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Abstract. We consider questions of characterizing a stochastic 
process X = (X,, t 2 0) by the properties of the first two conditional 
moments. Our first result is a new version of the classical P. Levy 
characterization theorem for martingales. Next we deal with a charac- 
terization of processes without continuous trajectories. We consider 
a special form of the initial state. Namely, we suppose that the r.v. 
X, has a polynomial-normal distribution (PND), ia, the density of 
X, is the product of a positive polynomial and a normal density. 

1. INTRODUCTION 

We consider questions of characterizing a stochastic process X = (X, ,  t 2- 0) 
by the properties of the first two conditional moments. 

Let Xd+ , = (X,, X,, , . . . , X,,) denote a (d + 1)-dimensional random vector 
for 0 < t, < . . . < td. We shall consider a special form of the initial state. Name- 
ly, we suppose that the r.v. X, has a polynomial-normal distribution (PND), i.e. 
the density of Xo is the product of a positive polynomial and a normal density. 
Such a density is called by Evans and Swartz [4] a polynomial-normal density. 
For simplicity we use the symbol PND not only for densities but also for the 
class of r.v.'s with PND densities. We, investigate the class PND using Hermite 
polynomials. It is known that every polynomial can be represented as a linear 
combination of Hermite polynomials. 

Thus we will consider the r.v. X with density 'of the following form: 

where 
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8 A. Plucinska 

is a positive polynomial in x of degree 21 (I 2 O), c, are parameters, H ,  is the 
Hermite polynomial of degree r, and 6 > 0. 

The distribution given by (1.1) will be denoted by 

PND (21, a2, Czl),  where C2, = (co, . . . , czl).  

Let 2 = (if,, t 3 0 )  be a zero mean Gaussian Markov process with 
non-degenerate distributions. It is known (see for example Timoszyk [9] and 
Adler et al. [I]) that its covariance function is the product k(s, t)  
= E (X, ift) = rp (s) t,b (t) for s 4 t. We suppose that $ (t) # 0. 

We construct a stochastic process 9' = (XI, t 2 0) in such a way that 
various properties of Gaussian Markov processes are preserved but the one- 
-dimensional distributions of I are PND.  

Namely, we define a poZynorniaI-Gaussian Markov process (PGMP) in the 
following way: 

where X, - pND(22, k(0, 0), C2d and X,, 3 are independent. 
Define 

a It) = Y (t) - 

It is evident that g is an increasing function. 
The density of the one-dimensional distribution of % has the following 

form (see Pluciliska and Bisikka [7]): 

where 

The aim of this paper is to give some characterizations of PGMP based on 
properties of conditional moments. For simplicity we use the symbol PGMP 
not only for processes but also for the class of suitable distributions (analogi- 
cally to PND).  

Our first result is a new version of the classical P. Livy characterization 
theorem for martingales. 

Next we consider a characterization of processes without continuous tra- 
jectories. 

We use conditioning with respect to the past a-field YS = a(X,: w < s) of 
the stochastic process S. We shall also use a-fields that allow some insight into 
the future, namely, we put 
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We are going to prove the following propositions. 

PROPOSITION 1.1. Let S = (X,, t 2 0) be a square-integrable stochastic 
process with continuous trajectories and EX* m for n = 1 , 2 ,  . . . Suppose 
there exist a positive denite function k(s ,  t) = q ( s )  @ (t), s ,< t ,  and a positive 
polynomial Pal of the form (1.4) such that for all s 4 t 

(1-6) Var (X, ( F. is n o n - r d o m ,  

and for some t > 0 

Then d is a PGMP and its densities are given by (2.2). 

The next proposition concerns characterizations of processes without con- 
tinuous trajectories. 

PROPOSITION 1.2. Let =!T = (X,, 0 < t < T) be a square-integrable stochas- 
tic process s w h  that (2.3), (2.41, (2.41, (2.7) hold, there exists a polynomiaI Pzl of 
the form (1.4) such that for some t > 0 formula (1.7) is satisJied, and EX", NI for 
n = I ,  2 ,  . .. Then % is a PGMP and its densities are given by (2.2). 

For convenience of the reader we state here the classical P. LCvy charac- 
terization theorem. 

THEOREM 1.3. If a stochastic process % = (X,, t E [0, 11) has continuous 
trajectories, is square-integrable and 

then 5Y is the Wiener process. 

If we put (t (t)  = 1, cp (t) = t ,  Pzt = const in Proposition 1.1, we get Theo- 
rem 1.3. The condition X, = O in Theorem 1.3 is essential. In some papers (e.g. 
Bryc [2], Theorem 8.2.1) this condition is omitted; that is a mistake. 

In our considerations condition (1.7) is essential. It concerns some con- 
ditioning of the initial state with respect to the future. It is similar to the 
conditioning of the parameters with respect to the future. 

Characterizations of distributions by their posterior conditional expecta- 
tions are considered by various authors. For example, mixtures of normal or 
gamma densities f (x I Q) with respect to the parameter Q are considered by 
CacouIlos and Papageorgiou [3]. In the present paper instead of the parameter 
Q we have the initial state Xo.  



2. PROPERTIES OF PGMP 

We shall use ~ropdsitions 2.1-2.4 given in Plucinska and Bisinska [7]. 

PROPOSITION 2.1, If X - PND (21, S Z ,  Czl) ,  then the moments are given by 
the formulas 

cI.6-"n! for n = 1 ,  ..., 21, 
for n > 21. 

PROPOSITION 2.2, The sum of two independent r.v.'s with polynomial-normal 
dispibution has a polynomial-normal distribution. 

PROPOS~~ION 2.3. Let 3 be a PGMP. Then for every d 2 1 , O  6 tl < . . . < ta, 
the density function of the uector Xd = (XI,, . .., Xtd) has the following form: 

where 

k ( t ,  t)  = cp ( t)  $I (t),  xd = (xi ,  . . .> xd) E Rd, is the density of the d-dimensional 
normal distribution M (0, X), X = [q (ti) $ ( t j) l l  4 i s j s d ,  at = X-l .  The dis- 
tribution given by (2.2) will be denoted by 

PROPOSI~ON 2.4. Let the density of IY, be given by (2.2). Then the charac- 
teristic function of X d  has the following form: 

where 

It is evident that co = 1. 
We are going to prove the following proposition. 

PROPOS~ON 2.5. The conditional moments of PGMP for s < t < u are given 
by the formula 
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(2.6) Var (X, ( is mn-random, 

(2.7) Var (Xt I Fs,,) is non-random. 

The proof of Proposition 2.5 will be based on Lemma 2.1 below. First we 
introduce some notation. 

Let us put 

x = t ? x = 3 J$ (t). 
Then for s < t 

E ( X  x)  = g(s ) .  

Next we change the time. Taking into account that g is an increasing 
' function we introduce the new processes 

S = ( Z , , t > O ) ,  9 = ( Z t J > 0 ) ,  
where - - 

Zt = Yg-l(t+=), Zt = G-l(t+OL), g(g-lCx)) = X, g - l ( g )  = 0. 

It .is evident that for s < t ' 

E(s, t) = ~ ( 2 ~ 2 ~ )  = $(s)q?(t) = s+a ,  

i.e. $(t) = 1, @ (s) = s+  a. I t  is obvious that (Zt-&,, t > 0) is the Wiener pro- 
cess. 

Proposition 2.5 for the process 

where (z, t 2 0 )  is a zero mean Gaussian Markov process with covariance 
function E(s, t), takes a simpler form, which we name Lemma 2.1. 

LEMMA 2.1. Let %" = (Z, ,  t 2 0) be a PGMP given b y  (2.8). Then the con- 
ditional moments for s < t < u are giueiz by 

u - t  t - s  
E ( Z , I E J  = -zs+-zU, 

U - S  u-S 



(2.12) ~ a r ( ~ , l $ . )  = t-s, 

(u-t)(t-s) 
Var (& 1 g,,) = I 

U-S  

where 8 = a(Z,: w < s), Kc = o(Z,,,: w < s or w = u), and 

proof of Lemma 2.1. First observe that by definition (2.8) we have 

24-t t-S M u - t  w t -s  - z,-- zs--zu = zr--zs-- 
U-s u-S u-S U-S 

2". 

Taking into account that (zt-Z,, t 2 0) is the Wiener process and for- 
mulas (2,15), (2.16) we get (2.9), (2.10), (2.12) and (2.13). 

Now we are going to prove (2.11). Taking into account (2.2), (4.1)-(4.4), 
substituting 

and integrating by parts, we get 

Formula (2.11) is thus proved. This completes the proof of Lemma 2.1. 
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Proof of Proposi t ion  2.5. First observe that by definition (1.3) we 
have 

Taking into account that if is a Gaussian Markov process and (2.181, 
(2.19) we get formulas (2.3), (2.4), (2.6) and (2.7). Formula (2.5) follows easily 
from (2.11). a 

3. PROOFS OF PROPOSITIONS 1.1 AND 1.2 

First we prove a simpler version of Proposition 1.1. 

LEMMA 3.1. Let i2" = (Z,, 0 d t 6 T )  be a square-integrable stochastic pro- 
cess with continuous trajectories and EZ", my n = 1, 2, . . . Suppose that there 
exists a polynomial F21 of the form (2.14) such that for s < t 

(3.2) Var(Z,IZs) = t - s ,  

and for some t > 0 

Then d is a PGMP. 

P r o  of of Lemma 3.1. The difference between Theorem 1.3 and Lem- 
ma 3.1 concerns the initial state 2,. The assumptions connected with the con- 
ditional distributions of Z,]  Z,,, . . ., 2,-, are identical. Thus in virtue of Theo- 
rem 1.3 the conditional distributions of Z,,, I Z,,, . . ., Zfn-l for t ,  < . . . < t,, are 
Gaussian. We must only find the distribution of 2,. 

Since Z, - Z ,  - N (0, t), EZ* moo, and Zo, 2, -Zo are independent, we 
have EZ; < m. 

Let us write 
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Taking into account (4.1H4.4) for every natural n we have 

On the other hand, the left-hand side of (3.4) can be represented in the 
following form: 
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In view of (3.4) and (3.5) we have 

The left-hand side of (3.6) is a polynomial in (t + a)-'. The equation (3.6) 
must be satisfied for every t .  In particular, the constant term (independent of t )  
must disappear. Thus in view of (3.6) for n = 0 we get 

From (3.6) for n 2 1 we get 

= r 1 / 2 ~ ~ + 1  (3)+ f c , d l - r ) ~ 2  n! (n-2r+ 1) 
& ,=o (n-r+l)!  

We now prove by induction on n that 

EH, - =crol-'/'r! for r = 1 ,  ..., n, n<21. ($) 
We have already settIed the case of n = 1. Suppose that (3.8) holds for some n with 
n+l < 21. Then taking into account (3.7) and substituting rn = n-2r+ 1 we get 



We define 

Evidently, h (n, m) = - h (n, - m). Thus 

(3.10) S, = 0. 

It follows from (3.7)43.10) that 

(3.11) i a-(n+11/2 (n+ I)!, 

where n < 22. 
Now we take n = 2E. Then by (3.7) we have 

Thus 

Now let n = 2E+ 1, . .., 41. Then by (3.7) we have 

We now prove by induction on N that 
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The case N = 21+ 1 is already settled. Suppose that (3.13) holds for some 
N with N +  1 < 42. We substitute rn = n-2+1. Then by (3.11H3.13) we get 

We repeat the considerations given in (3.9) and (3.10). Then, by (3.14), 

Thus (3.13) holds. 
~ n a ~ o g o u $ ~  we show that 

EH, - = O  for r > 4 1 .  (>) 
Finally, all the moments are as in (2.1). By the Carleman criterion the 

moment problem has a unique solution (see PIucinska [6]) .  Then 

Zo - PND (21, C2d, 

and therefore 9' is a PGMP. 

Proof of Proposi t ion  1.1. It is evident that 

Therefore Proposition 1.1 is an immediate consequence of Lemma 3.1. 

Proof of Proposi t ion  1.2. We use Theorem 1 of Pluciliska [ 5 ]  and 
Theorem 2.1 of Wesofowski [lo]. By these theorems all the conditional dis- 
tributions X, I X,,, . . ., X,-, are Gaussian. Using the methods of Lemma 3.1 
we show that Xo PND. Proposition 1.2 is thus proved. rn 

For convenience of the reader we give some formulas for Herrnite polyno- 
mials taken (after some easy transformations) from the book of Prudnikov et 
al. [S]: 

2 - PAMS 23.1 



Let (X,, t 2 0) be a zero mean Gaussian Markov process, 
E (X ,X t )  = EX: = v l ,  EX: = v2 for s < t .  Then 
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