right)^{n+r-1} \sum_{j=0}^{r-1} \frac{(n+r-1)!}{j!n^{j}(n-j-1)!}\left(\frac{n|x|}{n+x}\right)^{j} \rightarrow e^{x} \sum_{j=0}^{r-1} \frac{|x|^{j}}{j!}, \quad n \rightarrow \infty,
$$

or $n\left(U_{n, r}^{(k)}-1\right) \xrightarrow{\boldsymbol{D}} \mathrm{N} \Gamma(r, 1), n \rightarrow \infty$.
Example 4. Consider the Pareto distribution function given by

$$
F(x)= \begin{cases}1-1 / x^{\alpha} & \text { for } x \geqslant 1 \\ 0 & \text { for } x<1\end{cases}
$$

Then

$$
\frac{\bar{F}(u+x)}{\bar{F}(u)}=\left(\frac{u}{u+x}\right)^{\alpha}
$$

and

$$
\left(\frac{\bar{F}(u+x / k)}{\bar{F}(u)}\right)^{k}=\left(1+\frac{x}{k u}\right)^{-\alpha k} \rightarrow e^{-(\alpha x) / u}, \quad k \rightarrow \infty
$$

Therefore, since $Y_{n}^{(k)} \xrightarrow{D} 1, k \rightarrow \infty$, we have

$$
\begin{aligned}
F_{k \Delta_{n, r}^{(k)}}(x) & =1-\sum_{i=0}^{r-1} \frac{1}{i!} \int_{S}\left(-\log \left(\frac{\bar{F}(u+x / k)}{\bar{F}(u)}\right)^{k}\right)^{i}\left(\frac{\bar{F}(u+x / k)}{\bar{F}(u)}\right)^{k} d F_{Y_{n}^{(k)}}(u) \\
& \rightarrow 1-\sum_{i=0}^{r-1} \frac{(\alpha x)^{i}}{i!} e^{-\alpha x}, \quad k \rightarrow \infty
\end{aligned}
$$

or equivalently $k\left(Y_{n+r}^{(k)}-Y_{n}^{(k)}\right) \xrightarrow{D} \Gamma(r, \alpha), k \rightarrow \infty$.
Similarly it can be shown that for k-th lower records from the negative Pareto distribution NPareto (α) with pdf $f(x)=\alpha|x|^{-\alpha-1} I_{(-\infty,-1)}(x)$, where $\alpha>0$, we have

$$
k\left(Z_{n}^{(k)}-Z_{n+r}^{(k)}\right) \xrightarrow{D} \Gamma(r, \alpha) \quad \text { as } k \rightarrow \infty .
$$

Moreover, consider inverse Pareto distribution InvPareto (α, σ) and negative inverse Pareto distribution NInvPareto (α, σ) given by distribution
functions

$$
\begin{array}{ll}
F_{1}(x)=(x / \sigma)^{\alpha}, & x \in(0, \sigma) \\
F_{2}(x)=1-(-x / \sigma)^{\alpha}, & x \in(-\sigma, 0)
\end{array}
$$

respectively. Let $\alpha=1$. Then using Theorems 2 and 4 it can be shown that $k \Delta_{n, r}^{(k)}$ from F_{1} as well as $k D_{n, r}^{(k)}$ from F_{2} both converge, as $k \rightarrow \infty$, to $\Gamma(r, 1 / \sigma)$ distribution.

Example 5. We know that the limit distribution of differences $k D_{n, 1}^{(k)}$ of k-th lower records from Gumbel distribution is not a proper distribution (cf. [2]); it may be considered as the distribution concentrated at ∞. This fact can also be shown for $k D_{n, r}^{(k)}$. In a similar way the sequence of differences $k \Delta_{n, r}^{(k)}$ of k-th upper records from the negative Gumbel distribution

$$
F(x)=1-\exp \left(-e^{x}\right), \quad x \in \boldsymbol{R}
$$

converge to the distribution concentrated at ∞.
The limit properties of $k \Delta_{n, r}^{(k)}, k D_{n, r}^{(k)}, n\left(U_{n, r}^{(k)}-1\right)$ and $n\left(T_{n, r}^{(k)}-1\right)$ for the distributions of the above examples are shown in the Table.

Table

F	$k \Delta_{n, r}^{(k)}$	$k D_{n, r}^{(k)}$	$n\left(U_{n, r}^{(k)}-1\right)$	$n\left(T_{n, r}^{(k)}-1\right)$
	$k \rightarrow \infty$		$n \rightarrow \infty$	
$\operatorname{Exp}(\lambda)$	$\sim \Gamma(r, \lambda)$	$\xrightarrow{D} \infty$	$\xrightarrow{\text { D }} \Gamma(r, 1)$	$\xrightarrow{\text { D }}$,
$\mathrm{NExp}(\lambda)$	$\xrightarrow{\text { D }}$ +	$\sim \Gamma(r, \lambda)$	$\xrightarrow{\boldsymbol{D}}$ +	$\xrightarrow{\text { D }} \mathrm{N} \Gamma(r, 1)$
$\operatorname{Exp}(p a / q) * \operatorname{NegExp}(a)$	$\xrightarrow{\text { D }}$ -	$\xrightarrow{\text { D }}$ +	$\xrightarrow{\boldsymbol{D}} \Gamma(r, 1)$	$\xrightarrow{\text { D }} \mathrm{N} \Gamma(r, 1)$
InvExp	$\xrightarrow{\text { D }}$ (∞	$\xrightarrow{\text { D }}$ -	$\xrightarrow{\text { D }}$ +	$\xrightarrow{\text { D }} \Gamma(r, 1)$
NInvExp	$\xrightarrow{\text { D }}$ -	$\xrightarrow{\text { D }}$ -	$\xrightarrow{\text { D }} \mathrm{N} \Gamma(r, 1)$	$\xrightarrow{\boldsymbol{D}}$ (
Pareto (α)	$\xrightarrow{\text { D }} \Gamma(r, \alpha)$	$\xrightarrow{D} 0$	$\xrightarrow{\text { D }}$ -	$\xrightarrow{\text { D }} 0$
NPareto (α)	$\xrightarrow{\text { D }} 0$	$\xrightarrow{D} \Gamma(r, \alpha)$	$\xrightarrow{D} 0$	$\xrightarrow{\text { D }}$ -
InvPareto (1, σ)	$\xrightarrow{D} \Gamma(r, 1 / \sigma)$	$\xrightarrow{\text { D }}$ (\times ($\xrightarrow{\boldsymbol{D}} 0$	$\xrightarrow{\text { D }}$ -
NInvPareto ($1, \sigma$)	$\xrightarrow{\text { D }}$ ($\xrightarrow{\boldsymbol{D}} \Gamma \Gamma(r, 1 / \sigma)$	$\xrightarrow{\text { D }}$ -	$\xrightarrow{\text { D }} 0$
NGumbel	$\xrightarrow{\text { D }}$ +	$\xrightarrow{\text { D }}$ (${ }_{\text {d }}$	$\xrightarrow{\boldsymbol{D}} 0$	$\xrightarrow{\text { D }} \mathrm{N} \Gamma(r, 1)$
Gumbel	$\xrightarrow{\text { D }}$ -	$\xrightarrow{\text { D }}$ -	$\xrightarrow{\text { D }} \Gamma(r, 1)$	$\xrightarrow{\text { D }} 0$

7. DISCUSSION

In Sections 4 and 5 we studied limit distributions of k-th record values following the approach of Gajek [4] and its extension from [2]. It leads to theorems yielding gamma distributions as limit distributions for large classes
of sequences of distribution functions. In particular, from Theorems 1, 3, 5 and 7 we are able to derive easily limit distributions of differences and quotients of non-adjacent k-th record values. In this section we note that Theorems 2, 4, 6 and 8 (being consequences of Theorems 1,3,5 and 7) can be also obtained by arguments based on some distribution properties of record values.

Let $\left\{Y_{n}^{(k)}, n \geqslant 1\right\}$ be the sequence of k-th record values of the sequence $\left\{X_{n}, n \geqslant 1\right\}$ of i.i.d. random variables with the df F and the pdf f. Moreover, let $\left\{\bar{Y}_{n}^{(k)}, n \geqslant 1\right\}$ be the sequence of k-th record values of the sequence $\left\{\bar{X}_{n}, n \geqslant 1\right\}$ of i.i.d. random variables with the $\mathrm{df} G$ and the pdf g. Define the function

$$
H_{G}(x)=F^{-1}(G(x)), \quad x \in \boldsymbol{R},
$$

where F^{-1} is the pseudo-inverse of F. We use the fact that the sequences $\left\{Y_{n}^{(k)}\right.$, $n \geqslant 1\}$ and $\left\{H_{G}\left(\bar{Y}_{n}^{(k)}\right), n \geqslant 1\right\}$ have the same finite-dimensional distributions. In particular, for $n \geqslant 1, k \geqslant 1$

$$
Y_{n}^{(k)} \stackrel{d}{=} H_{G}\left(\bar{Y}_{n}^{(k)}\right),
$$

where $\stackrel{d}{=}$ denotes equality in distribution. Therefore

$$
\begin{equation*}
Y_{n+r}^{(k)}-Y_{n}^{(k)} \stackrel{d}{=} H_{G}\left(\bar{Y}_{n+r}^{(k)}\right)-H_{G}\left(\bar{Y}_{n}^{(k)}\right)=H_{G}^{\prime}\left(\theta_{n, r}^{(k)}\right)\left(\bar{Y}_{n+r}^{(k)}-\bar{Y}_{n}^{(k)}\right), \tag{7.1}
\end{equation*}
$$

by the mean value theorem, where

$$
\begin{equation*}
\bar{Y}_{n}^{(k)} \leqslant \theta_{n, r}^{(k)} \leqslant \bar{Y}_{n+r}^{(k)} . \tag{7.2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
H_{G}^{\prime}(x)=\left(F^{-1}\right)^{\prime}(G(x)) g(x)=\frac{g(x)}{f\left(H_{G}(x)\right)} \tag{7.3}
\end{equation*}
$$

Now the statement of Theorem 2 is a consequence of the following arguments. Let $G(x)=1-e^{-x}, x \geqslant 0$. By (7.1) we have

$$
k\left(Y_{n+r}^{(k)}-Y_{n}^{(k)}\right) \stackrel{d}{=} H_{G}^{\prime}\left(\theta_{n, r}^{(k)}\right) k\left(\bar{Y}_{n+r}^{(k)}-\bar{Y}_{n}^{(k)}\right) .
$$

But $k\left(\bar{Y}_{n+r}^{(k)}-\bar{Y}_{n}^{(k)}\right)$ has the gamma $\Gamma(r, 1)$ distribution and by (7.2) we obtain $\theta_{n, r}^{(k)} \xrightarrow{P} 0$ as $k \rightarrow \infty$, and then

$$
H_{G}^{\prime}\left(\theta_{n, r}^{(k)}\right) \xrightarrow{P} \lambda^{-1}, \quad k \rightarrow \infty
$$

where

$$
\lambda=\lim _{x \rightarrow F^{-1}(0)} f(x),
$$

which is the same as λ given in (4.3). Therefore

$$
k\left(Y_{n+r}^{(k)}-Y_{n}^{(k)}\right) \xrightarrow{D} \Gamma(r, \lambda), \quad k \rightarrow \infty .
$$

Remark 4. Theorem 4 can be proved in the same way, but with $G(x)=e^{x}, x \leqslant 0$, which is a negative exponential distribution function.

Similarly, Theorem 6 can be established as follows. Assume that $G(x)=1-\exp \left(-e^{x}\right), x \in \mathbb{R}$, is a negative Gumbel distribution function. By (7.1) we have

$$
n\left(\frac{Y_{n+r}^{(k)}}{Y_{n}^{(k)}}-1\right)=\frac{n\left(Y_{n+r}^{(k)}-Y_{n}^{(k)}\right)}{Y_{n}^{(k)}}=\frac{H_{G}^{\prime}\left(\theta_{n, r}^{(k)}\right)}{H_{G}\left(Y_{n}^{(k)}\right)} n\left(\bar{Y}_{n+r}^{(k)}-\bar{Y}_{n}^{(k)}\right) .
$$

From Lemma 1 we see that $n\left(\bar{Y}_{n+r}^{(k)}-\bar{Y}_{n}^{(k)}\right)$ has the gamma $\Gamma(r, 1)$ distribution and by (7.2) we obtain $\theta_{n, r}^{(k)} \xrightarrow{P} 0$ as $n \rightarrow \infty$, which implies

$$
\frac{H_{G}^{\prime}\left(\theta_{n, r}^{(k)}\right)}{H_{G}\left(Y_{n}^{(k)}\right)} \stackrel{P}{\rightarrow} \frac{1}{\mu}, \quad n \rightarrow \infty,
$$

where

$$
\mu=\lim _{x \rightarrow \infty} \frac{H_{G}(x)}{H_{G}^{\prime}(x)}=-\lim _{x \rightarrow F^{-1}(1)} \frac{x f(x)}{\bar{F}(x) \log \bar{F}(x)},
$$

which is the same as μ given in (5.3). Note that $\mu \geqslant 0$ if $F^{-1}(1)>0$ and $\mu \leqslant 0$ if $F^{-1}(1) \leqslant 0$. Therefore

$$
n\left(\frac{Y_{n+r}^{(k)}}{Y_{n}^{(k)}}-1\right) \xrightarrow{D} \begin{cases}\Gamma(r, \mu) & \text { if } F^{-1}(1)>0, \\ \mathrm{~N} \Gamma(r,-\mu) & \text { if } F^{-1}(1) \leqslant 0,\end{cases}
$$

Remark 5. Theorem 8 can be proved in the same way, but with $G(x)=\exp \left(-e^{-x}\right), x \in \boldsymbol{R}$, which is a Gumbel distribution function.

REFERENCES

[1] B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, Records, Wiley, New York 1998.
[2] M. Bieniek and D. Szynal, Limiting distributions of differences and quotients of successive k-th upper and lower record values, Probab. Math. Statist. 20 (2000), pp. 189-202.
[3] W. Dziubdziela and B. Kopociński, Limiting properties of the k-th record values, Zastos. Mat. 15 (1976), pp. 187-190.
[4] L. Gajek, Limiting properties of difference between the successive k-th record values, Probab. Math. Statist. 5 (1985), pp. 221-224.
[5] Z. Grudzień, Charakteryzacja rozkladów w terminach statystyk rekordowych oraz rozklady i momenty statystyk porządkowych i rekordowych z prób o losowej liczebności, Ph.D. Thesis, Maria Curie-Skłodowska University, Lublin 1982.
[6] L. Kubik, Sur un problème de M. D. Dugué, Comment. Math. Prace Mat. 13 (1969), pp. 1-2.

Institute of Mathematics
Maria Curie-Skłodowska University pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
E-mail: mbieniek@golem.umcs.lublin.pl

[^0]: * Institute of Mathematics, Maria Curie-Skłodowska University, Lublin.

