ON THE EXIT TIME OF α-STABLE PROCESS

BY
MACIEJ LEWANDOWSKI* (Wroctaw)

Abstract

In this paper we investigate the probability that α-stable Lévy process stays in convex body up to time t. This can be optimally estimated from below by the same probability but of the rotationally invariant process.

Mathematics Subject Classification: 60G52, 60J45.
Key words and phrases: Symmetric stable process; exit time.

INTRODUCTION

Let $\left(X_{t}, P^{x}\right)$ be an α-stable process with values in \mathscr{R}^{d}. For $D \subset \mathscr{R}^{d}$, we define $\tau_{D}=\inf \left\{t \geqslant 0, X_{t} \notin D\right\}$. It is very important to know the behaviour of $P^{x}\left(\tau_{D}>t\right)$. For example, $\int_{0}^{\infty} P^{x}\left(\tau_{D}>t\right) d t$ estimates the Green function of D, and the behaviour of $\log P\left(\tau_{D}>t\right)$, for $t \rightarrow \infty$, estimates the eigenvalues of the generator (see [2]-[5] and [9]). So far, $P^{x}\left(\tau_{D}>t\right)$ has been described in the case when the distribution of X_{t} is rotationally invariant. This paper is devoted to the general case of α-stable processes. In fact, we prove that if D is symmetric and convex, then $P_{X}^{0}\left(\tau_{D}>t\right)$ is less than $P_{\hat{X}}^{0}\left(\tau_{D}>t\right)$, where \hat{X} is a rotationally invariant α-stable process.

PRELIMINARIES

In this paper, $\left(X_{t}, P^{x}\right)$ denotes α-stable Lévy process (i.e. a homogeneous process with independent increments) with values in $\mathscr{R}^{d}, 0<\alpha<2$. Whenever we mention α-stable process we think about the process as described above.

The Fourier transform of X_{t} is given by the formula

$$
E \exp \left(i\left(y, X_{t}\right)\right)=\exp \left(-t \int_{s^{d-1}}|\langle y, s\rangle|^{\alpha} \sigma(d s)\right)
$$

[^0]where σ is a certain symmetric, positive, finite measure concentrated on S^{d-1}, $\langle\cdot, \cdot\rangle$ denotes the standard scalar product, and $|\cdot|=(\cdot, \cdot)^{1 / 2}$ is a norm. Such a measure σ (called the spectral measure) determines the distribution of X_{1}, whence the distribution of the whole process [8]. It is well known that trajectories of $\left(X_{t}\right)$ are right continuous and have left-hand limits a.s.

Now we show the main tool of our paper. First we introduce the following three families of random objects.

1. Let $\left(X_{i}\right)_{i=1}^{\infty}$ denote a sequence of i.i.d. real variables such that $P\left(X_{i}>t\right)=e^{-t}$. Put $\Gamma_{n}=X_{1}+\ldots+X_{n}$.
2. $\left(Z_{n}\right)_{n=1}^{\infty}$ denotes a sequence of i.i.d. \mathscr{R}^{d}-valued symmetric vectors such that $E\left|Z_{n}\right|^{\alpha}<\infty$, that is $P\left(-Z_{n} \in \cdot\right)=P\left(Z_{n} \in \cdot\right)$.
3. $\left(U_{n}\right)_{n=1}^{\infty}$ denotes a sequence of i.i.d. real-valued variables with uniform distribution on $[0,1]$.

Moreover, we assume that $\left(\Gamma_{n}\right),\left(Z_{n}\right),\left(U_{n}\right)$ are independent families.
The following representation is crucial for our purposes.
Proposition (the Series Representation, see [6], [7], [10]). We have:
(a) $\sum_{n=1}^{\infty} \Gamma_{n}^{-1 / \alpha} \cdot Z_{n} \cdot 1_{\left[U_{n}, 1\right]}(t)$ converges a.s. in $D[0,1]$ both in the supremum and the Skorohod metrics.
(b) $Y(t)=\sum_{n=1}^{\infty} \Gamma_{n}^{-1 / \alpha} \cdot Z_{n} \cdot \mathbb{1}_{\left[U_{n}, 1\right]}(t), 0 \leqslant t \leqslant 1$, is an α-stable process with independent and homogeneous increments.
(c) The Fourier transform of $Y(t)$ is equal to

$$
E \exp (i(y, Y(t)))=\exp \left(-C_{\alpha}^{\prime} t E|(y, Z)|^{\alpha}\right)
$$

where $C_{\alpha}^{\prime}=\int_{0}^{\infty} x^{-\alpha} \sin x d x$ and $Z \stackrel{d}{=} Z_{n}$; hence the spectral measure of $Y(t)$ is equal to

$$
\sigma(A)=C_{\alpha}^{\prime} E \mathbb{1}_{A}\left(\frac{Z}{|Z|}\right)|Z|^{\alpha} .
$$

Corollary. Let $\left(X_{t}, P^{x}\right)$ be an α-stable Lévy process with spectral measure σ and $\sigma\left(S^{d-1}\right)=1$. Assume that $\left(Z_{n}\right)_{n=1}^{\infty}$ are i.i.d. and $\mathscr{L}\left(Z_{n}\right)=\sigma$. Let $\left(g_{n}\right)_{n=1}^{\infty}$ be a sequence of Gaussian variables, with distribution $N(0,1)$, and assume that the families $\left(\Gamma_{n}\right),\left(Z_{n}\right),\left(U_{n}\right)$ and $\left(g_{n}\right)$ are independent. Then the series

$$
\left(\frac{1}{C_{\alpha}^{\prime} E\left|g_{1}\right|^{\alpha}}\right)^{1 / \alpha} \sum_{n=1}^{\infty} \Gamma_{n}^{-1 / \alpha} \cdot Z_{n} \cdot g_{n} \cdot \mathbb{1}_{\left[U_{n}, 1\right]}(t)
$$

is a representation of $X(t)$ (in distribution on $D[0,1]$).
Since our proof is based on representation of the process via the mixture of Gaussian processes, we shall recall a definition and some nice features of Gaussian measures.
(*) X is a Gaussian vector if for every $y \in \mathscr{R}^{d}$ the real random variable (y, X) has distribution $N\left(m, \sigma^{2}\right)$, where $m=E(y, X)$ and $\sigma^{2}=E(y, X)^{2}$.
(**) If X is a symmetric Gaussian random vector with values in \mathscr{R}^{d}, then there exist numbers $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{d} \geqslant 0$ and an orthonormal system $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ such that

$$
\mathscr{L}(X)=\mathscr{L}\left(\lambda_{1} v_{1} g_{1}+\lambda_{2} v_{2} g_{2}+\ldots+\lambda_{d} v_{d} g_{d}\right)
$$

where g_{i} are i.i.d. with distribution $N(0,1)$.
$\binom{* *}{*}$ Anderson inequality [1]. Let X be a symmetric Gaussian vector in \mathscr{R}^{d}, and V a symmetric convex set in \mathscr{R}^{d}. Then for every $a \in \mathscr{R}^{d}$

$$
P(X+a \in V) \leqslant P(X \in V)
$$

The inequality above implies that if X is Gaussian and Y is any random vector independent of X, then

$$
P(X+Y \in V) \leqslant P(X \in V) .
$$

From all α-stable Lévy processes on \mathscr{R}^{d} we distinguish the special one, the so-called "rotation invariant" process denoted by $\hat{X}(t)$. Its characteristic functional depends on $|y|$: for every $y \in \mathscr{R}^{d}$,

$$
E \exp \left(i\left(y, \hat{X}_{t}\right)\right)=\exp \left(-t|y|^{\alpha}\right)
$$

THE MAIN RESULT

Now we can state and prove our theorem.
Theorem. Let $\left(X_{t}, P^{x}\right)$ be an α-stable Lévy process with spectral measure σ and $\sigma\left(S^{d-1}\right)=1$. Let \hat{X}_{t} denote the rotationally invariant α-stable process. Take arbitrary $r \in N$ and let $V_{1}, V_{2}, \ldots, V_{r}$ be any convex symmetric sets in \mathscr{R}^{d} and $0 \leqslant t_{1}<t_{2}<\ldots<t_{r} \leqslant 1$ be any sequence from [0,1]. Then

$$
P^{0}\left(\bigcap_{i=1}^{r}\left(X_{t_{i}} \in V_{i}\right)\right) \geqslant P^{0}\left(\bigcap_{i=1}^{r}\left(\hat{X}_{t_{i}} \in V_{i}\right)\right) .
$$

Proof. First choose and fix any arbitrary orthonormal system in \mathscr{R}^{d}, say
 distribution $N(0,1)$. Put

$$
M(t)=\left(\frac{1}{C_{\alpha}^{\prime} E|g|^{\alpha}}\right)^{1 / \alpha} \sum_{n=1}^{\infty} \Gamma_{n}^{-1 / \alpha} \cdot\left(e_{1} g_{1 n}+\ldots+e_{d} g_{d n}\right) \cdot \mathbb{1}_{\left[U_{n}, 1\right]}(t)
$$

(as usual, $\left(g_{i n}\right),\left(\Gamma_{n}\right),\left(U_{n}\right)$ are independent). $M(t)$ is an α-stable process. For $y \in \mathscr{R}^{d}$ we have

$$
E \exp (i(y, M(t)))=\exp \left(-\frac{1}{E|g|^{\alpha}} t \cdot E\left|\left(y, e_{1} g_{1}+\ldots+e_{n} g_{n}\right)\right|^{\alpha}\right)=\exp \left(-t|y|^{\alpha}\right)
$$

because $g_{1}, g_{2}, \ldots, g_{n}$ are independent $N(0,1)$ variables. Consequently, $M(t)$ is a version of $\hat{X}(t)$. Let

$$
X(t)=C_{\alpha} \sum_{n=1}^{\infty} \Gamma_{n}^{-1 / \alpha} \cdot Z_{n} \cdot g_{n} \cdot \mathbb{1}_{\left[U_{n}, 1\right]}(t)
$$

where $\mathscr{L}\left(Z_{n}\right)=\sigma, g_{n}$ are independent $N(0,1)$ and

$$
C_{\alpha}=\left(\frac{1}{C_{\alpha}^{\prime} E|g|^{\alpha}}\right)^{1 / \alpha}
$$

Fix the points $0=t_{0}<t_{1}<t_{2}<\ldots<t_{r} \leqslant 1$. In the rest of the proof all probabilities and expectations are regarded as conditional: we fix (U_{n}, Γ_{n}, Z_{n}); then the distribution of

$$
X(t)=C_{\alpha} \sum_{n=1}^{\infty} \Gamma_{n}^{-1 / \alpha} \cdot Z_{n} \cdot g_{n} \cdot \mathbb{1}_{\left[U_{n}, 1\right]}(t)
$$

is Gaussian.
Let us put $G_{k}=X_{t_{k}}-X_{t_{k-1}}$ and $Y_{k}=G_{1}+\ldots+G_{k}, k=1, \ldots, r$. If we fix $\left(\Gamma_{n}\right),\left(U_{n}\right)$ and $\left(Z_{n}\right)$, then $G_{1}, G_{2}, \ldots, G_{r}$ are independent Gaussian vectors with values in \mathscr{R}^{d}. It is easy to see that $\left(Y_{1}, Y_{2}, \ldots, Y_{r}\right)$ generates a Gaussian vector in $\left(\mathscr{R}^{d}\right)^{r}$. Observe that if $\tilde{G}_{1}, \tilde{G}_{2}, \ldots, \tilde{G}_{r}$ are other independent vectors such that $G_{n} \stackrel{d}{=} \tilde{G}_{n}$, then

$$
\mathscr{L}\left(\left(Y_{1}, Y_{2}, \ldots, Y_{r}\right)\right)=\mathscr{L}\left(\left(\tilde{Y}_{1}, \tilde{Y}_{2}, \ldots, \tilde{Y}_{r}\right)\right), \quad \text { where } \quad \tilde{Y}_{k}=\tilde{G}_{1}+\ldots+\tilde{G}_{k}
$$

All we have to do now is to estimate the quantity

$$
P\left(\left(Y_{1}, Y_{2}, \ldots, Y_{r}\right) \in V_{1} \times \ldots \times V_{r}\right)
$$

Since, by virtue of (**),

$$
G_{k}=X_{t_{k}}-X_{t_{k-1}}=C_{\alpha} \sum_{n=1}^{\infty} \Gamma_{n}^{-1 / \alpha} \cdot Z_{n} \cdot g_{n} \cdot \mathbb{1}\left(t_{k-1}<U_{n} \leqslant t_{k}\right)
$$

is a Gaussian vector, there exists an orthonormal system, say $\left\{v_{1 k}, \ldots, v_{d k}\right\}$, and numbers $\lambda_{1 k} \geqslant \lambda_{2 k} \geqslant \ldots \geqslant \lambda_{d k} \geqslant 0$ such that

$$
G_{k} \stackrel{d}{=} \lambda_{1 k} v_{1 k} g_{1 k}+\lambda_{2 k} v_{2 k} g_{2 k}+\ldots+\lambda_{d k} v_{d k} g_{d k}
$$

We can find $\lambda_{1 k}$ easily:

$$
\begin{aligned}
\lambda_{1 k}^{2} & =\sup _{|x|=1} E\left(x, G_{k}\right)^{2}=C_{\alpha}^{2} \sup _{|x|=1} \sum_{n=1}^{\infty} \Gamma_{n}^{-2 / \alpha} \cdot\left(x, Z_{n}\right)^{2} \cdot \mathbb{1}\left(t_{k-1}<U_{n} \leqslant t_{k}\right) \\
& \leqslant C_{\alpha}^{2} \sum_{n=1}^{\infty} \Gamma_{n}^{-2 / \alpha} \cdot \mathbb{1}\left(t_{k-1}<U_{n} \leqslant t_{k}\right) .
\end{aligned}
$$

By a similar argument,

$$
\left(y, G_{k}^{*}\right) \stackrel{d}{=} g|y|\left(\sum_{n=1}^{\infty} \Gamma_{n}^{-2 / \alpha} \cdot \mathbb{1}\left(t_{k-1}<U_{n} \leqslant t_{k}\right)\right)^{1 / 2}
$$

(we use the fact that $\left\{v_{1 k}, \ldots, v_{d k}\right\}$ is an orthonormal system). Taking the expectation of Γ_{n}, Z_{n}, U_{n}, we get the desired conclusion.

Remarks. 1. Taking $V_{i}=V, V$ closed, and using standard approximation arguments, we get for $t \geqslant 0$ the estimate $P_{X}^{0}\left(\tau_{V}>t\right) \geqslant P_{\hat{X}}^{0}\left(\tau_{V}>t\right)$.
2. The spectral measure σ of \hat{X} has the mass greater than 1 if $d>1$. Indeed,

$$
\sigma\left(S^{d-1}\right)=\frac{1}{E|g|^{\alpha}} E\left|e_{1} g_{1}+\ldots+e_{d} g_{d}\right|^{\alpha}=\frac{1}{E|g|^{\alpha}} E\left(g_{1}^{2}+\ldots+g_{d}^{2}\right)^{\alpha / 2} .
$$

However, let us take any $v_{1} \in \mathscr{R}^{d}$ such that $\left|v_{1}\right|=1$ and consider

$$
X(t)=C_{\alpha} \sum_{n=1}^{\infty} \Gamma_{n}^{-1} \cdot v_{1} \cdot g_{1 n} \cdot \mathbb{1}_{\left[U_{n}, 1\right]}(t)
$$

and

$$
\hat{X}(t)=C_{\alpha} \sum_{n=1}^{\infty} \Gamma_{n}^{-1 / \alpha} \cdot \mathbb{1}_{\left[U_{n}, 1\right]}(t) \cdot\left(v_{1} g_{1 n}+v_{2} g_{2 n}+\ldots+v_{d} g_{d n}\right)
$$

Put $V=\left\{x:\left|\left(v_{1}, x\right)\right| \leqslant 1\right\}$. Now,

$$
\left(v_{1}, \hat{X}(t)\right)=C_{\alpha} \sum_{n=1}^{\infty} \Gamma_{n}^{-1 / \alpha} \cdot \mathbb{1}_{\left[U_{n, 1]}\right.}(t) \cdot g_{1 n} \stackrel{d}{=}\left(v_{1}, X(t)\right) ;
$$

hence

$$
P_{X}^{0}\left(\tau_{V}>t\right)=P_{\hat{X}}^{0}\left(\tau_{V}>t\right)
$$

But the spectral measure of $X(t)$ has a total mass equal to

$$
\frac{1}{E|g|^{\alpha}} \cdot E\left|v_{1} g\right|^{\alpha}=1
$$

This proves that the inequality is optimal.
3. Assume that $X(t)$ has the spectral measure σ_{X} which is absolutely continuous with respect to the spectral measure $\sigma_{\hat{X}}$ of \hat{X}. Let $\sigma_{X}(d s)=f(s) \cdot \sigma_{\hat{X}}(d s)$ ($\sigma_{\hat{X}}$ is equal to uniform measure on S^{d-1} multiplied by $\left(E|g|^{\alpha}\right)^{-1} \cdot E\left(g_{1}^{2}+\ldots+g_{d}^{2}\right)^{\alpha / 2}$). Assume that $f(s) \geqslant C>0$ for $s \in S^{d-1}$. Then, under the conditions of our theorem, we have

$$
P^{0}\left(\bigcap_{i=1}^{r}\left(X_{t_{i}} \in V_{i}\right)\right) \leqslant P^{0}\left(\bigcap_{i=1}^{r}\left(C^{1 / \alpha} \hat{X}_{t_{i}} \in V_{i}\right)\right) .
$$

For the proof, observe that $X_{t} \stackrel{d}{=} \bar{X}_{t}+C^{1 / \alpha} \hat{X}_{t}$, where \bar{X}_{t} and \hat{X}_{t} are independent α-stable processes and \bar{X}_{t} has a spectral measure $\sigma=\sigma_{X}-C \sigma_{\hat{X}}$. Using the Anderson inequality gives the desired result.

Let us put

$$
G_{k}^{*}=g_{1 k} \lambda_{1 k}^{*} v_{1 k}+g_{2 k} \lambda_{1 k}^{*} v_{2 k}+\ldots+g_{d k} \lambda_{1 k}^{*} v_{d k}
$$

where

$$
\lambda_{1 k}^{*}=\sqrt{\sum_{k=1}^{\infty} \Gamma_{k}^{-2 / \alpha} \cdot \mathbb{1}\left(t_{k-1}<U_{n} \leqslant t_{k}\right)} .
$$

For a moment, let us denote by $\left(g_{i n}^{\prime}\right)_{i=1, \ldots, d}$ a sequence of i.i.d. $N(0,1)$ variables, independent of $\left(g_{i n}\right)$. Observe that

$$
\begin{gathered}
g_{1 k} \lambda_{1 k} v_{1 k}+g_{2 k} \lambda_{2 k} v_{2 k}+\ldots+g_{d k} \lambda_{d k} v_{d k}+g_{1 k}^{\prime} \cdot \sqrt{\left(\lambda_{1 k}^{*}\right)^{2}-\lambda_{1 k}^{2}} \cdot v_{1 k}- \\
+g_{2 k}^{\prime} \cdot \sqrt{\left(\lambda_{1 k}^{*}\right)^{2}-\lambda_{2 k}^{2}} \cdot v_{2 k}+\ldots+g_{d k} \cdot \sqrt{\left(\lambda_{1 k}^{*}\right)^{2}-\lambda_{d k}^{2}} \cdot v_{d k} \\
\stackrel{d}{=} g_{1 k} \lambda_{1 k}^{*} v_{1 k}+g_{2 k} \lambda_{1 k}^{*} v_{2 k}+\ldots+g_{d k} \lambda_{1 k}^{*} v_{d k}
\end{gathered}
$$

Therefore, we can choose independent Gaussian vectors $\bar{G}_{1}, D_{1}, \bar{G}_{2}, D_{2}$, $\ldots, \bar{G}_{r}, D_{r}$ and independent Gaussian vectors $G_{1}^{*}, G_{2}^{*}, \ldots, G_{r}^{*}$ such that for $k=1, \ldots, r$ we have
(a) $\bar{G}_{k}+D_{k} \stackrel{d}{=} G_{k}^{*}$,
(b) $\bar{G}_{k} \stackrel{d}{=} G_{k}$,
(c) $G_{k}^{*} \stackrel{d}{=} g_{1 k} \lambda_{1 k}^{*} v_{1 k}+\ldots+g_{d k} \lambda_{1 k}^{*} v_{d k}$.

Put $\bar{Y}_{k}=\bar{G}_{1}+\ldots+\bar{G}_{k}, Z_{k}=D_{1}+\ldots+D_{k}, Y_{k}^{*}=G_{1}^{*}+\ldots+G_{k}^{*}$. The Anderson inequality implies that

$$
\begin{gathered}
P\left(\left(Y_{1}^{*}, \ldots, Y_{r}^{*}\right) \in V_{1} \times \ldots \times V_{r}\right)=P\left(\left(\bar{Y}_{1}, \ldots, \bar{Y}_{r}\right)+\left(Z_{1}, \ldots, Z_{r}\right) \in V_{1} \times \ldots \times V_{r}\right) \\
\leqslant P\left(\left(\bar{Y}_{1}, \ldots, \bar{Y}_{r}\right) \in V_{1} \times \ldots \times V_{r}\right)=P\left(\left(Y_{1}, \ldots, Y_{r}\right) \in V_{1} \times \ldots \times V_{r}\right)
\end{gathered}
$$

Let us compute the distribution of $\left(Y_{k}^{*}\right)$. Since

$$
G_{k}^{*}=g_{1 k} \lambda_{1 k} v_{1 k}+g_{2 k} \lambda_{1 k} v_{2 k}+\ldots+g_{d k} \lambda_{1 k} v_{d k}
$$

it is easy to see that

$$
\mathscr{L}\left(G_{k}^{*}\right)=\mathscr{L}\left(\frac{1}{C_{\alpha}}\left(\hat{X}\left(t_{k}\right)-\hat{X}\left(t_{k-1}\right)\right)\right) .
$$

Indeed, let $y \in \mathscr{R}^{d}$; then

$$
\begin{aligned}
\left(y,\left(\hat{X}\left(t_{k}\right)-\right.\right. & \left.\left.\hat{X}\left(t_{k-1}\right)\right)\right) \\
& =C_{\alpha} \sum_{n=1}^{\infty} \Gamma_{n}^{-1 / \alpha} \cdot \mathbb{1}\left(t_{k-1}<U_{n} \leqslant t_{k}\right) \cdot\left(\left(y, e_{1}\right) g_{1 n}+\ldots+\left(y, e_{d}\right) g_{d n}\right) \\
& \stackrel{d}{=} C_{\alpha} \sum_{n=1}^{\infty} \Gamma_{n}^{-1 / \alpha} \cdot \mathbb{1}\left(t_{k-1}<U_{n} \leqslant t_{k}\right) \cdot g_{1 n} \sqrt{\left(y, e_{1}\right)^{2}+\ldots+\left(y, e_{d}\right)^{2}} \\
& \stackrel{d}{=} g C_{\alpha}|y|\left(\sum_{n=1}^{\infty} \Gamma_{n}^{-2 / \alpha} \cdot \mathbb{1}\left(t_{k-1}<U_{n} \leqslant t_{k}\right)\right)^{1 / 2},
\end{aligned}
$$

where $\mathscr{L}(g)=N(0,1)$.

REFERENCES

[1] T. Anderson, The integral of symmetric unimodal function over convex set and some probability inequalities, Proc. Amer. Math. Soc. 6 (1955), pp. 170-176.
[2] R. Bañuelos, R. Latała and P. Méndez-Hernández, A Brascamp-Lieb-Luttinger-type inequality and applications to symmetric stable processes, Proc. Amer. Math. Soc. (to appear).
[3] K. Bogdan, A. Stós and P. Sztonyk, Potential theory for Lévy stable processes, preprint.
[4] T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist. 17 (2) (1997), pp. 339-364.
[5] T. K ulczycki, Intrinsic ultracontractivity for symmetric stable processes, Bull. Polish Acad. Sci. Math. 46 (3) (1998), pp. 325-334.
[6] R. Le Page, K. Podgórski and M. Ryznar, Strong and conditional invariance principles for samples attracted to stable laws, Probab. Theory Related Fields 108 (1997), pp. 281-298.
[7] R. Le Page, M. Woodroofe and J. Zinn, Convergence to a stable distribution via order statistics, Ann. Probab. 9 (1981), pp. 624-632.
[8] W. Linde, Infinitely Divisible and Stable Measures on Banach Spaces, Wiley, New York 1986.
[9] P. Méndez-Hernández, A Brascamp-Lieb-Luttinger-type inequalities for convex domains of finite inradius, preprint.
[10] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman \& Hall, 1994.

Institute of Mathematics
Wrocław University of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Received on 20.5.2002;
revised version on 31.3.2003

[^0]: * Institute of Mathematics, Wrocław University of Technology.

