CHARACTERIZATIONS OF POLYNOMIAL-GAUSSIAN PROCESSES THAT ARE MARKOVIAN

BY
AGNIESZKA PLUCIŇSKA* (Warszawa)

Abstract

We consider questions of characterizing a stochastic process $\mathscr{X}=\left(X_{\mathrm{t}}, t \geqslant 0\right)$ by the properties of the first two conditional moments. Our first result is a new version of the classical P. Lévy characterization theorem for martingales. Next we deal with a characterization of processes without continuous trajectories. We consider a special form of the initial state. Namely, we suppose that the r.v. X_{0} has a polynomial-normal distribution ($P N D$), i.e. the density of X_{0} is the product of a positive polynomial and a normal density.

1. INTRODUCTION

We consider questions of characterizing a stochastic process $\mathscr{X}=\left(X_{t}, t \geqslant 0\right)$ by the properties of the first two conditional moments.

Let $X_{d+1}=\left(X_{0}, X_{t_{1}}, \ldots, X_{t_{d}}\right)$ denote a $(d+1)$-dimensional random vector for $0<t_{1}<\ldots<t_{d}$. We shall consider a special form of the initial state. Namely, we suppose that the r.v. X_{0} has a polynomial-normal distribution (PND), i.e. the density of X_{0} is the product of a positive polynomial and a normal density. Such a density is called by Evans and Swartz [4] a polynomial-normal density. For simplicity we use the symbol PND not only for densities but also for the class of r.v.'s with PND densities. We, investigate the class PND using Hermite polynomials. It is known that every polynomial can be represented as a linear combination of Hermite polynomials.

Thus we will consider the r.v. X with density of the following form:

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi} \delta} p_{2 l}\left(x, \delta^{2}\right) \exp \left(-\frac{x^{2}}{2 \delta^{2}}\right) \tag{1.1}
\end{equation*}
$$

where

$$
p_{2 l}\left(x, \delta^{2}\right)=\sum_{r=0}^{2 l} c_{r} \delta^{-r} H_{r}(x / \delta)
$$

[^0]is a positive polynomial in x of degree $2 l(l \geqslant 0), c_{r}$ are parameters, H_{r} is the Hermite polynomial of degree r, and $\delta>0$.

The distribution given by (1.1) will be denoted by

$$
P N D\left(2 l, \delta^{2}, C_{2 l}\right), \quad \text { where } C_{2 l}=\left(c_{0}, \ldots, c_{2 l}\right) .
$$

Let $\tilde{X}=\left(\tilde{X}_{t}, t \geqslant 0\right)$ be a zero mean Gaussian Markov process with non-degenerate distributions. It is known (see for example Timoszyk [9] and Adler et al. [1]) that its covariance function is the product $k(s, t)$ $=E\left(\tilde{X}_{s} \tilde{X}_{t}\right)=\varphi(s) \psi(t)$ for $s \leqslant t$. We suppose that $\psi(t) \neq 0$.

We construct a stochastic process $\mathscr{X}=\left(X_{t}, t \geqslant 0\right)$ in such a way that various properties of Gaussian Markov processes are preserved but the one--dimensional distributions of \mathscr{X} are $P N D$.

Namely, we define a polynomial-Gaussian Markov process (PGMP) in the following way:

$$
\begin{equation*}
\mathscr{X}=\left(X_{t}, t \geqslant 0\right)=\left(\tilde{X}_{t}+\frac{\psi(t)}{\psi(0)}\left(X_{0}-\tilde{X}_{0}\right), t \geqslant 0\right), \tag{1.2}
\end{equation*}
$$

where $X_{0} \sim \operatorname{PND}\left(2 l, k(0,0), C_{2 l}\right)$ and X_{0}, \tilde{X} are independent.
Define

$$
g(t)=\varphi(t) / \psi(t)
$$

It is evident that g is an increasing function.
The density of the one-dimensional distribution of \mathscr{X} has the following form (see Plucińska and Bisińska [7]):

$$
\begin{equation*}
f(x)=P_{2 l}(x, k(t, t)) \tilde{f}(x)=P_{2 l}(x, k(t, t)) \frac{1}{\sqrt{2 \pi k(t, t)}} \exp \left\{-\frac{x^{2}}{2 k(t, t)}\right\} \tag{1.3}
\end{equation*}
$$ where

$$
\begin{equation*}
P_{2 l}(x, k(t, t))=\sum_{r=0}^{2 l} c_{r}\left[\frac{\psi(t)}{\psi^{2}(0) \varphi(t)}\right]^{r / 2} H_{r}\left(\frac{x}{\sqrt{k(t, t)}}\right) . \tag{1.4}
\end{equation*}
$$

The aim of this paper is to give some characterizations of $P G M P$ based on properties of conditional moments. For simplicity we use the symbol PGMP not only for processes but also for the class of suitable distributions (analogically to $P N D$).

Our first result is a new version of the classical P. Lévy characterization theorem for martingales.

Next we consider a characterization of processes without continuous trajectories.

We use conditioning with respect to the past σ-field $\mathscr{F}_{s}=\sigma\left(X_{w}: w \leqslant s\right)$ of the stochastic process \mathscr{X}. We shall also use σ-fields that allow some insight into the future, namely, we put

$$
\mathscr{F}_{s, u}=\sigma\left(X_{w}: w \leqslant s \text { or } w=u\right), \quad s<u .
$$

We are going to prove the following propositions.
Proposition 1.1. Let $\mathscr{X}=\left(X_{t}, t \geqslant 0\right)$ be a square-integrable stochastic process with continuous trajectories and $E X_{0}^{n}<\infty$ for $n=1,2, \ldots$ Suppose there exist a positive definite function $k(s, t)=\varphi(s) \psi(t), s \leqslant t$, and a positive polynomial $P_{2 l}$ of the form (1.4) such that for all $s \leqslant t$

$$
\begin{equation*}
E\left(X_{t} \mid \mathscr{F}_{s}\right)=\frac{\psi(t)}{\psi(s)} X_{s} \tag{1.5}
\end{equation*}
$$

and for some $t>0$

$$
\begin{equation*}
E\left(X_{0} \mid X_{t}=y\right)=\frac{\varphi(0)}{\varphi(t)} y+[\varphi(t) \psi(0)-\varphi(0) \psi(t)] \frac{(\partial / \partial y) P_{2 l}(y, k(t, t))}{P_{2 l}(y, k(t, t))} \tag{1.7}
\end{equation*}
$$

Then \mathscr{X} is a PGMP and its densities are given by (2.2).
The next proposition concerns characterizations of processes without continuous trajectories.

Proposition 1.2. Let $\mathscr{X}=\left(X_{t}, 0 \leqslant t \leqslant T\right)$ be a square-integrable stochastic process such that (2.3), (2.4), (2.6), (2.7) hold, there exists a polynomial $P_{2 l}$ of the form (1.4) such that for some $t>0$ formula (1.7) is satisfied, and $E X_{0}^{n}<\infty$ for $n=1,2, \ldots$ Then \mathscr{X} is a PGMP and its densities are given by (2.2).

For convenience of the reader we state here the classical P. Lévy characterization theorem.

Theorem 1.3. If a stochastic process $\mathscr{X}=\left(X_{t}, t \in[0,1]\right)$ has continuous trajectories, is square-integrable and

$$
E\left(X_{t} \mid \mathscr{F}_{s}\right)=X_{s}, \quad \operatorname{Var}\left(X_{t} \mid \mathscr{F}_{s}\right)=t-s, \quad X_{0}=0
$$

then \mathscr{X} is the Wiener process.
If we put $\psi(t)=1, \varphi(t)=t, P_{2 l}=$ const in Proposition 1.1, we get Theorem 1.3. The condition $X_{0}=0$ in Theorem 1.3 is essential. In some papers (e.g. Bryc [2], Theorem 8.2.1) this condition is omitted; that is a mistake.

In our considerations condition (1.7) is essential. It concerns some conditioning of the initial state with respect to the future. It is similar to the conditioning of the parameters with respect to the future.

Characterizations of distributions by their posterior conditional expectations are considered by various authors. For example, mixtures of normal or gamma densities $f(x \mid Q)$ with respect to the parameter Q are considered by Cacoullos and Papageorgiou [3]. In the present paper instead of the parameter Q we have the initial state X_{0}.

2. PROPERTIES OF PGMP

We shall use Propositions 2.1-2.4 given in Plucińska and Bisińska [7].
Proposition 2.1. If $X \sim \operatorname{PND}\left(2 l, \delta^{2}, C_{21}\right)$, then the moments are given by the formulas

$$
E H_{n}\left(\frac{X}{\delta}\right)= \begin{cases}c_{r} \delta^{-n} n! & \text { for } n=1, \ldots, 2 l \tag{2.1}\\ 0 & \text { for } n>2 l\end{cases}
$$

Proposition 2.2. The sum of two independent r.v.'s with polynomial-normal distribution has a polynomial-normal distribution.

Proposition 2.3. Let \mathscr{X} be a PGMP. Then for every $d \geqslant 1,0 \leqslant t_{1}<\ldots<t_{d}$, the density function of the vector $X_{d}=\left(X_{t_{1}}, \ldots, X_{t_{d}}\right)$ has the following form:

$$
\begin{align*}
f_{d}\left(\boldsymbol{x}_{d}\right) & =\frac{\sqrt{\operatorname{det} \mathscr{A}}}{(2 \pi)^{d / 2}} P_{2 l}\left(x_{1}, k\left(t_{1}, t_{1}\right)\right) \exp \left\{-\frac{1}{2}\left(\mathscr{A} x_{d}, x_{d}\right)\right\} \tag{2.2}\\
& =P_{2 l}\left(x_{1}, k\left(t_{1}, t_{1}\right)\right) \tilde{f}\left(x_{d}\right)
\end{align*}
$$

where

$$
P_{2 l}\left(x_{1}, k\left(t_{1}, t_{1}\right)\right)=\sum_{r=0}^{2 l} c_{r}\left[\frac{\psi\left(t_{1}\right)}{\psi^{2}(0) \varphi\left(t_{1}\right)}\right]^{r / 2} H_{r}\left(\frac{x_{1}}{\sqrt{\varphi\left(t_{1}\right) \psi\left(t_{1}\right)}}\right)
$$

$k(t, t)=\varphi(t) \psi(t), x_{d}=\left(x_{1}, \ldots, x_{d}\right) \in R^{d}, \tilde{f}$ is the density of the d-dimensional normal distribution $\mathscr{N}(0, \mathscr{K}), \mathscr{K}=\left[\varphi\left(t_{i}\right) \psi\left(t_{j}\right)\right]_{1 \leqslant i \leqslant j \leqslant d}, \mathscr{A}=\mathscr{K}^{-1}$. The distribution given by (2.2) will be denoted by

$$
P N D_{d}\left(2 l, \mathscr{K}, C_{2 l}\right)
$$

Proposition 2.4. Let the density of X_{d} be given by (2.2). Then the characteristic function of X_{d} has the following form:

$$
\varphi\left(\zeta_{d}\right)=E \exp \left[i\left(\zeta_{d}, X_{d}\right)\right]=\sum_{r=0}^{2 l} c_{r}(i \eta)^{r} \exp \left[-\frac{1}{2} \sum_{r, s=1}^{d} k\left(t_{r}, t_{s}\right) \zeta_{r} \zeta_{s}\right]
$$

where

$$
\eta=\frac{1}{k(0,0)}\left[\zeta_{1} k\left(0, t_{1}\right)+\ldots+\zeta_{d} k\left(0, t_{d}\right)\right] .
$$

It is evident that $c_{0}=1$.
We are going to prove the following proposition.
Proposition 2.5. The conditional moments of PGMP for $s<t<u$ are given by the formula

$$
\begin{equation*}
E\left(X_{t} \mid \mathscr{F}_{s}\right)=\frac{\psi(t)}{\psi(s)} X_{s} \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
E\left(X_{t} \mid \mathscr{Y}_{s, u}\right)= & \frac{g(u)-g(t)}{g(u)-g(s)} \frac{\psi(t)}{\psi(s)} X_{s}+\frac{g(t)-g(s)}{g(u)-g(s)} \frac{\psi(t)}{\psi(u)} X_{u}, \tag{2.4}\\
E\left(X_{s} \mid X_{t}=y\right)= & \frac{\varphi(s)}{\varphi(t)} y+\frac{\psi(s)}{\psi(t)}[g(t)-g(s)] \frac{(\partial / \partial y) P_{2 l}(y, k(t, t))}{P_{2 l}(y, k(t, t))}, \\
& \operatorname{Var}\left(X_{t} \mid \mathscr{F}_{s}\right) \text { is non-random }, \\
& \operatorname{Var}\left(X_{t} \mid \mathscr{F}_{s, u}\right) \text { is non-random. }
\end{align*}
$$

The proof of Proposition 2.5 will be based on Lemma 2.1 below. First we introduce some notation.

Let us put

$$
Y_{t}=X_{t} / \psi(t), \quad \tilde{Y}_{t}=\tilde{X}_{t} / \psi(t) .
$$

Then for $s \leqslant t$

$$
E\left(\tilde{Y}_{s} \tilde{Y}_{t}\right)=g(s)
$$

Next we change the time. Taking into account that g is an increasing function we introduce the new processes

$$
\mathscr{Z}=\left(Z_{t}, t \geqslant 0\right), \quad \tilde{\mathscr{Z}}=\left(\tilde{Z_{t}}, t \geqslant 0\right),
$$

where

$$
Z_{t}=Y_{g^{-1}(t+\alpha)}, \quad \tilde{Z}_{t}=\tilde{Y}_{g^{-1}(t+\alpha)}, \quad g\left(g^{-1}(x)\right)=x, \quad g^{-1}(\alpha)=0
$$

It is evident that for $s \leqslant t$

$$
\tilde{k}(s, t)=E\left(\tilde{Z_{s}} \tilde{Z_{t}}\right)=\tilde{\varphi}(s) \tilde{\psi}(t)=s+\alpha
$$

i.e. $\tilde{\psi}(t)=1, \tilde{\varphi}(s)=s+\alpha$. It is obvious that $\left(\tilde{Z_{t}}-\tilde{Z}_{0}, t \geqslant 0\right)$ is the Wiener process.

Proposition 2.5 for the process

$$
\begin{equation*}
\mathscr{Z}=\left(Z_{t}, t \geqslant 0\right)=\left(\tilde{Z_{t}}-\tilde{Z}_{0}+Z_{0}, t \geqslant 0\right) \tag{2.8}
\end{equation*}
$$

where ($\tilde{Z}_{t}, t \geqslant 0$) is a zero mean Gaussian Markov process with covariance function $\tilde{k}(s, t)$, takes a simpler form, which we name Lemma 2.1.

Lemma 2.1. Let $\mathscr{Z}=\left(Z_{t}, t \geqslant 0\right)$ be a $P G M P$ given by (2.8). Then the conditional moments for $s<t<u$ are given by

$$
\begin{gather*}
E\left(Z_{t} \mid \tilde{\mathscr{F}}_{s}\right)=Z_{s} \tag{2.9}\\
E\left(Z_{t} \mid \tilde{\mathscr{F}}_{s u}\right)=\frac{u-t}{u-s} Z_{s}+\frac{t-s}{u-s} Z_{u} \tag{2.10}\\
E\left(Z_{s} \mid Z_{t}=z\right)=\frac{s+\alpha}{t+\alpha} z+(t-s) \frac{(\partial / \partial z) \tilde{P}_{2 l}(z, t+\alpha)}{P_{2 l}(z, t+\alpha)}, \tag{2.11}
\end{gather*}
$$

$$
\begin{equation*}
\operatorname{Var}\left(Z_{t} \mid \tilde{\mathscr{F}}_{s}\right)=t-s \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Var}\left(Z_{t} \mid \tilde{\mathscr{F}}_{s, u}\right)=\frac{(u-t)(t-s)}{u-s} \tag{2.13}
\end{equation*}
$$

where $\tilde{\mathscr{F}}_{s}=\sigma\left(Z_{w}: w \leqslant s\right), \tilde{\mathscr{F}}_{s, u}=\sigma\left(Z_{w}: w \leqslant s\right.$ or $\left.w=u\right)$, and

$$
\begin{equation*}
\tilde{P}_{2 l}(z, t+\alpha)=\sum_{r=0}^{2 l} c_{r}(t+\alpha)^{-r / 2} H_{r}\left(\frac{z}{\sqrt{t+\alpha}}\right) . \tag{2.14}
\end{equation*}
$$

Proof of Lemma 2.1. First observe that by definition (2.8) we have

$$
\begin{align*}
Z_{t}-Z_{s} & =\tilde{Z}_{t}-\tilde{Z}_{s} \tag{2.15}\\
Z_{t}-\frac{u-t}{u-s} Z_{s}-\frac{t-s}{u-s} Z_{u} & =\tilde{Z}_{t}-\frac{u-t}{u-s} \tilde{Z}_{s}-\frac{t-s}{u-s} \tilde{Z}_{u}
\end{align*}
$$

Taking into account that $\left(\tilde{Z}_{t}-\tilde{Z}_{0}, t \geqslant 0\right)$ is the Wiener process and formulas (2.15), (2.16) we get (2.9), (2.10), (2.12) and (2.13).

Now we are going to prove (2.11). Taking into account (2.2), (4.1)-(4.4), substituting

$$
\begin{equation*}
u=x \sqrt{\frac{t+\alpha}{(s+\alpha)(t-s)}}, \quad w=z \sqrt{\frac{s+\alpha}{(t+\alpha)(t-s)}}, \quad C=\sqrt{\frac{t-s}{t+\alpha}} \tag{2.17}
\end{equation*}
$$

and integrating by parts, we get

$$
\begin{aligned}
& E\left(Z_{s} \mid Z_{t}=z\right)=\sqrt{\frac{t+\alpha}{2 \pi(s+\alpha)(t-s)}} \frac{1}{\tilde{P}_{2 l}(z, t+\alpha)} \\
& \times \int \sum_{r=0}^{2 l} \frac{c_{r} x}{(s+\alpha)^{r / 2}} H_{r}\left(\frac{x}{\sqrt{s+\alpha}}\right) \exp \left\{-\frac{x^{2}}{2(s+\alpha)}-\frac{(z-x)^{2}}{2(t-s)}+\frac{z^{2}}{2(t+\alpha)}\right\} d x \\
&= \sqrt{\frac{(s+\alpha)(t-s)}{2 \pi(t+\alpha)}} \frac{1}{\tilde{P}_{2 l}(z, t+\alpha)} \sum_{r=0}^{2 l} \frac{c_{r}}{(s+\alpha)^{r / 2}} \int u H_{r}(c u) \exp \left\{-\frac{(u-w)^{2}}{2}\right\} d u \\
&= \sqrt{\frac{(s+\alpha)(t-s)}{2 \pi(t+\alpha)}} \widetilde{P}_{2 l}(z, t+\alpha) \\
& \sum_{r=0}^{2 l} \frac{c_{r}}{(s+\alpha)^{r / 2}} \\
& \times\left[\sqrt{\frac{(t+\alpha)(t-s)}{s+\alpha}} \frac{d}{d z} H_{r}\left(-\frac{z}{\sqrt{t+\alpha}}\right)+\sqrt{\frac{s+\alpha}{(t+\alpha)(t-s)}} z H_{r}\left(-\frac{z}{\sqrt{t+\alpha}}\right)\right] \\
&= z \frac{s+\alpha}{t+\alpha}+(t-s) \frac{(d / d z) \tilde{P}_{2 l}(z, t+\alpha)}{\tilde{P}_{2 l}(z, t+\alpha)} .
\end{aligned}
$$

Formula (2.11) is thus proved. This completes the proof of Lemma 2.1.

Proof of Proposition 2.5. First observe that by definition (1.3) we have

$$
\begin{gather*}
X_{t}-\frac{\psi(t)}{\psi(s)} X_{s}=\tilde{X}_{t}-\frac{\psi(t)}{\psi(s)} \tilde{X}_{s} \tag{2.18}\\
X_{t}-\frac{g(u)-g(t)}{g(u)-g(s)} \frac{\psi(t)}{\psi(s)} X_{s}-\frac{g(t)-g(s)}{g(u)-g(s)} \frac{\psi(t)}{\psi(u)} X_{u} \tag{2.19}\\
\quad=\tilde{X}_{t}-\frac{g(u)-g(t)}{g(u)-g(s)} \frac{\psi(t)}{\psi(s)} \tilde{X}_{s}-\frac{g(t)-g(s)}{g(u)-g(s)} \frac{\psi(t)}{\psi(u)} \tilde{X}_{u} .
\end{gather*}
$$

Taking into account that \tilde{X} is a Gaussian Markov process and (2.18), (2.19) we get formulas (2.3), (2.4), (2.6) and (2.7). Formula (2.5) follows easily from (2.11).

3. PROOFS OF PROPOSITIONS 1.1 AND 1.2

First we prove a simpler version of Proposition 1.1.
Lemma 3.1. Let $\mathscr{Z}=\left(Z_{t}, 0 \leqslant t \leqslant T\right)$ be a square-integrable stochastic process with continuous trajectories and $E Z_{0}^{n}<\infty, n=1,2, \ldots$ Suppose that there exists a polynomial $\tilde{P}_{2 l}$ of the form (2.14) such that for $s<t$

$$
\begin{align*}
E\left(Z_{t} \mid Z_{s}\right) & =Z_{s} \tag{3.1}\\
\operatorname{Var}\left(Z_{t} \mid Z_{s}\right) & =t-s, \tag{3.2}
\end{align*}
$$

and for some $t>0$

$$
\begin{equation*}
E\left(Z_{0} \mid Z_{t}=z\right)=\frac{\alpha}{t+\alpha} z+t \frac{(\partial / \partial z) \tilde{P}_{2 l}(z, t+\alpha)}{\tilde{P}_{2 l}(z, t+\alpha)} \tag{3.3}
\end{equation*}
$$

Then \mathscr{Z} is a PGMP.
Proof of Lemma 3.1. The difference between Theorem 1.3 and Lemma 3.1 concerns the initial state Z_{0}. The assumptions connected with the conditional distributions of $Z_{t_{n}} \mid Z_{t_{1}}, \ldots, Z_{t_{n-1}}$ are identical. Thus in virtue of Theorem 1.3 the conditional distributions of $Z_{t_{n}} \mid Z_{t_{1}}, \ldots, Z_{t_{n-1}}$ for $t_{1}<\ldots<t_{n}$ are Gaussian. We must only find the distribution of Z_{0}.

Since $Z_{t}-Z_{0} \sim N(0, t), E Z_{0}^{n}<\infty$, and $Z_{0}, Z_{t}-Z_{0}$ are independent, we have $E Z_{t}^{n}<\infty$.

Let us write

$$
\frac{\partial}{\partial z} \tilde{P}_{2 l}(z, t)=\tilde{P}_{2 l}^{\prime}(z, t)
$$

Taking into account (4.1)-(4.4) for every natural n we have
(3.4) $E\left[Z_{0} H_{n}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right) \tilde{P}_{2 l}\left(Z_{t}, t+\alpha\right)\right]$
$=E\left[H_{n}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right) \tilde{P}_{2 l}\left(Z_{t}, t+\alpha\right) E\left(Z_{0} \mid Z_{t}\right)\right]$
$=E H_{n}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right)_{r=0}^{2 l} \frac{c_{r}}{(t+\alpha)^{r / 2}} H_{r}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right)\left[\frac{\alpha}{t+\alpha} Z_{t}+t \frac{\tilde{P}_{2 l}^{\prime}\left(Z_{t}, t+\alpha\right)}{\widetilde{P}_{2 l}\left(Z_{t}, t+\alpha\right)}\right]$
$=E H_{n}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right) \sum_{r=0}^{2 l} \frac{c_{r}}{(t+\alpha)^{r / 2}}$
$\times\left\{\frac{\alpha}{\sqrt{t+\alpha}}\left[H_{r+1}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right)+r H_{r-1}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right)\right] \frac{t}{\sqrt{t+\alpha}} r H_{r-1}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right)\right\}$
$=E H_{n}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right) \sum_{r=0}^{2 l} \frac{c_{r}}{(t+\alpha)^{r / 2}}$
$\times\left\{\frac{\alpha}{\sqrt{t+\alpha}} H_{r+1}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right)+r \sqrt{t+\alpha} H_{r-1}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right)\right\}$
$=\sum_{r=0}^{2 l} \frac{c_{r}}{(t+\alpha)^{r / 2}}\left[\frac{\alpha}{\sqrt{t+\alpha}} \sum_{k=0}^{\min (n, r+1)} k!\binom{n}{k}\binom{r+1}{k}\left(\frac{\alpha}{t+\alpha}\right)^{(n+r+1) / 2-k}\right.$
$\times E H_{n+r+1-2 k}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)+\sqrt{t+\alpha} \sum_{k=0}^{\min (n, r+1)} k!\binom{n}{k}\binom{r-1}{k}$
$\left.\times\left(\frac{\alpha}{t+\alpha}\right)^{(n+r+1) / 2-k} E H_{n+r-1-2 k}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)\right]$.
On the other hand, the left-hand side of (3.4) can be represented in the following form:

$$
\begin{align*}
& E\left[Z_{0} H_{n}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right) \tilde{P}_{2 l}\left(Z_{t}, t+\alpha\right)\right] \tag{3.5}\\
& =E\left\{Z_{0} E\left[\left.H_{n}\left(\frac{Z_{t}}{\sqrt{t+\alpha}}\right) \tilde{P}_{2 l}\left(Z_{t}, t+\alpha\right) \right\rvert\, Z_{0}\right]\right\} \\
& =E Z_{0} \sum_{r=0}^{2 l} \frac{c_{r}}{(t+\alpha)^{r / 2}} \sum_{k=0}^{\min (n, r)} k!\binom{n}{k}\binom{r}{k}\left(\frac{\alpha}{t+\alpha}\right)^{(n+r) / 2-k} H_{n+r-2 k}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right) \\
& =\sum_{r=0}^{2 l} \frac{c_{r} \sqrt{\alpha}(t+\alpha)^{r / 2}}{\min (n, r)} k\binom{n}{k}\binom{r}{k}\left(\frac{\alpha}{t+\alpha}\right)^{(n+r) / 2-k} \\
& \\
& \\
& \times\left[E H_{n+r+1-2 k}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)+(n+r-2 k) E H_{n+r-1-2 k}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)\right] .
\end{align*}
$$

In view of (3.4) and (3.5) we have

$$
\begin{equation*}
\sum_{r=0}^{2 l} \sum_{k=0}^{\min (n, r)} \frac{c_{r}}{(t+\alpha)^{r-k}} \alpha^{(r+1) / 2-k} k!\binom{n}{k}\binom{r}{k} \tag{3.6}
\end{equation*}
$$

$$
\times\left[E H_{n+r+1-2 k}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)+(n+r-2 k) E H_{n+r-1-2 k}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)\right]
$$

$$
-\sum_{r=0}^{2 l} \sum_{k=0}^{\min (n, r+1)} \frac{c_{r}}{(t+\alpha)^{r+1-k}} \alpha^{(r+3) / 2-k} k!\binom{n}{k}\binom{r+1}{k} E H_{n+r+1-2 k}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)
$$

$$
-\sum_{r=0}^{2 l} \sum_{k=0}^{\min (n, r-1)} \frac{c_{r}}{(t+\alpha)^{r-1-k}} \alpha^{(r-1) / 2-k} r k!\binom{n}{k}\binom{r-1}{k} E H_{n+r-1-2 k}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)=0 .
$$

The left-hand side of (3.6) is a polynomial in $(t+\alpha)^{-1}$. The equation (3.6) must be satisfied for every t. In particular, the constant term (independent of t) must disappear. Thus in view of (3.6) for $n=0$ we get

$$
E H_{1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)=\frac{c_{1}}{\sqrt{\alpha}}
$$

From (3.6) for $n \geqslant 1$ we get

$$
\begin{align*}
& \sum_{r=0}^{n} c_{r} \alpha^{(1-r) / 2} r!\binom{n}{r}\left[E H_{n-r+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)+(n-r) E H_{n-r-1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)\right] \tag{3.7}\\
& \quad-\sum_{r=0}^{n} c_{r} \alpha^{(1-r) / 2}(r+1)!\binom{n}{r+1} E H_{n-r-1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right) \\
& \quad-\sum_{r=0}^{n} c_{r} \alpha^{(1-r) / 2} r!\binom{n}{r-1} E H_{n-r+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right) \\
&= \alpha^{1 / 2} E H_{n+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)+\sum_{r=0}^{n} c_{r} \alpha^{(1-r) / 2} \frac{n!(n-2 r+1)}{(n-r+1)!} E H_{n-r+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right) \\
& \quad-c_{n+1}(n+1)!\alpha^{-n / 2}=0 .
\end{align*}
$$

We now prove by induction on n that

$$
\begin{equation*}
E H_{r}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)=c_{r} \alpha^{-r / 2} r!\quad \text { for } r=1, \ldots, n, n<2 l . \tag{3.8}
\end{equation*}
$$

We have already settled the case of $n=1$. Suppose that (3.8) holds for some n with $n+1<2 l$. Then taking into account (3.7) and substituting $m=n-2 r+1$ we get

$$
\begin{gather*}
\sum_{r=1}^{n} c_{r} \alpha^{(1-r) / 2} \frac{n-2 r+1}{(n-1+r)!} E H_{n-r+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)=\alpha^{-n / 2} \sum_{r=1}^{n}(n-2 r+1) c_{r} c_{n-r+1} \tag{3.9}\\
=\alpha^{-n / 2} \sum_{m=1-n}^{n-1} m c_{(n+1-m) / 2} c_{(n+1+m) / 2}=\alpha^{-n / 2} S_{n}
\end{gather*}
$$

We define

$$
h(n, m)=m c_{(n+1-m) / 2} c_{(n+1+m) / 2} .
$$

Evidently, $h(n, m)=-h(n,-m)$. Thus

$$
\begin{equation*}
S_{n}=0 \tag{3.10}
\end{equation*}
$$

It follows from (3.7)-(3.10) that

$$
\begin{equation*}
E H_{n+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)=c_{n+1} \alpha^{-(n+1) / 2}(n+1)! \tag{3.11}
\end{equation*}
$$

where $n<2 l$.
Now we take $n=2 l$. Then by (3.7) we have

$$
\begin{aligned}
0 & =\sum_{r=0}^{n} c_{r} \alpha^{(1-r) / 2} r!\binom{2 l}{r} E H_{2 l-r+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)-\sum_{r=1}^{n} c_{r} \alpha^{(1-r) / 2} r!\binom{2 l}{r-1} E H_{2 l-r+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right) \\
& =\alpha^{1 / 2} E H_{2 l+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)+(2 l)!\sum_{r=1}^{n-2 l} c_{r} \alpha^{(1-2 r+1) / 2} \frac{2 l-2 r+1}{(2 l-r+1)!} E H_{2 l+1-r}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right) \\
& =\alpha^{1 / 2} E H_{2 l+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)+(2 l)!\alpha^{-l} \sum_{m=1-2 l}^{2 l-1} m c_{(2 l+1-m) / 2} c_{(2 l+1-m) / 2} \\
& =\alpha^{1 / 2} E H_{2 l+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right) .
\end{aligned}
$$

Thus

$$
E H_{2 l+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)=0
$$

Now let $n=2 l+1, \ldots, 4 l$. Then by (3.7) we have

$$
\begin{align*}
c_{0} \alpha^{1 / 2} E(& \left.H_{n+1} \frac{Z_{0}}{\sqrt{\alpha}}\right)+n!\alpha^{-n / 2} \tag{3.12}\\
& \times\left[\sum_{r=1}^{n-2 l} c_{r} \alpha^{(1-2 r+1) / 2} \frac{n-2 r+1}{(n-r+1)!} E H_{n-r+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)\right. \\
& \left.+\sum_{r=n-2 l+1}^{2 l} c_{r} \alpha^{(1-r+n) / 2} \frac{n-2 r+1}{(n-r+1)!} E\left(H_{n-r+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)\right)\right]=0 .
\end{align*}
$$

We now prove by induction on N that

$$
\begin{equation*}
E\left(H_{r}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)\right)=0 \quad \text { for } r=2 l+1, \ldots, N, N<4 l . \tag{3.13}
\end{equation*}
$$

The case $N=2 l+1$ is already settled. Suppose that (3.13) holds for some N with $N+1<4 l$. We substitute $m=n-2+1$. Then by (3.11)-(3.13) we get

$$
\begin{equation*}
c_{0} \alpha^{1 / 2} E\left(H_{N+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)\right)+N!\alpha^{-N / 2} \sum_{m=-(n-1)}^{n-1} m c_{(n+1+m) / 2} c_{(n+1-m) / 2}=0 . \tag{3.14}
\end{equation*}
$$

We repeat the considerations given in (3.9) and (3.10). Then, by (3.14),

$$
E H_{N+1}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)=0
$$

Thus (3.13) holds.
Analogously we show that

$$
E H_{r}\left(\frac{Z_{0}}{\sqrt{\alpha}}\right)=0 \quad \text { for } r>4 l
$$

Finally, all the moments are as in (2.1). By the Carleman criterion the moment problem has a unique solution (see Plucińska [6]). Then

$$
Z_{0} \sim P N D\left(2 l, \alpha, C_{2 l}\right)
$$

and therefore \mathscr{Z} is a $P G M P$.
Proof of Proposition 1.1. It is evident that

$$
X_{t}=\psi(t) Z_{g(t+\alpha)} .
$$

Therefore Proposition 1.1 is an immediate consequence of Lemma 3.1.
Proof of Proposition 1.2. We use Theorem 1 of Plucińska [5] and Theorem 2.1 of Wesołowski [10]. By these theorems all the conditional distributions $X_{t_{n}} \mid X_{t_{1}}, \ldots, X_{t_{n-1}}$ are Gaussian. Using the methods of Lemma 3.1 we show that $X_{0} \sim P N D$. Proposition 1.2 is thus proved.

4. APPENDIX

For convenience of the reader we give some formulas for Hermite polynomials taken (after some easy transformations) from the book of Prudnikov et al. [8]:

$$
\begin{align*}
& H_{r+1}\left(\frac{x}{v}\right)=\frac{x}{v} H_{r}\left(\frac{x}{v}\right)-\sqrt{v} \frac{d}{d x} H_{r}\left(\frac{x}{v}\right), \quad v>0, \tag{4.1}\\
& \frac{1}{\sqrt{2 \pi}} \int\left[\frac{d^{k}}{d u^{k}} H_{r}(c u)\right] \exp \left\{-\frac{(u-v)^{2}}{2}\right\} d u \\
& =\left(1-c^{2}\right)^{r / 2} \frac{d^{k}}{d v^{k}} H_{r}\left(\frac{c v}{\sqrt{1-c^{2}}}\right), \quad c^{2}<1, k=0,1,2 .
\end{align*}
$$

Let $\left(X_{t}, t \geqslant 0\right)$ be a zero mean Gaussian Markov process, $E\left(X_{s} X_{t}\right)=E X_{s}^{2}=v_{1}, E X_{t}^{2}=v_{2}$ for $s<t$. Then

$$
\begin{align*}
& E\left(H_{r}\left(\left.\frac{X_{t}}{\sqrt{v_{2}}} \right\rvert\, X_{s}\right)=x_{1}\right) \tag{4.3}\\
& =\frac{1}{\sqrt{2 \pi\left(v_{2}-v_{1}\right)}} \int H_{r}\left(\frac{x_{2}}{\sqrt{v_{2}}}\right) \exp \left\{-\frac{\left(x_{2}-x_{1}\right)^{2}}{2\left(v_{2}-v_{1}\right)}\right\} d x=\left(\frac{v_{1}}{v_{2}}\right)^{r / 2} H_{r}\left(\frac{x_{1}}{v_{1}}\right), \\
& E\left(\left.H_{m}\left(\frac{X_{t}}{\sqrt{v_{2}}}\right) H_{n}\left(\frac{X_{t}}{\sqrt{v_{2}}}\right) \right\rvert\, X_{s}\right) \\
& \quad=\sum_{k=0}^{\min (m, n)} k!\binom{m}{k}\binom{n}{k}\left(\frac{v_{1}}{v_{2}}\right)^{(m+n) / 2-k} H_{m+n-2 k}\left(\frac{X_{s}}{\sqrt{v_{1}}}\right) .
\end{align*}
$$

REFERENCES

[1] R. J. Adler, S. Cambanis and G. Samorodnitsky, On stable Markov processes, Stochastic Process. Appl. 34 (1990), pp. 1-17.
[2] W. Bryc, The Normal Distribution, Characterizations with Applications, Springer, 1995.
[3] T. Cacoullos and H. Papageorgiou, Characterizations of mixtures of continuous distributions by their posterior means, Scand. Actuar. J. (1984), pp. 23-30.
[4] M. Evans and T. Swartz, Distribution theory and inference for polynomial-normal densities, Comm. Statist. Theory Methods 23 (4) (1994), pp. 1123-1148.
[5] A. Plucińska, On a stochastic process determined by the conditional expectation and the conditional variance, Stochastics 10 (1983), pp. 115-129.
[6] A. Plucińska, Some properties of polynomial-normal distributions associated with Hermite polynomials, Demonstratio Math. 32 (1) (1999), pp. 195-206.
[7] A. Plucińska and M. Bisińska, Polynomial-Gaussian vectors and polynomial-Gaussian processes, Demonstratio Math. 34 (2) (2001), pp. 359-374.
[8] A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integrals and Special Functions (in Russian), Nauka, Moscow 1983.
[9] W. Timoszyk, A characterization of Gaussian processes that are Markovian, Colloq. Math. 30 (1974), pp. 157-167.
[10] J. Wesołowski, A characterization of a Gaussian process based on properties of conditional moments, Demonstratio Math. 17 (3) (1984), pp. 795-807.

Department of Mathematics and Information Science
Warsaw University of Technology
pl. Politechniki 1
00-661 Warsaw, Poland

[^0]: * Faculty of Mathematics and Information Science, Warsaw University of Technology.

