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Abstract. Let (X., n 2 1) be a sequence of ii.d. random varia- 
bles and let {a,,, n 3 1) and (b,, n 2 I} be sequences of constants where 
0 < b,f a. Let Xi1', XIzf, . . ., Xt' be a rearrangement of XI, .. ., X, 
such that lXil) >, 1XL2y 3 . . . > 1Xk)l. Consider the sequence of 
weighted sums T, = zL ,a i~ i ,  TI 3 1, and, for fixed P I ,  set 
c) = xy=, at Xi I (IXiI d (E*')I), n 2 r + I; i.e., Tgl is the sum T, mi- 
nus the sum of the x:')'~ multiplied by their corresponding coefficients 
for k = 1, .. ., r. The main results provide suiticient an4 separately, 
necessary conditions for b;' TL)- k, 4 0 almost surely for some se- 
quence of centering constants {k,, n 3 1). The current work extends 
that of Mori [14j, El51 wherein a, r 1. 
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1. INTRODUCTION 

If {X,, n 2 1) is a sequence of independent and identically distributed 
(i.i.d.) random variables which are not necessarily integrable and S, = r=, X i  
denotes the n-th partial sum, it is known under suitable conditions that the sum 
S, is essentially dominated by the contribution of a small number of its extreme 
terms, the remainder being asymptotically negligible. The almost sure (as.) 
asymptotic behavior of the partial sums S, is strongly influenced by the effect of 
the most extreme terms of the sample (IX1l, IX,I, . .., IX,]). Even though limit 
laws such as the strong law of large numbers (SLLN) and the law of 
the iterated logarithm (LIL) can fail for the partial sums S, ,  it has been 
shown by various authors that if the most extreme terms in the sample 
(IXII, /X21, . . ., IXnl) are removed from S, ,  then versions of those limit laws can 
indeed prevail. These limit laws which then hold when extreme terms are 
removed are often referred to as "improved" versions of the classical limit laws. 
The partial sum S, with the extreme terms removed from it is referred to as 
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a trimmed sum. Trimmed sums are used for reducing variability in connection 
with some statistical inference procedures; see Barnett and Lewis [2], Sec- 
tion 3.2.1. 

The influence of extreme terms on the limiting behavior of S, was apparent- 
ly first noticed by Lkvy [ll] over sixty five years ago. More recently, Feller [6] 
and Mori €141, [15] obtained improved versions of the LIL and SLLN, respec- 
tively, by removing the most extreme terms from the partial sums. In other 
words, Feller [6] and Mori [14], [I51 established a LIL and SLLN, respec- 
tively, for trimmed sums of i.i.d. random variables. 

Let XL1), XkZ1, .. ., X:) be a rearrangement of X,, X,, . . ., X ,  in decreas- 
ing order of absolute magnitude; i.e., IXf)l 2 1Xk2)1 3 . . . >, 1XF1:'I, n 3 1. For 
1 < r 6 n, let us set Sr) = S II -X'l)- n Xi2)- .  . . -X$'. Thus St) is the partial sum 
S, with the r largest (in absolute value) summands removed. Since r is fixed, 
SF) is a so-called lightly trimmed sum. Pioneering work of Mori [14] on the 
SLLN problem for lightly trimmed sums $1 included the following elegant 
analogue of the SLLN. For fixed r 3 1,  

for some sequence of constants {k., n >, 1) if and only if J: xr 3($" d x  < m, 
where 3 1x1 = P (IX, I > x), x 2 0. This shows that by trimming off a fixed 
number of extreme terms, the a.s. limiting behavior of S, can be improved 
since we may have 1; x' S(x)'+' dx < co when E IXII = a. Mori [I51 general- 
ized his work in [14] to allow for a more general norming sequence {b,, n > 1) 
instead of only the choice b, = n, n 2 1. 

Following the work of Mori [14], [15], there has been a large literature 
of investigation of the strong and weak limiting behavior of trimmed sums; 
see, for example, the work of Maller [12], [13], Mori [16], Einmahl and 
Haeusler 151, Kesten and Maller 181-[lo], Kesten 171, Pozdnyakov 1181, 
and Csorgii and Simons [4]. In all of these papers, the summands (X,, n 2 1) 
are i.i.d. 

In the current paper, we extend the work of Mori [14], [15] to the case of 
lightly trimmed weighted sums of i.i.d. random variables. We are unaware of 
any previous work on the SLLN problem for trimmed sums where the sum- 
mands are independent but are not identically distributed. We wil l  show that 
we can also improve the a.s. limiting behavior of weighted sums by trimming 
off a fixed number of extreme terms. Our methods are analogous to those of 
Mori 1141, [15]; the authors take great pleasure in acknowledging that the 
current work owes much to that of Mori [14], 1151. 

Assume that (a,, n 2 1) and {b,, n >, 1) are sequences of constants where 
O<bntco.  k t  
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and 

i.e., T f )  is equaI to T, minus the sum of the Xkk)'s multiplied by their correspon- 
ding coeficients for k = 1, 2, . . ., r. Adler and Rosalsky [I] provided necessary 
and/or sufficient conditions for (a ,X, ,  n 2 1) to obey the general SLLN with 
norming constants (b,,  n 2 1); that is, for the normed weighted sum K/b ,  to 
converge a.s. to 0, - 

For the sequences {c,, n 2 1) and {q,, n 2 1) defined by 

two main results will be presented. Based on the convergence of 

03 03 

~ x ~ 3 ( ~ ( x ) ~ + ~ d x  and S X ~ ~ ( Q ( X ) ) ' ~ ' ~ X ,  
0 0 

where C(x) and Q ( x )  are extensions of (c,, n 2 1) and (q., n 3 11, respectively, 
we shall provide a sufficient condition in Theorem 1 and a necessary condition 
in Theorem 2, respectively, for the stability of the sequence of normed trimmed 
sums Tt)/b,; that is, for b i l  T t ) -  k, + 0 as.  for some sequence of centering 
constants {k,, n 2 1). Results of Mori [14], [15] are the special case an = 1 of 
Corollary 1. An example is also given where the conditions of Theorem 2 of 
Adler and Rosalsky [I] fail but the conditions of our Theorem 1 hold. 

Z PRELIMINARIES 

Throughout this paper, let {X,, n 2 1) be a sequence of i.i.d. random 
variables with common distribution function F and let 3 ( x )  = P (IX1l > x), 
x 2 0. For r 2 1 and n 2 r, Iet X$) = Xj if lXjl is the r-th largest of 
IXII, IX,I, . . ., IX,I. More precisely, let M,(j), n 2 1, 1 < j d n, be the number 
of Xi's satisfying either (Xi( > (Xj(, 1 < i < n, or (Xi( = (Xj(, 1 < i < j, and let 
X$) = Xj if M ,  (j) = r. Let {a,, n 2 1) be a sequence of constants and, for 
n 2 1, set 

n n 

T,= z a i X i ,  T ? ) = T , ,  and Tt)=  CaiXil(lXil<lX!+l)l). 
i= 1 i =  1 

Some preliminary lemmas will be established before stating the main re- 
sults. The first two lemmas are due to Mori [14] and [15] who stated them 
without proof, For completeness we present their proofs. 
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LEMMA 1 (Mori [14]). If 0 < p, < 1, n 2 1, and limn,, npn = 0, then for 
all fixed integers r 2 0 

Pro of. Note that' since np, -+ 0, for arbitrary 0 < E < 1 and all large n we 
have np, < E and 

for 0 < k < n. From Stirling's formula 

it follows that 

n-r 

Then for all large n 

Since 0 < E < 1 is arbitrary, 

lim sup \&/ 
n+ oo ( n ~ n Y / r !  

On the other hand, 

(:) P; (1 - p n ~  - r  

lim inf 2 lim = 1 
n+m (npJ/r + m (npnY./r! 

and the result follows. 
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Let {c,, n 2 1 )  be a sequence of positive constants satisfying for some 
a ~ ( 0 ,  2) 

en C 2 n  
- n l / a  and SLIP-<CQ 

n 3 1  Cn 

and set c, = 0, ho = 0, h, = c,,/nlta7 n 3 1. Let H(x)  be the continuous exten- 
sion of the {h,, n 2 0) defined by linear interpolation between integers; that is, 

H(X)=(~ ,+~-h , ) ( x -n )+h ,  for O < n < x < n + l  
- 

and define 

(2) C ( X ) = X ~ ~ ~ H ( X ) ,  X ~ O .  

Properties of the function C ( x )  are spelled out by the ensuing lemma. 

LEMMA 2 (Mori [15]). Let {c,, n 3 1 )  be a sequence of positive constants 
satisfying (1) for some U E ( O ,  2) and define the function C as in (2). Then C is an 
absoEutely continuous strictly increasing function on [ O ,  a) with C(0) = 0, 
C(n) = c,, n 2 1, and 

13) - c (2x1 is nondeereasing on (0, m) and sup- 
x l / ~  

< 03. 
,,o C(x1 

Proof. Only the second half of (3) needs verification. For x 2 1, let n be 
such that n d x < n + 1. Then 

and so, by (I), 
c (2x1 sup - < m. 

,>l C (x )  

It  is easy to see that sup,,,< C (2x)/C (x)  < co, and hence 

sup C (2x)/C (x)  < co . 
x=-0 

For a sequence of positive constants {c,, n 2 1)  satisfying (1) for some 
a ~ ( 0 ,  2), throughout the rest of this paper we define the function C(x )  as 
in (2). 

LEMMA 3 (Mori [15]). Let {c,, n 2 1) be a sequence of positive constants 
satisfying (1). Then for all fixed integers r 2 0 and for euery E > 0 

P {IX$+ > c, E i.o. (n)) = 0 or 1 

according as the integral 1," x '3  (C (x))'+' dx converges or diverges. 
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In Lemmas 4, 7, and 8 we impose the condition 

(4) 3 is positive and differentiable on 10, co). 

Theorem 1 will initially be proved assuming (4) but then this assumption will 
be removed. 

Suppose (c,, n 2 1 )  satisfies ( 1 ) .  Then, according to Lemma 2, the function 
C ( x )  is absolutely continuous and strictly increasing on [0, m )  with C(O) = 0, 
C ( n )  = c, for n 2 1 and satisfies (3). Since C(m) = m, the inverse function D of 
C is also absolutely continuous and strictly increasing on [0, m) - with D (0) = 0 
and D (a) = co. 

Let $(x) = Jm, x 3 0. Under the assumption (4), I) is absolutely 
continuous and strictly increasing with $ (0) = 0 and I) (m) = co. Hence the 
inverse function cp of fi is also absolutely continuous and strictly increasing 
with 8 (0) = 0 and q (m) = m. 1f 1," x r 5  ( C ( X ) ~ + '  dx i co, then since 3 (C(r))J, 
we have 

and so 

implying by replacing x by D(x) that 

Hence we have 

where y = ~ ( x )  + a. Note that the inequality holds by the first half of (3). 

The next lemma is a slight modification of Lemma 7 of Mori 1151, and its 
proof can be omitted. 

LEMMA 4. Assume that the condition (4)  holds and the sequence (c,, n 2 1 )  
satisJies (I). Let q ( x )  be defined as above and let N ,  = # {j: rp ( 2 9  6 IXjl, 
j < 2"+'), m 3 1.  I f  

m 

(7) xr 3 (C (x))'" dx < m for some integer r 3 0, 
0 

then P (N, 2 2r + 2 i.0. (m)) = 0. 
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In the next lemma, let p(Sn) and p (MR)  denote any median of S, and Mk, 
respectively. 

LEMMA 5 (Stout 1201, p. 158). Let (Y,, n 2 1 )  be a sequence of independent 
random variables and {b,, n 3 1)  be a sequence of constants with 0 < b,f co. 
Suppose there exist constants c and d such that 1 < c < d < m and 
c g b p + l / b p  G d,  k 2 1. Let S, = XI, x, n 2 1, and 

Then - 

if and only if 
m 

C P(IM,-~(M,)I>E)<CO for all E > O .  
k =  1 

LEMMA 6 (Prokhorov's inequality [19]). Let I;, 'Y,, . . . , Y, be independent. , 

m a n  0 random uariables such that I &I < c ,  1 < k < n, for some constant c < co 
and let s = zi=,& and aZ = C ~ = , E Y ~ .  Then for all 8 > 0 

LEMMA 7 (Mori [15]). Assume that (4) holds and that the sequence 
(en, n 2 1) satisfies (1). Let cp be defined as above. If (7) holds, then 

m 

x - 2 ' - 3 ~ ( q ( ~ ) ) 2 r t 2 d x  = l j  x r 3 ( ~ ( x ) r t 1  d x .  
r + l ,  0 

Throughout the rest of the paper, let {b,, n 2 1)  be a sequence of constants 
with 0 < b, f cc and define the sequence (c,, n 2 I) b y  cn = bdmax, ,, lakl, n g 1, 
and the sequence of blocks of positive integers (I,, rn 2 0) by I ,  = 
= I n :  2m < n<2"+'),  m 20. 

LEMMA 8. Assume that (4) holds and the sequence {c,, n 2 1 )  satisfies (1). 
Suppose that there exist constants c and d such that 1 < c < d < oo and 
c < b2k+1/b2k < d, k 2 1. If (7) holds, then there exists a sequence of constants 
(k,, n 2 1) such that 

1 " 
- C a j X j  i (lXjl < cp ( j ) )  - k ,  -r 0 a.s. 
bn j=, 

Pro of. Let X$ be a symmetrized version of X j  I(lXjl < cp ( j ) ) ,  j 2 1. Then 
EX? 0 and IX;I < 2rp(j) and it suffices to show that 



By Lemma 5, this is equivalent to 

m 

P (  a j X ; > ~ b 2 m ) < m  for all & > O  
m=1 jeIm-1 

since the {X;, j 3 1) are symmetric. 
For j~ 1,- we have E (q)2 d 2~ (x; 1 (IXjl < 9 ( j ) ) )  and 

~(2"') 
- - D;;;;)) (- fp (2"12 3 (Cp (27) + 2 1 t  3 ( t )  at) 

0 

by (5)  with x replaced by D(t).  Note that since t /D(t) l ia  is nondecreasing, we 
have D (rp (Zm))/q (2")" < D (t)/ta whenever 0 < t d cp (2"'). Moreover, for arbi- 
trary 6 > 0, condition (5) (with x replaced by D(t))  ensures that there exists 
to > 0 such that D ( t )  3 ( t )  < S for t 2 to. Hence, for all large rn, 

2D (cp (2")) p(2m) '(r (y)L t~ ( t )  3 (t)  dt 1 t 3 ( t ) d t  <- 
CP (2"). 0 9 (2"12 

Since 6 > 0 is arbitrary, we have 

and hence 

By' Lemma 6, for m 2 1 
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&bZm 8bzm - 2cp ( Z r n ) .  maxjgam lajl 
sinh - 

2 2 q  (2") . maxis ,, Jajl 2 E(ajXg2 
&Irn - I 

, (i) Suppose, for every m 3 1, 

Then we easily see that 

f ap (- "C(2m)  sinh - l ~bzm * 2q (2"). maxi, ,, 1ajl 
m = l  2 - 2 9  (2m) 2 E ( u ~ X ~ ) ~  

- 
= const. j x-"- ' D (q (x))'~+' dx < a, (by (7) and Lemma 7).  

0 

(ii) Suppose, for every na > 1, 

&b2m. 2 q  (2m) - maxj, ,, [ail 4 
sinh - < -. 

2 x E(ajX;),  E 

Now, for any constant a > 0 there exists a constant k such that sinh-' x > kx 
for 0 < x < a, and so 

sinh &b2m . Z q  (2"). maxjr2m 141 5 (2"7. m a ~ ~ ~ ~ m  Iajl > k  
2 E ( U ~ X ; ) ~  2 E(ajXj)2 

Hm-2 &Im - I 

= b  c (2") D (cp (2m)) 
2" cp ( 2 " 3  

11 - PAMS 23.1 
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Thus 

m 

< const - j x-"-~ D (0 (x))"'+' dx < m (by (7) and Lemma 7). 
0 

Consequently, we have 

completing the proof of the lemma. FA 

LEMMA 9 .  Let {[,, n 2 1 )  be a sequence of i.i.d. symmetric random variables 
with E lilta < m f o r  some a ~ ( 0 ,  2). Let (a,, n 3 1) a d  (b,,  n 3 1 )  be sequences 
of constants satisfying 0  < b, t  co and 
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Proof. Apply the same argument that Adler and Rosalsky [l] used to 
prove (20) of their Theorem 2. H 

3. THE NIAm RESULTS 
- 

With the preliminaries accounted for, the first main result, Theorem 1, 
may be established. 

THE~REM 1 .  Let {a,, n 1 )  and {b,, n 2 1) be sequences of constants where 
0 < b, 1 o~ a d  bZ, = O (b,). Let c, = b,/max,,, Inkl, n 3 1, and suppose that 
{c,, n 2 1) satisfies (1 ) .  If 

41 

( 1 1 )  j r'3 (C (x)Y'l dx < m for some integer r 2 0, 
0 

then there exists a sequence of constants {k,, n 2 1 )  such that 

Proof. Note at the outset that the first half of (1) ensures that 

inf b,,,/b, > 1. 
n>, 1 

Hence in view of bzn = O(b,)  we have 

(13) 1 < inf b,,/b, and sup bz Jb,, < co. 
n > l  n B  1 

We initially assume that (4) holds. By (11) and Lemma 3, 

P((X:+l) /  > c, E i.0. (n)) = 0 for every E > 0. 

Then, with probability 1 ,  for all large n 

Now, for every E > 0 it follows from (6) that we can choose I 1  = I ,  ( E )  such that 
q (n) < c, E for n 2 2". Then for afl large n there exists an integer m > I ,  such 
that n E I, and {rp (0), q ( 1 ) ,  qn (2), . . ., cp (23, . . ., q ( 2 9 ,  c, E )  induces a partition 
of (0, en&]. Thus, for j = 1 ,  2 ,  . .., n, we have 



Hence 

+ f maxgn IajI . 
q (2ilm # { j :  v (Zi-') < lXjl < (Zi), (j) G lXjl} 

i =  1 - 
m 

maXj 6 n lull .N. + 
maxj < r IujI 

6 yo(2i).~i-1. 
bn i =  1 b n  

By Lemma 4 we see that P (Ni 2 2r +2 i.0. (i)) = 0. Then, with probability 1, 
there exists a (random) integer E, such that Ni 6 2r+2 for all i 3 1,. Let 
1 = max {El, E z ) ,  Then, with probability 1, for all large n 

1 " 1 " 1- z ajXI'(IXj\ G c n & )  z ajXjI(IXjI Pu)/ 
bn ,= 1 bn , = I  

m 1-1  
max/<n IajI cn&(2r+2)+ 

maxjin IajI 
~ ( 2 ' )  &+2)+ C maxlinlajl q(29.2' < 

bn i = l  bn i = l  b n  
m c ' - ' ~  (2) 

~ ( 2 9  +2' i = l  6 ~(2r+2)+(2r+2) c -7 
i = r  C(2 1 C (Zm) 

where, recalling (I), 

Choosing the (random) integer n such that C (Zm) 2 2' : q (Zi)/(2r + 2) e, we 
obtain with probability 1, for all large n, 

Thus, since E is arbitrary, (14) and (15) yield 

T:) 1 " C uj Xi I (lXjl < y (j)) -+ 0 a.s. 
b n  bnj=l 
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Now, by (13) and Lemma 8, there exists a sequence of constants (k,, n 3 I) 
such that 

1 " 
- C a, Xj I (lXjl a ( j ) )  - k, 4 0 a.s. 
bn,=1 

Thus we have proved assuming (4) that the conclusion (12) holds. 
We now remove the assumption (4). This will be accomplished by purtur- 

bing each Xj by an independent continuous random variable t j ,  applying the 
part of the theorem already proved with the assumption (4) to then arrive at 
(161, and finally verifying in (20) that the cj have a negligible effect. Again, by 
(11) and Lemma 3, for every E > 0, P(~x:+')) > c , ~  i.o.(n)) = 0. Let us set 

where a E (0, 2) and (t,, n 2 1)  is a sequence of i.i.d. normal random variables 
with E t ,  = 0, E(: = 1 and such that {en, n 2 1) is independent of {X,, n 2 1). 
Then we see that each l j  is symmetric with E ITjr = E(ltjll'")" = E ltjl < m. Let 

E; =Xi+[,, j 3 1. Put T(x) = P(ll;l z x), x $ 0, and U, = C;=,oj q, n 1, 
and define U:) in a similar way to T t ) .  Since E I[,Ia < m, we have zj?= P (gjl >jib&) < m for all s > 0, which ensures by the Borel-Cantelli Iern- 
ma and (1) that for all E > 0 there exists a random integer no such that 
JCj'i] < C, j l l " ~  4 C, E for a11 n 2- j 2 no. Thus, there exists a random integer 
No 2- no such that < c, E for all n $ No and all 1 d j d n. Hence, if 
I Y!+')I > 2c, E for some n 2 No, i.e., if I Yj( > 2c, E for at least r + 1 integers 
j~ [l , n], where n 2 No,  then we have IXtf > c, E. Thus 

P(IYrf > 2cn e i.o. (n)) < P (JXtfl)( > c,, E i.0. (n)) = 0 

and 1," xr r (C (x)lrt l dx < m follows from Lemma 3. 
Since r satisfies (4), we have by the portion of Theorem 1 already proved 

that 

for some sequence of constants {k,, n 2 1). Moreover, 

1 
(1 7) 

1 
- 1 ~ : ) -  T$)l < - 1 1 u,, - T,I + - I(U,-- UP) -(Tn - T!))l 
bn b n  bn 

Since, recalling (I), 
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it follows from Lemma 9 that 

Note that 

- 
and 

Now for all large n and 1 6 j d n:  
ti) If q=Xj++l; ,= Yik), where 1 d k < r  and Xj= xLh) with h > r + l ,  

i then 

whence 

(ii) If Yj = Xj+Cj = Yik), where 1 < k < r and Xj = xih) with 1 < h < r, 
then 

I 

! 
I (iii) If Yj = Xj+ cj  = Yik', where k B r + 1, then (Xi\ < I Y t f  ''1 + lcjl < 2 ~ ~ 6 ,  
1 whence 

(aj $I(II;.I > l E + l ) l ) - a j ~ j  I(Ixjl > Ix$+"I)[ < 2 lajl en&. 

Since 

laj 5 I (151 > I Yr+'lI)-ajXjI(lXjl > ~x:+')l)l > 0 

for at most 2r values of j ~ ( l ,  2, . .., n), we have for all large n 

Since e > 0 is arbitrary, 

(19) b i l  [(Urn- U:))-(T,- Tr))I + 0 a.s. 
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Thus, by (17j(19), 

(20) b;l [U$"- T$)I + 0 a.s. 

Hence by (16) and (20) the conclusion (12) holds. H 

Re m a r k. Since C (x ) /x l iQ  is nondecreasing, C (x) < EC (XI&') for x 2 0 and 
0 < E < 1. Then, by (1 I), 

0 0 

and so, by a change of variables, 

Then, arguing as in the proof of (3, we obtain x3 (EC (x)) -+ 0 as x + cc . Then, 
by applying Lemma 1, we obtain for all k 2 1 and 0 < E < 1 

Thus IXik)k)l/c, 0 as n + c~ for all k 2 I, and therefore 

Hence, recalling (I), the sequence {k,, n 2 1) can be chosen as 

(see Chow and Teicher 131, p. 356). In particular, if E IX,I < co, then we can 
choose 

The next main result, Theorem 2, is a converse to Theorem 1. Let 

Now, if for some a ~ ( 0 ,  2) {q,, la 2 1) satisfies 

4 n  420 -t and sup-<coy 
n l / ~  

n 2 l  q n  
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then as in (2) and Lemma 2 we can define an absolutely continuous strictly 
increasing function Q on [0, a) with Q (n) = qn for n = 1, 2, . . . and satisfying 
for some OIE(O, 2) 

Q (2x1 is nondecreasing and sup- 
x l / a  

< a. 
r > O  Q(x) 

Note that if the first half of (1) holds, then the first half of (21) also holds. 

THEOREM 2. Let {a,, n 2 1 )  and {b,, n 2 1 )  be sequences of constants such 
that c, = b,,/maxk <,  lakl t oo and qn = bn/mink $, lakl, n 2 1,  satc$es (2  1). I f  

for some integer r 2 0 and some sequence of constants {k,, n 2 I), then 
m 

(24) xr3(~(r))"+"dx < m 
0 

Proof. If r = 0, then since c,pm, we have 

Hence, by (23) (with r = 0) and b,t, 

bn- 1 bn-I K-1 TI-Z-1 P 
kn-kn-,  - bn = ( k n - 2 ) + b , ( - - k n - l ) +  bn-1 

bn + 0. 

Thus k,  - kn - bn- Jb, + 0 and again using (23) we obtain 

Then 

follows from the Borel-CanteIli lemma. Moreover, - - 

and then, by the Borel-Cantelli lemma and Lemma 3 (with {c., n 2 1) replaced 
by {q,, n 2 1) and C(x) replaced by Q(x)), we have 
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Next, suppose r 2 1. Then 

Hence 

(26) 
P b;21 I T : ~ ~ - T $ ) I  40. 

It follows from (23) and (26) that 

Applying this to (23) again gives 

Suppose that ir x' 3 ( Q  (r))"' " dx = m . Then, by Lemma 3, 

Let r + 1 < nl < n2 < . . . be successive indices n with IXI::f'l > I X t f  l'l. It is 
easy to see that IX,j+ll > I X c l ) l  and 

Furthermore, [IXf+')I > Q (n) E i.0. (n)] = [IXt>%)1 > Q (nj+ 1) E i.0. ( j ) ] ,  and 
hence P (IXr+'i)I > Q (nj+ 1) E i.0. ( j ) )  = 1. Thus, recalling (25), with probability 1, 
for i&nitely many j we have 

Hence P (IT:$ - Tt)I 2 be+ E i.0. (n)) = 1, which contradicts (27). s 

Combining Theorems 1 and 2 yields the following corollary. 

COROLLARY I. Let {an, n 2 1 )  be a sequence of constants such that 1a.l is 
boundedfrorn above and bounded away f,om 0 and let (b,, n 2 1) be a sequence 
of positive constants such that for some a ~ ( 0 ,  2) 

b n  bzn 
- and sup-< a. 
n l l a  

n 3 1  bn 

Let B(x)  be defined in a way determined in (2). Furthermore, let 
c, = bfl/maxk6, lakl, n 2 1, be such that c,/niia f. Let r be a nonnegative integer. 
Then there exists a, sequence of constants {k, ,  n 2 1 )  such that 
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if" and only if 
m 

(30) I xr3(~(x)Yt1 dx i ao. 
0 

Proof. It follows from (28) that b2,/b, 2 (2n/n)lia = 2''" > 1, n 2 1. Note 
that for all E > 0 the condition (30) is equivalent to 

since by (28) and Lemma 2 we have B (E'x) < EB(x) 6 B (x) if% < E < 1 and 
B(x)  < EB(x) < ~ ( E ' x )  if E 2 1. Suppose 0 < m < lakl < M < m, k 2 1. Then, 
for all n 2 I ,  

cn = 
b n  b n  b n  b n  2 - and q, = 6 -. 

maxk<* lakl m i n k ~ n l a k l  m 

Moreover, c,/nllut and (28) ensure that {c,, n 2 1) satisfies (1) and {q., n 2 1) 
satisfies (21). Since (31) with r = l/M guarantees that 

the sufficiency part follows from Theorem 1. 
Conversely, suppose that (29) holds. Then, by Theorem 2, 

proving (31) with E = l/m, and hence (30) holds. H 

The work of Mori in [I41 and [15] follows from Corollary 1 by taking 
a, = 1. 

In Example 3 of Adler and Rosalsky [l], it is shown for an arbitrary 
sequence of i.i.d. random variables {X,, n 2  1) with E]X,I < co that if a, = 1 
or l/n according to whether n is odd or even and b, = n, n 2 1, then 

I aj(Xj- EX,) + 0 a.s. 
bn j= l  

Note that in this example we have cn = n, n 2  1, and so (1) holds with a = 1 
and b,, = O(b,,) also holds. Suppose 

e 
3 (x) = x a e ,  w h e r e O < p < I .  

x (log x)" 

Then E (XII = ao (hence Example 3 of AdIer and Rosalsky [l] is not applica- 
ble), but S: x' 3 (x)" ' dx < co for all integers r > p-' - 1. Applying Theorem 1 
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we thus obtain, for all integers r > 8-l- 1, 

for some sequence of constants {k,, n 2 1). This example shows that Theo- 
rem 1 can indeed be applicable when E IX,I = co thereby characterizing the a.s. 
limiting behavior of the lightly trimmed sums Ttl. Moreover, it follows from 
Theorem 2 with r = 0 that there does not exist a sequence of constants 
{k,, n 2 1) such that b; l T, - k, 4 0 a.s. 
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