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For a symmetric kernel K(x, X), the order p (K) of the kernel, by defini- 
X + h/2 tion, is the first even integer p 2 2 such that the integral Jx - ,,, (x - X)P K (x, X )  dx 

is nonzero. For p(K)  2 4, the kernel K has negative values. For large n, it is 
well known that kernels of order p achieve MISE = O(n-2p1(2pf  I)) (cf. Parzen 
[6]) and bias B (x) = O (hp) (cf. Berlinet [I]). Thus, for kernels of order p = 4 
which are symmetric with some negative values, MISE = 0 (n-'I9), while for 
kernels of order p = 2 which are symmetric with K 3 0, MISE = O ( t ~ - ~ f ~ ) .  
Despite their negative values, kernels of higher order, with p (K) 2 4, are viable, 
since Gajek in [3] provides a truncation algorithm for eliminating estimator 

- 
negative values while further reducing MISE. 

But, for large n, it is also known that higher order kernels achieve reduced 
bias at the expense of increased variance. As will be illustrated in Section 2, this 
increased variance is directly due to the negative mass in such kernels. Also, 
negative kernel values would seem unnatural or at least superficial. So, the 
attitude taken here is that negative kernel mass is a problematic surrogate for 
some other kernel modification(s), to be determined. 

It is incumbent, then, to address two questions regarding higher order 
kernels : 

(1) How do such kernels mechanically function to reduce bias? 
(2) Is it possible to attain the reduced bias associated with higher order 

kernels without incurring increased variance, especially by eliminating negative 
kernel values and making appropriate compensatory kernel modifications? 

A partial answer to query (1) is provided by Sturgeon [8], who shows that 
the negative mass in kernels of order p = 4 induces a systematic asymmetry in 
the positive parts of such kernels, shifting kernel mass across the observation 
X in the direction of increasing 1 f" (x)l. This has the effect of reducing bias 
everywhere that f is curvilinear. In particular, expected estimator mass is 
thereby shifted from regions where f" (x) > 0, i.e., where f is concave up, to 
regions where f" (x) < 0. 

Regarding query (2), methods have been proposed in efforts to yield the 
MISE of kernels of order p = 4, without resorting to negative kernel values. 
These methods involve local bandwidth variation for kernels of order p = 2. 

The Abramson procedure h (X J = h - (f (Xi))-'" can yield B (x) = 0 (h4) 
(Silverman [7], p. 104) and MISE = O(II-'/~) (Jones [4]) like kernels of order 
p = 4. Terrell and Scott [lo] show, for a normal density and large n, that the 
Abramson procedure is subject to a "nonlocality" phenomenon that degrades 
bias to O ((hjlog h)2), because the varied bandwidth becomes too large at obser- 
vations where the normal density is small. McKay [5] uses a "smooth clipping" 
process to bound (f(Xi))-O.' and shows that the Abramson procedure then 
attains O(h4) bias uniformly on any set where the estimated density can be 
bounded away from zero. 

Fan et al. in [2] use bandwidth variation with h (x) = h-g  (x), requiring 
a pilot estimate of the fimction g (x) = [f(x)/(4 (f" (x))')] 'I5. However, in 141, 
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analysis demonstrates that the Abramson h(X) method is superior to the Fan 
h (x) method, in terms of asymptotic bias and MISE. It  is notable, too, that sirnu- 
lations of density estimation in 121 using h (c) tend to show underestimating 

I f where f" < 0 and overestimating f where f" > 0. Such behavior has been 
shown (cf. [a]) to be typical, in the expected sense, for kernels of order p = 2. 

Here, a new kernel variation technique is developed that theoretically 
attains B(x)  = 0 (h4) and MISE = O ( ~ Z - ~ / ~ ) ,  using an X-invariant bandwidth 
and kernels K 2 0. The method analytically simulates the bias reducing behav- 
ior of kernels of order p = 4 by varying kernel mass. It virtually eliminates the 
variance increment associated with kernels of order p = 4. Unlike the Abram- 
son procedure, this new mass varying procedure does not require any "clip- 
ping", since the need for kernel adaptation fades as f" ( x )  + 0. 

In keeping with query (2), this new kernel variation method is obtained by 
analyzing the impact of negative kernel mass on estimator shape and mass. In 
particular, for observations 5 sufXciently close to an observation X, the effect 
of the negdtive kernel values in K(x, 7) upon the positive portion of K ( x ,  X) 
will be determined when forming the estimator f with kernels of order p = 4. 
So, the kernel adaptations described here are induced by negative kernel mass. 

There are actually two such kernel adaptations. One, mentioned above, 
involves asymmetry. The other, reported here, involves kernel mass variation. 
This mass variation produces a kernel K 2 0 whose mass theoretically deviates 
from I at the observation X by an amount equal to -f"(X) h2/(24f(X)), 
where J ( X )  is the average f value over an interval of length h centered on X. 
For such an adapted kernel, SK (x, X) dx < 1 where f" (X) > 0, i.e., where f is 
concave up, and jK (x, X) dx > 1 where f" (X) < 0. For the kernels studied 
here, it will be shown that the mass variation effect dominates the asymmetry 
effect in terms of reducing bias, for large n. As well, it will be shown that the 
mass variation I f "  (X) h2/(24fo)I is small compared with unity for all obser- 
vations X, for large n. 

The kernels K rigorously dealt with here are rectangular, for analytical 
simplicity. Section 7 provides the basis for an extension of results to continuous 
analogs of K. 

This appears to be the first explicit proposal to vary kernel mass to 
achieve reduced bias. Kernel mass variation is used, but only implicitly and 
along with bandwidth variation, in Terrell and Scott [9], where the estimator 
is nonnegative but does not integrate to 1. 

2 PRELIMINARIES 

It is assumed that the unknown density f is strictly curvilinear and that 
f is in C4, with bounded support S ( f )  on the real line R. 

DEPINITION 2.1. For any h > 0 with h = hl + hz, h 1x1 denotes the open 
interval of length h centered on x. The open interval of length h, centered on 
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x is hl  [x], while h2 [XI is the disjoint symmetric set h [x] -hl [x] with length 
h, = h -h, > 0. Integral averages of f ( - )  over the intervals h1 [x] and h2 [x] 
are written as 

= ( l / h j )  j f(t)db, j =  l , 2 .  
h j b l  

DEFINITION 2.2. For any suficiently small h > 0, the sets 

define nontriviaI proper subsets of S ( f )  on which f is concave up and concave 
down, respectively. Their union is denoted by 

ch = cu (h) U C D  (h). 

The sets CU(h), CD(h) and C,, are closed subsets of S(S). To see this, 
consider any maximally contiguous open portion P of S ( f )  on which 
f" (.) > 0. If the length of P exceeds h, P contains a subset A of CU (h) which is 
maximally contiguous within P. The endpoints of A, generically denoted by x,, 
are precisely a distance h/2 from either an endpoint of S ( f  ), which is closed and 
bounded, or an idection point off (x). Since f" (x) > 0 on h [xo],  xo lies in A. 
Thus A is closed. If the length of P equals h, P contains an isolated point 
p, belonging to CU (h). If the length of P is less than h, P contains no part of 
CU(h). Since S ( f )  is bounded and h is a fixed width, CU(h)  is the union of 
a finite number of disjoint closed intervals and possibly a finite number of 
separated points. So CU(h) is closed. A similar argument holds for CD(h). 

From Proposition 2.1 in [8] we obtain 

(2.1) 
OnCU(h): 0 < f ( x )  < f i ( x )  < SIX).  

. . 
OnCD(h): 0 < f , { x )  < x ( x )  < f (x) .  

The kernels K, and K, analyzed here are symmetric and rectangular. K, is 
nonnegative and K, assumes negative values in its extremities. These kernels 
are defined as follows. 

DEFINITION 2.3. For U > 0, 

where kl (U) = ( 1  + U)/hl and k, (U)  = - U/h2 and where, referring to Defini- 
tion 2.1, 
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DEFINITION 2.4. The parameter f i  is defined as b =  h/hl > 1. Note that 
h2 = h1 (8- 1). 

The kernel K, is symmetric, rectangular or uniform, and has order 
p(K,) = 2. The kernel K, is symmetric and rectangular, formed by symmet- 
rically appending negative mass -U/2 to each extremity of KT and rescaling 
to ensure that JK,(X, X)dx = 1, By Proposition 4.4 in [8], the kernel K, has 
order p(K,) = 4 if and only if its negative mass is specified by 

- 
Subsequently, p (K,) = 4. 

DEFINITION 2.5. The positive part of a kernel K is denoted by K f .  Note 
that K: = K,[l+U). 

DEPINITION 2.6. For n observations {X, Y,, . . ., Y,-,), giving rise to the 
kernels {K,(x, X), K,(x, Yl), . . ., K,(x, Y,-l)), K,(x, X) is defined at x in 
h, [XI as K: (x, X) modi6ed by the negative parts of the K, (x ,  Y,). Of the 
n - 1 5 values, Nl (x) lie in h, [x] and, for small hl , their kernels are assumed 
to equally absorb the negative contributions of the N2 (x) kernels K, (x, 5) for 
5 that lie in h, [x]. The function K,(x, X) is written in the form 

Kn (x, X )  = Li[x~ (4 [k I (U) + [N2 (x)/(Ni (4 + f)] k2 W)]  + 

The expected shape of K , ( x ,  X), considering the random q, is denoted by 
a,(& XI. 

By Proposition 4.1 in [a], R,(x, X) is written for any X in Ch as 

(2.3) XI = lhl[~] (XI (v + k 2  (U) H (x, 41 y 

H(x, 4 =f i (x )hz~1  (x), 

Sl(x) = l + ( l - f , ( ~ ) h ~ ) + ( l - f , ( x ) h ~ ) ~ +  . . . + ( l - ~ ( ~ ) h ~ ) ~ - ~ .  

K,(x, X )  is considered to be an adaptation of K: (x, X) = K, (x, X) (I + U) 
induced by the mean impact of - U masses in K, (x, Y) for Y near X, and can 
also be considered as an adaptation of K ,  due to the use of the negative kernel 
mass - U. 

DEFINITION 2.7. Referring to equation (1.2), MISE = IB2 + IVAR defines 
the integral squared bias and the integral variance. 

Regarding an evaluation of IB2, for f in C4, the bias can be written (cf. 
[I]) for any symmetric kernel K of even order p on support h[X] as 

(2.4) B (4 = ( l / ~  !) (h/2IP f (xo) M ,  (a, 
where f (P ) (~o)  is the pth derivative of f evaluated at a point xo in h [x] and 

13 - PAMS 23.1 
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By equation (2.4), the bias, using a kernel of order p = 2, would be zero on any 
interval where f"(x) = 0; hence f  has been taken to be strictly curvilinear. 

It can be shown that 

Also, by Definition 2.4, equations (2.4) and (2.5), the absolute bias IBw(x)l for 
K,, although of order O(h4), increases in proportion to P2. So, there is reason 
to keep p "small". 

CONDITION 2.0. Referring to Definition 2.4, it is assumed that h, depends 
on n so that h ,  + 0 and nhl + m as n 4 a. This behavior will become explicit 
in Sections 3 and 4, where h, will be MISE-optima1 for a particular kernel. 

D E ~ O N  2.8. For positive n-independent quantities A  and 3, A  4 B or 
3 & A means that A/B < 0.1. For positive quantities A and 3, one or both of 
which can be n-dependent, A 4 B means that A is neghgible compared with 
B for the n being considered and that A/B 5 0 .  

For unequal quantities A and B, A w 3 means that A and B are ap- 
proximately equal. When one or both of the quantities are n-dependent, A FZ B 
further means that limn,, A = lim,,, B. For Lebesgue measurable sets A and 
3, with A s B ,  where one or both sets can be n-dependent, A z B means that 
L (B - A) -g L (B), where L (E) is the Lebesgue measure of the set E. 

CONDITION 2.1. Referring to Definition 2.4 and equation (2.2), P is con- 
sidered "large" when U2 4 U 4 I, a strategy that will simplify the analysis. As 
remarked above, bias increases with B. Hence there is a need for a minimally 
large B. For this purpose, a working value of "large" /3 is fl = 3, with U = 1/12 
by equation (2.2). Subsequently, large will refer to B = 3. It follows for large 
P that h1 fl: 0. 

LEMMA 2.0. Ch 7 S ( f )  as hJ 0, where aJinite number N of endpoints of S  (f) 
and inflection points of f care the final accumulation points of a growing Ch. 
Further, for large n, L (S ( f )  - Ch) = 0 (k). 

P r o  o f. Referring to Definition 2.2, for large n, the set difference S ( f )  - Ch 
consists of tail portions of f  and neighborhoods of inflection points of f, each 
of length h/2 and hl , respectively. Since S  ( f )  is compact and f E C4, there are 
a finite number of such intervals in S (  f )  - Ch, since for appropriate S > 0 and 
E > 0 ,  { x - ' ( 6 ,  E)) and { f " - l  ( - E ,  E ) )  are open covers of tail and inflection 
point portions of S ( f ) - C h ,  respectively. It follows, for a minimally small N ,  
that L ( S ( f ) - C , )  < Nh. BI 

D m m  2.9. The supports of the functions f, (x) and f, (x) are denoted 
by S  (fi) and S (A), respectively. The interior of the support of a function g (x) is 
written as So (g) = ( x :  g  (x) # 0) .  

LEMMA 2.1. R = s(&) = ~ ( f , )  3 S ( f )  = C,. 
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Proof.  Referring to Definition 2.1, sets S (x) and S ( f l )  each extend 
beyond S ( f )  by distances h/2 and k1/2, respectively, at each point of 
S(f)-So(f). 

CONDITION 2.2. Subsequently, large n means that h = fl  h ,  is saciently 
small so that 

(4 c, = S I f ) ;  
(ii) h f  (x )  g 1, where h f  (x )  s jhIx, f (t)dt for any x in R; 

(iii) f, ( x )  FZI fi (x) and f, (x )  w f ( x )  for any x in R; 
(iv) N/n  x 0 and - 

(v) the usuaI asymptotic approximations for B(x),  VAR(x) ,  MISE and 
MTSE-optimal hl can be employed. 

DEFINITION 2.10. Large (n, P) means simultaneous compliance with Con- 
ditions 2.1 and 2.2. 

DEFINITION 2.11. A kernel is called a subkernel, a true kernel, or a supra- 
kernel if jK ( x ,  X) dx < 1, JK ( x ,  X )  dx = 1, or JK ( x ,  X) dx > 1, respectively. 

DEFINITION 2.12. The functions (x) and fw(x) denote the estimators of 
f using the kernels Kr and K,, respectively. Bias, variance, etc., will be sub- 
scripted in a similar fashion. MISE(K,), e.g., will denote the mean integral 
squared error for the estimator using the kernel K,. 

DEFINITION 2.13. Ex ( -  ) denotes expectation with respect to f (X) .  

PROPOSITION 2.1. For estimators based on the kernels K, and K, we have: 

En (jl, (4) = Ex {Kr ( x ,  XI} = f1(x) 
and 

E , { L  tx))  = Ex{Kw(x, X)} = ( I +  U) J;1 ( x ) - ~ f i ( x ) .  

P r o  of. For an estimator based on a kernel K, En { f ) = Ex { K )  follows 
since the Xi are independent and identically distributed. To evaluate 
Ex ( K ( x ,  X)), reconfigure the kernel as a' function of X for fixed x. 

COROLLARY 2.1. For any kernel K ( x ,  X), whether it be a subkernel, a true 
kernel or a suprakernel, or if its shape depends on X ,  

For x in R, it can be shown (6. Section 4 in [8]) that 

(2.6) 
vmr (x)  = ( l /n)  I( f, (x)/h 1) - 7: ( X I ]  9 

VAR, (x )  - VAR,  (x )  = (nhl)- [A  (x)  U2 + 21 (x)& (x)  U ]  , 

where 



PROPOSITION 2.2. FOP x in R and large (n, fl), 
A ( x  1 .  ( x )  I ( x )  w 1, 

(2.7) V A R w  (x)  * V A R , ( X ) + ~ U ~ ,  (x)(nhl)-I > VARr (x),  

(2.8) VAR, (x) w & (x)  (nhl)- , 

(2.10) MSEw(x)* ( X ( x ) + ~ ( f , ( x ) - f i ( x ) ) - f  (x))=-f-J;1(x)(l+2w(nhl)-'. 
- 

P r o  of. Use equation (2.6) with h2 = hi w- 1), U2 4 U and, e.g., 
hl 7; ( x )  < f2 (x) since A1& (x) 4 1. For example, let us show that 
A(x)  1.52 (x). In this case we have 8 = 3 and, by Definition 2.4, 

Then, using Condition 2.2, we obtain 

where, for x in R, 

lim A(x) = lim 1.5x (x )  = 1.5f (x).  r 
0'41 n- m 

Equation (2.7) illustrates the increase in variance due to the use of negative 
kernel mass. For large (n, p), 
(2.1 1) VAR, (x)  x VAR, (x )  (1 + 2U). 

LEMMA 2.2. For large (n, p),  
~ ( s ( f , ) - s ( f ) )  < ~(sG)-sdf)) < ~(s( f l -ch)  

and 

L(s(&)-s(~; , ) )  < L(S( f ) -Ch)-  
Proof. For every tad portion of f  of length h/2 in S ( f ) -  Ch, there is 

a subset of s(&J- S  (f) of length h/2, a subset of s(&) - S  ( f )  of length hl/2 and 
a subset of S  ( f i )  - S (f,) of length Ia2/2. S O -  Ch contains neighborhoods of 
inflection points of J; while the sets sCf1)- S(f) and S ( & ) - ~ ( f )  do not. H 

LEMMA 2.3. For large n, 

P roof. Referring to Lemmas 2.0 and 2.2, for some minimal N and large n, 
we have 
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PR~POSITION 2.3. S(MSE,) = s (f,) and S (MSE,) = s (fi). 
F r o  of. From Proposition 2.1 and Corollary 2.1 we obtain S (B$ = s(L), 

S (VAR,) = s (A), S (B,) = s (5) and S {VAR,) = s (5). I 
PROPOSITION 2.4. For large (n, 8), 

MISE (K,) = I M S E ,  ( x )  dx z 1 MSE, (x) dx 
sfil stn 

and 
- 

MISE (K,) = j MSE,  ( x )  dx % j MSE, ( x )  dx. 
SCN S(fl 

P r 0 of. Use Proposition 2.3. Referring to equations (2.9) and (2.10) as well 
as Condition 2.0 we see that MSE, (x) and MSE, (x) are bounded on the sets 
s (fl) - s (f) and s (L) - s (f ), respectively. Then use Lemma 2.3. For example, 

MSE, (x) = f i  ( x )  - 2f (x) f ,  (x )  +f ( x )  + (xl/((nh~) 

From Lemma 2.3, for some x ,  in S (A) -S  (f ), we obtain 

j MSE, (4 = f, ( ~ 0 )  Nh/(nh 1) = (N/n) (h/h 1 )  fi (xo) Y 

sul) - stn 

where N/n  = 0, h/hl = j3 = 3 and fl (xo) = 0. 
.Note that a boundary effect due to an X-independent bandwidth h, where- 

by the support off strictly includes S ( f ) ,  has been accommodated in Proposi- 
tion 2.4 for the MISE associated with kerneIs K, and K,. 

3. INDUCED KERNEL MASS VARIATION 

The formula for K,,(x, X )  in equation (2.3) will now be refined to show 
that it contains an f "-related pattern of U-induced mass variation over X 
in Ch.  

PROPOSITION 3.1. For large n and X in Ch, 

Proof. Begin with equation (2.3) and Definition 2.3. Convergence of the 
geometric series L b O z m  = (l-z)-' for 0 < z = 1 -x (x )  hl < 1 implies that 

1+z+ ...+ = ( I -  2) - l  ( 1-zn-1). Ea 
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D ~ T I O N  3.1. The sets {X E CU: h [XI c CU) and ( X  E CD: h [XI c 
CD) are denoted by CU* and CD*, respectively. The union CD*uCU* is 
denoted by Cz. 

%EM 3.1. For large (n,  p), Ct w Ch.  

Proof. C: is formed from Ch by deducting a finite number of intervals of 
length h/2 from the edges of C,. Let this number be m. Then 

- 
Consequently, for large In, /I), L(C$) w L(Ch) and 

hoposmo~ 3.2. For Earge n, B,(x, X) is a suprakernel for X in CD*. 

Proof, By definition, X E CD* * h [X] c CD. Then, for x E h [ X I ,  
0 < f, (x ) / f i  (x) < 1. For large n, 0 < f, (x) hl 4 1. Thus, in equation (3.1), U is 
multiplied by a positive quantity. s 

kmmu 3.2. For large n and x in R, 

P r o  of. By Taylor's theorem, for y = t - x  E [- h/2, h/2], fixed x and var- 
iable t, f (t) = f (x + y) = f ( x )  + f' (x )  y + f" (x )  y2/2. Then, e.g., 

where the integrals are evaluated by using Definitions 2.1 and 2.4 to incor- 
porate the parameter 8. 

DEFINITION 3.2. Subsequently, it is assumed that h, is MISE-optimal for 
an appropriate kernel so that, for large n, h1 = 0 (n-Y), where 0 < y < 1/5. The 
appropriate kernel and the value of y are to be determined. This particular 
dependency of hl on n is denoted by hl (n). 

LEMMA 3.3. For Earge n, h1 (n) = c (n) Mn-', where M > 0 is a constant and 
c(n) = 1 is bounded awayfr.orn zero. Considering n to be a continuous variable we 
have 

dhl (n)/dn w c (n) Md (n-?)/dn. 

Proof. If, e.g., hl is MISE-optimal for the kernel K,, then, as shown in 
[S], h1 = 0 (n-'I5) and for a constant M, > 0 and a function of n, c,(n), which 
is approximately unity for large n, h1 (n) = c, (n) M ,  n- '1'. ~s 

PROPOSITION 3.3. For large n, R,(x, X) is a subkernel for X in CU*. 
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P r o  of. By Definition 3.1, X E CU* - h [XI c CU. By Condition 2.2, for 
x in h [XI, fi ( x ) / x  (x )  5 1. Using Lemma 3.2 for x in CU, for large n, we have 

where, by definition, c (x )  = f" (x )  I'J+ 1) b/(24 f (x)). Also, 0 < c (x )  h: + 1. For 
equation (3.11, define 0 < Tl (x, n) = (1 - f ,  (x )  h,ln-' < 1. Referring to Defini- 
tion 3.2 and Lemma 3.3, take h ,  = h1 (n) and define d ( x )  = c (n) M Z  (x). Since 
d(x)  > 0 and y < 1/5,  it follows that 

Then for large n the ccoeffcient of U in equation (3.1) is approximately 

It will now be shown that c(x )  h f  (n) dominates TI (x, n) for large n so that the 
coefficient of U in equation (3,l) is negative for X in CU*: 

Using 1'HBspital7s rule to evaluate limn,, In Tljx, n) and, b y  Lemma 3.3, 
treating c(n)  ss 1 as a constant reIative to n, we obtain 

lim In TI ( x ,  n) = lim (- ynl-Y d (x)),  
n+ m n+ m 

so that 

Next, let TI ( x ,  n) = b ( x ,  n) exp (-ynl-Y d(x)) ,  where for large n and x in CU, 
by definition, b ( x ,  n) x 1. Then, since eY % y for large positive y, we have 

c(x )  hi(n)/Tl (x,  a) = c(x)c2(n)M2 exp (ynl-Yd(x))/b(x,  n) 

By Definition 3.2 and Lemma 3.3, for 0 < y ,< 1/5 and c2(n) > 6 > 0, we have 
Q ( x ,  n): a. . 

COROLLARY 3.1. For large n and X in Ct, 

Proof. In Proposition 3.3, the coefficient of U in equation (3.1) is ap- 
proximately Tl ( x ,  n) - c (x )  h;' (n) w - c (x)  h: (n) x 1 - ( x ) / f ,  ( x )  for X in CU*. 
A similar analysis holds for X in CD*. 
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DEFMTION 3.3. For large n and X in Ct,  a mass-adapted kmnei that 
approximates K, and is particularly amenable to the evaluation of estimator 
performame using mass-adapted kernels is 

(3.3) Krn(x7 a ~)(1+U(1--f i(x)/X (xj)) 2 0. 

PROPOSITION 3.4. For large (n, 8) and X in Ct, K, (x ,  X) = K,(x, X) and 
Km emulates R, in terms of kernel mass variation and asymmetry. 

Proof. For large (n, #I), K, w K, since U 1 and the coefficient of U in 
equation (3.3) is a small fraction. Also, K, 2 0 and S(K,) = SI_K,) = hl [XI. 
Referring to equation (2.1), K, is a reduced version of R,, and so is a subkernel 
for X in CU*. K, is an elevated version of K,, and so is a suprakernel for X in 
CD*. The term - fi (x)/fi (x) w - 1 in equation (3.3) gives K ,  a distinctive 
asymmetry, since 

(3.4) dldx ( - T, (x)/Z (XI) = -f ' Ix) (5 - f i  (x))/7l(xl. 

Thus the sign of d/dx (K, ( x ,  X)) opposesf' (x) on CD and is the same asf'(x) on 
CU. This same kind of asymmetry is shown for R, in Proposition 4.5 in [8]. rn 

PROPOSITION 3.5. For large n and X in C z ,  

(3.51 K, (x, X) K, (x, X) (1 -f" (x) h:/(24f (XI)) b 0. 

Proof. Use equation (3.3), Lemma 3.2 and equation (2.2). 

DEFINIT~ON 3.4. For large (n,  P) and X in C:, a mass-adapted kernel that 
approximates R, and is amenable to pilot estimation of the factor that rnod$es 
the slope and mass of K, is 

PROPOSITION 3.6. For large (n, p), the definition of the kernel K ,  in equa- 
tion (3.3) can be extended from X in Cz and x in Ch to X in So (f) and x in S( f )  
without incurring negatiue or infinite kernel values. 

Proof. Referring to Definition 3.1 and Lemma 3.1, the set S(f)-C,* 
consists of (i) small tail portions off and (ii) small neighborhoods of inflection 
points off.  

In case (i), s ( & ) z s ( ~ )  2 S(f) and 0 < 6, < fl(x) < &(x) with &(x) % 

w 5 (x) and U 4 1. 
In case (ii), (x) > a2, &(x) w fi (x) and U < 1. FS 

The proof of Proposition 3.6 states that K, (x, X) % K, (x, X) for large 
(n, B> and for X in So (f) and x in S (f) - Cz. We can now write a defmition of 
Km(x, X) that extends its domain to x in R, i.e., to x in S (fi)-S (f), by 
appealing to the notion that kernel mass adaptation is not required to reduce 
bias "where" f" (x) = 0. Recall that Lemma 2.0 states that S (f) - S o  (f) consists 
of a finite number of points. Also, the assumption f E C4 implies that f, f '  and f" 
all smoothly go to zero on S(f)-So(f). 



Variable kernel mass in density estimatiov 201 

DEFINITION 3.5. For x in R - S ( f )  and any ;rr' in So (f), define 

so that for X in So (f): 

C ~ r ( ~ x , ~ ) [ l + ~ ( l - Z ( x ) / X ( x ) ) ]  f o r x h S ( f l ,  
(3.8) K,(x,  X) = 

&(x, J3 for x in R - S o .  

Definition 3.5 avoids boundary effects that would otherwise evolve from 
K, as written in equation (3.3) because, by Lemma 2.1, the domain sf  K, (x, X )  
reaches the edge of ~ ( f i )  and the ratio f, (x)/f, (x) approaches oo as x in So (A) 
approaches an edge of ~ ( f , ) .  

In practice, equation (3.8) is tantamount to using K, in lieu of Km at values 
of Xi near an edge Xo of So ( f )  where f" (Xi) is deemed to be sufficiently small. 
In theory, such Xi are within a distance h1/2 of X o .  

The kernels R,, K,, and K ,  in equations (3.1), (3.6) and (3.8), respectively, 
all involve the unknown density$ In practice, a pilot estimate off would be 
required to formulate the kernels. In this theoretical discussion, however, it will 
s a c e  to treat f as an unknown but differentiable and integrable function. 

4. ESTIMATOR PERFORMANCE USING VARIABLE KERNEL MASS 

The discussion now focuses on the kernel K,(x, X) in equation (3.8), 
which adapts kernel mass in a manner analogous to K, for X in C$ and x in 
Ch and otherwise behaves like K,(x, X) for large (n, 8). 

The asymptotic properties of fm(x) = EK,(x, Xi) will now be developed. 
In particular, it will be shown that MISE (K,) = 0 (n- '!') when hl (n) is MISE- 
optimized for the kernel K,, and that y = 119, so that indeed y < 115, as in 
Definition 3.2. 

PROPOSITTON 4.1. f i r  large (n, #?) and x in S (f ), 
(a) B m  = B w  (x) = 0 (h: (n)), 
(b) VAR, (x) x VAR, (x). 

P r o  of. Note that x E S (f) * x E So (x). To prove (a), from Corollary 2.1 
and equation (3.8), for any (n, j3), we infer that 

So, referring to equation (2.4), we have B, (x) = B, (x) = 0 (h4) = P4 0 (h: (n)), 
since p (K,) = 4. 

To prove (b), from equations (1.1), (3.3) and (4.1), for any (n, /3), we see that 
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implies 

(4,2) V A R ,  (x) = (1  + U ( 1  - fi (x ) / f l  (x)))' VARp (x). 

Using equations (2.2) and (3.21, with (x) w f i ( x )  for large n and U 4 1 for 
large p, we infer that equation (4.2) takes the form VBR,(x) % VAR,(x). 

In fact, VAR,  (x)  is slightly larger than VAR,(x) on CD and slightly srnal- 
ler than VAW,(x) on CU. 

COROLLARY 4.1. FOP large In, fl and X in So (f), the mass-adapted kernel 
K, essentially eliminates the variance increment associated w i s  the negative 
mass - U in K,. 

Pro of. From equation (2.7) we get 

V A R ,  (x )  = VAR,  (x)  + 2u f1  (x)/(nhl). 

Squaring the term on the right-hand side of equation (4.2) and implementing 
equation (2.8) with U2 4 U, we obtain 

14-31 V A R ,  (x )  = VAR,  (x )  + 2~ (fi (x )  - fi b))/(nhl) 

= VAR, (x )  - 2Ufi (x)/(nh 

So, the variance increment 2Ufi (x)/(nhl) in VAR,(x) is offset b y  the term 
- 2 ~ &  (x)/(nhl) in V A R ,  (x), with Tl (x) E & (x )  for large (n, fi). H 

LEMMA 4.1. For x in R - S ( f ) ,  

VAR, (x )  = VAR,  (x),  MSE,(x) = MSE,(x). 

P r o  of. For x in R -S (f ), from equation (3.7) we get fm(x) = $ (x), 
3, (x)  = B, ( x )  and VAR, (x )  = VAR,  (x), so that MSE, (x )  = MSE, (x).  ra 

P ~ o w s r n o ~  4.2. For large (n, B), hl (n) = O (n-lI9) a d  MISE (K,) = 

= 0 ( ~ - * / 9 ) .  

P r o  o f. By definition, 

MISE (K,) = 1 MSE,  (x) dx+ j MSE,(x) dx. 
R - S ( f  1 s(f) 

Invoke Lemma 4.1. Also, from Proposition 2.3 we obtain S(MSE,) = ~ ( f i ) ,  so 
that 

MISE(K,)= j MSE,(x)dx+ 1 MSE,(x)dx. 
sLF1,-su, S(f 1 

Referring to the proof of Proposition 2.4, MSE,(x) is bounded on the set 
S ( f i ) - S ( f )  and L ( s ( ~ ) - ~ ( f ) )  = O(h). So, for large (n, f l y  
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From Proposition 4.1 we get 

MISE (K,) = j B t  (x) + VAR, (x) dx . 
S(J1 

Then, using equations (2.4), (2.5) and (2.8), we have 

By Lemma 4a in [6], the optimal hl (n) to minimize MISE(K,,,) 4s approxi- 
mated by 

(4.5) hl (n) = 4.259 [I [ f (')(x)I2 dx] -IJ9 n - l i g .  rn 
R 

Since the support for f is bounded and the bandwidth h (or hl )  is indepen- 
dent of X, the support of the estimator f ( x )  can include the support off. This 
has a boundary effect on B (x), VAR (x) and MSE (x), as indicated in equations 
(2.7H2.10). But, as demonstrated in the proof of Proposition 4.2, the integral 
boundary effect on the MISE associated with the kernel K, is neghgible. 

The estimates of hl (n) in equation (4.51, off" (x)/f (x) in equation (3.6), and 
of &(x)/fi(x) in equation (3.8) would be data-based and would degrade at- 
tained MISE, an important issue beyond the scope of this study. 

5. COMPARING THE KERNEL ASYMMETRY A N D  KERNEL MASS ADAPTATIONS 

There are two distinct U-induced adaptations in K,, involving (i) variable 
kernel mass and (ii) kernel shape asymmetry. Here, these two adaptations will 
be compared in terms of their asymptotic contributions to bias reduction. To 
do this, referring to Proposition 3.4, the shape asymmetry in equation (3.4) will 
be isolated and imposed upon the true kernel K,. The kernel K, in Defini- 
tion 3.5 already incorporates both adaptations. 

PROPOSITION 5.1. For large (n, /3) and x in Ch: 
(a) The bias reduction achieved by fm relative to due to the combination of 

U-induced kernel mass and kernel shape variations is 

(b) The bias reduction achieved by fm relative to j'; due only to the U-in- 
duced kernel asymmetry is 

dB* (x) = U IZ (4 -  f, (x)lm Ix -XI - I f '  (x)l/Z 1x1, 

where X is the expected value of X over the interual hl [x]. 
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Proof. First we show (a) for, e.g., x in CD. From Definition 3.5, the 
expected rise at x in the estimator f,,(x) relative to (x) due to the suprakernel 
status and asymmetry of K, is 

E n  ifrn ( 4 )  - En {i (4) = Ex {Krn b 3 XI - KF b 3 XI1 

= EX {K, ( x ,  X )  U (1 - f3 ( ~ ) / f i  ( X I ) ]  = fi (4 U (1 - Z (~11.Z (XI). 
Now we show (b) for, e.g., x in CD where f ' ( x )  > 0. Referring to Proposi- 

tion 3.4, define an asymmetry-adapted true kernel variant of K, as 

where, from equations (3.4) and {3.8), for x in CD we .get 

and p (x )  w 1 ensures that Kra integrates to 1. Then for fixed but arbitrary x we 
get 

B x { K , ( x ,  m1 = Ex{Kr(x,  r n ) + b ( x ) ( x - X ) J , ( x ) ,  
where 

PROPOSITION 5.2. For large (n, fl) and x in Ch, the bias reducing efect of 
U-induced K, muss variability dominates the bias reducing eflect of U-induced 
K, asymmetry. 

Proof. Referring to Proposition 5.1, we get 

AB,(x)/AB, (4 = Ix-81 l f '  (x)l/fi (4. 
At a fixed x in Ch, for large n, the factor f' ( x ) / f i  ( x )  is close to f '(x)lf (x). 
Referring to Lemma 3.2 and equation (5.1), 

h1/2 

H - x  = ~ = ( h , f , ( x ) ) - ' .  I f (x+y)ydy  
-kt12 

x f1(x)hh:(n)/(12%(x)) 5 0 .  H 

As a consequence of Proposition 5.2, for large (n, P) and X in Cz ,  equation 
(3.5) can be rewritten to focus on kernel mass variation: 

DEFINITION 5.1. For large (n ,  fl), X in Cz and x in Ch, a mass-adapted 
kernel that approximates a, and is amenable to pilot estimation of the factor that 
rnod$es the mass of KK, is 
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. . By equation (5.2), the mass change in the kernel K, relative to K,, for X in 
C;, is 

PROPOSIT~ON 5.3. A variation of Km in equation (3.8), definedfor large ( n ,  
and X in Soif), that focuses on kernel mass adaptation is 

~,(x,a[1+~(1-3;,(x)/f,(X))I for x in sen, 
(5.5) Km, (x, XI = 

Kp I& X) for x in R - S ( f ) .  

Proof. The right-hand side of equation (5.2) can be approximated by 
using (X) =Y f (X), while avoiding boundary problems associated with f  (X) 
approaching O as X approaches a point in S (f) - So (f ). Then the domain of 
the right-hand side of equation (5.2) can be extended from X in Cz and x in 
Ch to X in So (f) and x in S (  f), using Lemma 3.2 and equation (24 ,  whereby 

The kernel Kml is the simplest version of K,, incorporating only variable 
kernel mass, the dominant souce of U-induced bias reduction for large (n, #I). 
It can be shown that the estimator Al = ( l /n)x Kml ( x ,  Xi) has the same as- 
ymptotic properties asfm. Also, the mass of eitherfm orfm1 can be corrected by 
using Gajek's P-algorithm in [3]. 

By virtue of the definition of K, in equation (3.8) and the definition of 
K,, in equation (5 .3 ,  there is no "clipping" problem associated withfm orfml, 
in the sense that either f, (x ) / f l  (x)  x 1 for x in S ( f )  near the edges of S ( f )  or 
f, (X) /Z  (X) w 1 for X in So ( f )  near the edges of So (f ), so that neither ratio 
requires artificial bounding or "clipping". 

It has been assumed that the effect of the Gajek truncation on the variable 
shape or mass of the kernel If, is relatively insignificant. 

6. KERNEL MASS VARIATION 

It will now be shown that the mass variation induced by - U in 
Kml ( x ,  X )  is small with respect to unity for all observations X, for large (n, 8). 

PROPOSITION 6.1. For large (n, B), the change in kernel mass, AM (X) ,  for 
K m l ( x ,  X )  relative to K,(x ,  X) in equation (5.5) satisfies the condition 
A M ( X )  4 1.  

Proof. Referring to equation (5.51, 

16-11 A M ( X )  = ~ [ 1 - ( f , t x ) / f i ( x ) ) l .  

By  Condition 2.2, for X in So ( f ) ,  we have 

fi (Wfi (x) S f  (mlf ( X )  = 1 .  
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For large (n, /I), from Lemma 3.2, for X in So(f), we obtain 

where cl (X) = f" (X) (b + 1) (~)/(24fl (x)) and Icl (a1 h? (n) < 1. Thus, for X in 
so (f 1, 

IAM(X)I = U.lc l (X) l .h:(n)  -=-$ U = 1/12 < 1.  H 

COROLLARY 6.1. Referring to equations (5.2)-(5.4), for X in So(f), 

Proof. From equation (2.2) we obtain U = l/B(~?-k 1). H 

7. AN EXTENSION TO CONTINUOUS KERNELS 

Continuous analogs of the kernels K ,  and K, are denoted by Kc and K,,, 
respectively, with bandwidths hlc  and h, = fie hl, and negative mass - Uc in 
K,, over the split interval hZc [XI = h, [XI - hl, [XI. By Proposition 3.1 in [g], 
K,, w e  K,) shifts expected estimator mass from CU to CD. For large (n, PC), 
it is anticipated that this mass shift is accomplished largely by kernel mass 
variation akin to that in equation (5.4). 

A generalization of Definition 2.6 must account for the fact that K;, (x, X) 
goes to zero at the edges of h,, [XI and is limited, in terms of absorbing 
negative value, by its value at x. An extended definition of K, can be written as 

Subsequently, analysis of the continuous kernel case should parallel that for 
rectangular kernels. 

REFERENCES 

[I] A. Berlinet, Hierarchies of higher order kernels, Probab. Theory Related Fields 94 (1993), 
pp. 489-504. 

[Z] J. Fan, P. Hall, M. Mart in  and P. Patil, On local moothing of nonparametric curve es- 
timators, JASA 91 (1996), pp. 25S266. 

[3] L. Gajek, On improving density estimators which are not bonafide functions, Ann. Statist. 14 
(1986), pp. 1612-1618. 

[4] M. C. Jones, Variable kernel density estimators and variable kernel density estimators, Austral. 
J. Statist. 32 (1990), pp. 361-371. 

[5] I. McKay, A note on bias reduction in variable-kernel estimates, Canad. J .  Statist. 21 (1993), 
pp. 367-375. 

[q E. Parzen, On estimation o f a  probability density function and mode, Ann. Math. Statist. 33 
(1962), pp. 10651076. 



Variable kernel mass in density estimation 

[7] B. W. Silverman, Density estimation for statistics and data analysis, Chapman and Hall, 
New York 1990. 

[a] M. S t  urgeon, Mass shifting roles of negative kernel mass in density estimation, Ann. Inst, 
Statist. Math. 48 (1996), pp. 67%686. 

{9] G. R Terrell and D. W. Scott, On improving convergence rates for nonnegative kernel 
density estimators, Ann. Statist. 8 (1980), pp. 116&1163. 

[I01 G. R. Terrell and D. W. S c o t t ,  Variable kernel density estimation, Ann. Statist. 20 (1992), 
pp. 1236-1265. 

Department: of Mathematics 
Salem State College 
13  Castle Circle 
Peabody, MA 01960, U.S.A. 

Received on 7.1 0.1 998; 
revised version on 24.3.2003 




