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Abstracs. The first part of the paper contains generalizations 
of results of Gil de Lamadrid [S] and Vakhania and Tarieladze 
[lo] concerning properties of cylindrical processes via the Pettis 
integral. The second part deals with characterization of cylindrical 
measures whlch are scalarly concentrated on cornpacta. 

1. Introduction. In this paper we consider relations between some properties 
of cylindrical measures and properties of cylindrical processes' on locally 
convex spaces. 

Section 2 is devoted to necessary notation and basic facts. In Section 3 
we consider the Pettis integral of cylindrical processes which are elements 
of E 6, L1 (0, d,  P). The results of Section 3 are used in Section 4. In 
particular, the results obtained contain those of Gil de Lamadrid [5 ]  and 
Vakhania and Tarieladze [lo]. In Section 4 we show that a gaussian I 

cylindrical measure p on a complete locally convex space E is scalarly 
concentrated on compact sets if and only if its cylindrical process belongs I 
to E 6, L~ (Theorem 4.1). Moreover, in this situation p has the barycenter i 
in E and the reproducing kernel Hilbert space of y is a subspace of E 
with the compact unit ball (this result for gaussian Radon measures is due 
to Dudley et al. [4]). 

2. Notation and preliminaries. In this paper, by a locally convex space 
(1.c.s.) we mean a Hausdorff locally convex space, not equal to (01, over 
the field R of real scalars. If E is an l.c.s., then E' denotes its topological 
dual, and (x,  x') stands for the value of a functional X'E E' at X E  E. For 
subsets A c E and B c E', the symbols A" and Bo denote the polars with 
respect to the duality (E, E') and (E', E), respectively. Let EL and E: denote 
the space E' under the topologies b(E' ,  E) and r(E', E) (weak and Mackey), 
respectively. If 6 is the family of all equicontinuous subsets of E' and F 
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is a Banach space, then the space L (E:, F) of all (z (E',  E), /I - 11,) continuous 
linear mappings of E' into F with the topology of uniform convergence 
on the sets S E G  will be denoted by L,(E:, F). 

Let E be an I.c.s., F a Banach space and E@F the tensor product 
of E and F. We d h n e  

E ~ ( z )  = SUP SUP I{z, x'@yf) I  for ZE E @ F ,  
x'EU' Y'E@ 

where U runs over the base of convex and circled neighborhoods of O in E 
and 3 is the unit ball in F. The topology generated by the family of 
seminorms EU (-) is called the s-topology. The completion of E @ F  with respect 

I to the E-topology is denoted by E&F. In particular, if E is a Banach 
space, then E @ , F  is also a Banach space with the norm denoted by IJ-I(,. 

PROPOSITION 2.1 (cf. [9], 9.1, p. 167, and 161, p. 166). Let E be a complete 
1.c.s. and F a Banach spare. The space E@,F can beJident1jied with the 
closure of E @ F  Fin L, (E: ,  F) .  Moreover, if F has the approximation property, 
then E & , F  is identical with the space. of all continuous linear mappings in 
L (EL, F )  transforming equicontinuous subsets of E into relativeIy compact 

I sets in F .  
COROLLARY 2.1. Let E and F be Banach spaces and suppose that F has 

the approximation property. Then Eh, F is norm isomorphic to the space of 
all (z(Ef, E ) ,  /I -113 continuous and compact linear mappings of E' into F,  with 
operator norm topology. 

Let (a, d ,  P) be a probability space and let 0 < p < a, denote 
the space LP(Q,  d, P). I f  E is an l.c.s., then the linear mapping T: E' -, LP is 
called the cylindrical process. In particular, iff: Q + E is a weakly measurable 
function such that (f, x') e L P  for each X' EE', then by TJ we denote the 
mapping Ti x' = ( f, x') . 

We say that a cylindrical process E E' -+ LP (1 < p < co) is Pettis integrable 
if for each A E ~  there exists X A €  E such that 

(x,, x') = j Tx'dP for each x'EE', 
A 

and we write 
1 T ~ P  = x,. 
A 

If E is a Banach space and T: E'+ ,Y a Pettis integrable cylindrical 
process, then we define the p-th Pettis norm of T as follows: 

( ( (T / ( ( ,  = SUP ( j ( T X ' ( P ~ P ) ' / ~ .  
Ilx'll< l R 

Now let f be a function on S2 with values in an 1.c.s. E. We say that 
f is separably valued if there exists a set N ~ d ,  P(N) = 0, and there exists 
a separable subspace E ,  of E such that f @\AT) c E., . By BP (E) (1 d p < a) 
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we shall denote the space of all separably-valued and Pettis integrable 
functions f such that (f, x') E LP for each x'EE'. We endow P P ( E )  with 
the p-th Pettis norm I I J . ) I ( ,  induced by the corresponding cylindrical processes. 

3. The Pettis integral of cylindrical processes. In this section we prove 
that if E is a complete I.c.s., then every T E E @ ,  L' (Q, d ,  P )  is Pettis 
integrable. Moreover, we give characterization of the space Y 1 ( E ) *  - the 
completion of Y' (E)  in topology generated by the family of seminorms 

. - 

where U runs over the base of convex and circled neighborhoods -of 0 in E. 

A. The case-of a Banach space. Suppose that E is a Banach space. 
By Corollary 2.1, elements of E & , L ~  are identified with compact linear 
operators in L(E1, L?) which are (T(E', E), 1 1 .  I I , , )  continuous. 

PROP~SITIQN 3.1. If E is a Banach space, then every T E E & ,  L' is Pettis 
inkbrcable and Ill Tllll = 11 

Proof. It is sufficient to show that for every T E E & ,  L1 there exists 
X,EE such that 

f i  

{x0, XI) = j R f d P  for each X'E E' . 
n 

Indeed, if T E E  9, L', then for each A E ~  the operator TIA, (TI,) x' 
= Tx'l,,  belongs to E&, L'. 

Now we define a continuous linear mapping of E&L1 into E. For 
T E E O L ~ ,  

n 

we set' 
n 

TdP = xijS,dp. 
R i = l  R I I 

Then we have 

Tx'dp = ( x') for each E E', 
and 

IIj TdPII < sup S ITX'~  d~ = IIT/I = IITIJ,. 
Ilx'1141 

Therefore, j ( . )dP extends to a continuous linear mapping on E&, L1 
into E. For T € E & , L 1  there exists a sequence {T,) c EQL' such that 
11%-TIJ,+O. Then we set , 

1 TdP = lim j T, dP. 
R R 



74 2. Suchanecki 

It is easy to verify that the integral defined in such a way coincides 
with the Pettis integral and that 

IllTlPl = SUP JITx'ldP = I/TJI,. 
llx'll $ 1 

COROLLARY 3.1. Let E and E ,  be Ranach spaces, 5: E El a continuous 
linear operator and S* its adjoint. I f  T E E @ ,  L', then ToS*E E ,  &,L' and 
S ~ T ~ P  = J T O S * B P .  

Proof. Using .Corollary 2.1 it is easy to verdy that ToS*EE,&,L' .  
The second part of Corollary 3.1 is obvious. 
. The following proposition was firstly obtained by Gil de Lamadrid ( [5] ,  
Theorem 6.1) under the assumption that D is a locally cdmpact Hausdorff 
space. However, our proof is simpler than that in [S]. 

PROPOSITION 3.2. The space (2'' (E)*, ) ) I  .Ill) is norm isomorphic to E&, L'. 
Proof. If f~ 9' (E), ,then there exists a sequence of simple functions 

i f , }  such that Illfn-flll + 0 (cf: [7],  Theorem 4.3). Hence Tfn E E@L' and 

Therefore, there-exists T E E 6, L1 such that 1 1  Tf, - T 1 1 ,  -) 0 and, evidently, 
T' = T. Hence p1 (E) c- E&, L'. Since for every T E E@L' there exists 
f €Lfl(E) such that T = Tf, we have Y' (E) -  = E&,L'. 

B. The case of a locally convex space. 
THEOREM 3.1. If E is a complete Lc.s., then each T E  E&,L' is Pettis 

integrable. 
Proof. To prove this theorem we need the following notation. Let 

{U,),, be a base of convex circled neighborhoods of 0 in E. The set 
A is directed under inclusion, i.e. a < /3 if U8 c U,. Denote by E, the 
completion of the normed space (E/P~-' (0), p, (.)), where p, (-) is the Minkowski 
functional of U,. Let g,: E + E, and ghB : EB Ea (or < /3) be quotient 
(canonical) maps and let ha and h be the adjoints of ga and g E p ,  8" respectively. Since E is complete, it 1s isomorphic to the projective limit 
lim gaB EB of the family of Banach spaces EB ([9], 5.4, p. 53). 
+ 

Suppose T E E & ,  L1; then T & L(E:, L1), and since each ha is Mackey 
continuous, Toha  is (z(EL, E,), 11 . / I L , )  continuous for each ~ E A .  By Propo- 
sition 2.1, there exists a net ( I I ; : )  c E@L1 which converges in L,(E:, L1) 
to T. Moreover, since 

IlToh,-Tohall = sup Il(Zoha)xf-(Toh,)xfII,, = sup IlTx'-Tx'llLl, 
Y'EU; Y ' E ~  

Toha  is a limit in operator norm topology of finite-dimensional operators, 
and hence T o h , ~  E,&,L'. Therefore, by Proposition 3.1, for every ~ E A  
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there exists X, E E, such that ' 

Using Corollary 3.1 we obtain 

g ~ P ( ~ B ) = f T o h g ~ h f l , d P = j ~ o h u d P = x ,  for each a < B .  

Thus X = Tx,),,, E l i p  gap E f l ,  and hence Tf E (here lim gmB ED and E are 
+ 

, . 
~dentified). Consequently, we may set - - 

--  - 
1 TdP = X. 
P 

It can be proved, in a similar way as in Proposition 3.1, that T is 
Pettis integrable. 

Now we introduce some auxiliary notation. Let f: O +  E be a weakly 
measurable function such that (f, x') E L1 for each X ' E  E' and let U be 
a convex circled neighborhood of 0 in E. We set 

vl.,,(A) = sup 1 I( f ,  x')I dP for each A E  d. 
.X'€C1" A 

The foIlowing proposition extends the result of Vakhania and Tarieladze 
([lo], Theorem 4): 

PROPOSITION 3.3. Let E be a complete Lc.s, and let f: 52 + E be a weakly 
measurable and separably-valued function. If  for each neighborhood U of 0 
in E the set function vf,, is absolutely continuous with respect to P ,  then 
f is Pettis integrable. 

Proof. We recall that a set function v on A is absoiutely continuous 
with respect to  P if for each E > 0 there is 6 > 0 such that P ( A )  < 6 
implies v (A) < E. 

Using the same notation as in the proof of Theorem 3.1 we observe 
that g,of is weakly measurable for each U E  A and separably valued. 
Moreover, for each E > 0 there is 6 > 0 such that P ( 3 )  < S (BE&) implies 

sup I ( g ~ o f ,  xf>ldf' = SUP I<f, x ' ) (dP = vf,o(B) C, 8 .  
I I x ' I I E ; ~ ~  B X'EUO B . , 

Thus, by Theorem 5.3 in [7], gao f 'is Pettis integrable. Putting 
- 

we show as in Theorem 3.1 that (x,),,,~lim gaB E B ,  which proves Proposi- 
tion 3.3. C 

COROLLARY 3.2. Let E be a conaplete 1.c.s. and let f: O + E be a weakly 
measurable and separably-valued function. I f ,  for some p > 1 ,  (f, x')€LP for 
each X' EE',  then f is Pettis integrable. 
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I 
I Proof. From the Holder inequality it follows that v f , ~  is absolutely 
L continuous with respect to P .  

THEOREM 3.2. If E is an LC. Frdchet space, then 2' (EY is isomorphic 
to E&,L]-. 

The proof of this theorem is analogous to that of Proposition 3.2. We 
need only a step functions approximation of Pettis integrable functions, 
which can be obtained in a different way. The following lemma is an 
extension of Lemma 4.1 in [8] on the case of the 1.c. Frechet space. 

LEMMA 3.1. Let- E be an LC. Frichet space and let f~ 2'' ( E ) .  Then there 
e x k s  a sequence ofjinite g-algebras dl c d2 c . . . c d such that Elf Id,) + f 
a.s. in 9' (E) ,  where E(f Id,) denotes the weak conditional expectation. 

! 
Proof. Notice k s t  that if 49 is' a finite sub-0-algebra of d, then it 

is generated by atoms B,, . . . , Bn and 
n b 

- E (f l a )  = C CP (Bill - ' J j'dPPBi 
i = l  Bi 

where J f d P  means the Pettis integral and we take [P(A,)IL1 = 0 if 
P (A,) = 0. 

It can be assumed that E is separable. Let U1 =I U, 3 ... be a base 
of neighborhoods of 0 in E and let 11 . / I ,  6 I J - I I ,  6 . .. be the corresponding 
Minkowski functionals. From [a], Lemma 4.1, it follows that for each 
seminormed space (El 1 1  . I l k )  there exists a sequence of finite- a-algebras 

d; c d; c ... C d - 
such that 

~ ( 1 1  f-E(f ldf)llk d 2-7  2 1-2-" for each n f N .  

Since 1 1  . I 1  < 1 1  . I 1  < . . . , we may assume that df-' c dl. We set 
d, = d,". Then 

P(Ilf-E(f ld,)llr, < 2-") 2 P(l l f -E(f  I d 3 I I n  6 2-") 2 1-2-' 

for each fixed k and each n 2 k. Therefore, the sequence {E(f Id,)} 
converges to f a.s. in each serninorm 1 1 .  I [ , ,  and hence it converges as. in E. 

It remains to show that E(f Id,) converges to f in Lfl(E). If V is 
a neighborhood of 0 in E ,  then there is U, such that U, c V, and 
hence l I l . l l l v  < I l [ . l l l u k .  Using Proposition 3.3 and the fact that (f,, d,) is 
a martingale, it is easy to show that 18 f.-f I l l u k  + 0 as n + m. 

COROLLARY 3.3. Let E be an 1.c. Frichet space and let f: 9-t E be 
a weakly measurable and separably-valued function. Iff is Pettis- integrable, 
then there exists a sequence if,) of simple functions which converges to  f a.s. 
in 9' (E) .  
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4. Applications to cylhdricsl measures. Let VIE)  denote the algebra of 
cylindrical sets on an 1.c.s. E, and let p be a cylindrical measure on , 
(E, w (E)). For each n E N and x i ,  . . . , X; EE' we denote by pxi ,.,., xk the 
probability measure on (W", gR,) such that 

A cylindrical measure p is said to be gaussian if, for each n e N  and 
x i ,  . . : ; x ; f E 1 ,  px b3.--."" is the gaussian probability on RR. 

Let T: .El 4 L (9, d P )  be a cylindrical process. We set 

(4.1) p(C) = P{(Tx; ,  ..., 23c;)~B}, '  6 

where C E 4K (E) ,  C = {x E E : ({x, xi  ) , . . . , (x, x:)) E B ) ,  B E %IR,, . Conversely, 
if fi is a cylindrical measure on E, then there exist a probability space 
(a ,  d, P)  and a cylindrical process T satisfying (4.1) (6. [ I ] ,  p. 41). 

A cylindrical process T is said to be gaussian if, for each  EN, and 
x i ,  . .. , X: E E',  (n;, .,. , 7!x;) is a gaussian random vector. By (4.1) there is 
a one-to-one correspondence between gaussian cylindrical measures and 

I 

gaussian cylindrical processes. I 
Let p be a cylindrical measure, T, its cylindrical process and let i 

f: E -, R be a tame function, i.e. f (x )  = g ( ( x ,  xi), . . ., {x, xk)) for some Bore1 I 

measurable function g: R" + R and x i ,  . . ., xi EE'. If 1 
\ 

Ig( t l ,  ..., t ~ ) l  ~ x ~ , . . . , x b ( d ~ )  < cx, (6 = ( t l ,  tnl), 
R" i 

I 
then we write f. 

By (4.1) we obtain 

(4.2) jf (x)fl(dx) = j g(T ,x; ,  .-a, T,x3df'. 
E R 

We say that p has a weak p t h  order if I 
-.- . J I(x, x'>IpP(dx) < 00. 

E 

By (4.2), there exists a one-to-one corresponden~e between cylindrical 
measures having the weak p-th order and cylindrical processes on E' into E. 

Now let 6 be a family of subsets of E and p a cylindrical measure 
on E. We say that p is scalarly concentrated on G if for each E > 0 there 
is A E 6 such that 

( p )  ( x  (A))  1 - c for each xr E E' 

(* denotes the inner measure). 
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THEOREM 4.1. Let E be a complete 1.c.s. and let G be the family of 
all .cornpact circled subsets of E .  -Let p be a ga~tssian cylindricnl measure 
on E and T  = T, its gaussian cylindrical process. Then the following assertions 
are equivdent : 

(a) p is scalarly coizcentrated on G.  
(b) TEE&J,L~.  
Proof.  (a)={b). If p is scalarly concentrated on 6, then TeL(E;,  Lo) 

(cf. PI, p. 211, where Et denotes E' with the topology of uniform convergence 
on sets S E  G. Since .. - T  (E') is the space of gaussiin random variables, then 
the topologies induced on T(E1) by LO and by L2 coincide. Therefore, 
TE L ( E L ,  P ) ,  and hence T E  L (Ei ,  

It remains to show that if A is an equicontinuous subset of E', then 
T (A) is relatively compact in (Proposition 2.1). Let A be an equicontinuous 
subset of E' and let A denote the closure of A in a(Er,  E). By [9], 4.3, 
p. 84, A is n(E',  E) compact. Now, let {y , )  be a net in T(A) ,  y, = Tkk, 
where x ~ E A .  Thus there exists a subnet (xk) of {x;], which converges in 
EL to some xb E A. Therefore, x i  converges to xb uniformly on each S E G 
(cf. [9], 4.5, p. 851, and hence yp = T(rb) converges in ,?. 

(b)+{a). If T E E & I , L ~ ,  then T E L ( E : ,  L2) and, for each equicontinuous 
subset A of E', T ( A )  is relatively compact in L2. Let B be the unit ball 
in L'. Similarly as in the case where E is a Banach space it can be 
shown that T* (go) is relatively compact in E (cf. [9],  9.4, p. 111). Setting 

K = T* (Bo) we obtain T(KO) c B. Indeed, let y E T (KO), y = Tx', where 
X ' E  KO. Then 

because T* y ' ~  K and x' E K O .  Therefore T E  L (E'G , L2), and hence TE L(Et , Lo). 
-By [I], p. 21, p is scalarly concentrated on G. 

Remark. The assumption that p is gaussian cannot be omitted. We 
remark that even if ,u is a Radon measure on a Banach space E having 
the weak second order, then in general T$E&,L'. Note also that the 
implication (b)*(a) is true for any cylindrical measure having the weak 
second order. 

Let E be an 1.c.s. and p a cylindrical measure on E.  If p has the 
weak second order, then there exist m,eE1* and a linear mapping 
R, : E' -, E'". such that ' 

( R ,  x', y ' )  = (x , x f )  (x , Y ' )  P (ax) - (m,, x')  (m,, Y')  
E 
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(Ef* denotes the algebraic dual of E'). We say that m, is the mean (or 
barycenter) of p, and R,  is called the covariance operator of p.  

On the subspace R,(Et) of E" we define the inner product. For 
h i ,  hz € R p  (E') ,  hl = R p x ; ,  h2 = Rpxa,  we set 

Let H i  denote the completion of R, (E') in the norm 1 . 1 1 ,  = ( 7 ,  - ) j t 2 .  
Lf p is. a gaussian cylindrical measure, then H ,  is called the reproducing 
kernel Hilbert space of p -. (many - -  results concerning H, of cylindrical-measures 
can be found in [3]), 

The forthcoming theorem extends results of Dudley et al. ([4], Theorem 4) 
and Bore11 ([2]; Thewem 2.1 and Corollary 2.3) on the case of cylindrical 
gaussian measures on a complete 1.c.s. In the above-mentioned papers it 
was assumed that p is a gaussian Radon measure. 

THEOREM 4.2. Let E be a complete 2.c.s. and G the family of all compact 
circled subsets of E.  Suppose that p is a cylindrical gaussian measure on E ,  
scalarly concentrated on G. Let rn, denote the barycenter of p and R,  its 
covariance operator. Then: 

la? m p ~ E ;  
(b) R,: E' -r E and R,, (Uo) is a compact subset of E for each neighborhood 

u of 0 On E ;  
(c )  the canonical'injection 0: H, + E is continuous and 6(y,) = go, where 

y, denotes the canonical gaussian measure on H ,  and p,(.) = p(.+m,); 
( d )  ( h€H, :  Ilhll, < 1 )  is a compact subset of E .  
Proof. Let T = T, be the cylindrical gaussian process of p. 

(a) By Theorem 4.1, T E E  &, L', SO TEE 6, L1. Therefore, b y  Theorem 3.1 
and (4.21, 

m, = j T ~ P E E .  
R 

(b) Note that if T E E  8, L~ and f E L2, then the linear mapping f .  T :  
E' + L1, (f - T) x' = f .  Tx', belongs to E 6, L'. Indeed, let E~ (.) be a seminorm 
on E 8, L', i.e. 

z U ( S )  = sup ISxlIIL1 for each s E E&,L', 
X'EU' 

where U is a circled convex neighborhood of 0 in E. Since T E E & ,  L', 
there exists a net {T,) c E @ L 2  such that 

sup 1) T, x' - TxfJ1 L2 -f 0. 
X'E w 

Therefore f. T, E E @ LJ and , 
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Now let xb E E' be fixed. We consider the operator S,&: E' + C, 
S+ = Txb- T. Since s+EE&,L', there exists xO E E  such that 

(x,, y f )  = S,, y' dP = j 23' . Ty' dP for each y' E E' . 
R dd 

Therefore R, xb = x, - (m, , x') rn, E E. 
The second part of (b) fallows from the fact that R ,  = T* o T and from 

Proposition 2.1. 
(c) Let U be a convex circled neighborhood of b in ;E,' pu(.) its gauge 

and let Eu be the completion of the normed space (E/pcl(0), p,(- ) ) .  Let% 
9;: E -P fi, denote the quotient map. Since E is complete, it suffices to . 
show, by [9], 5.4, p. 53, that @, o 8 is continuous for each U. 

Suppose X E  R, (E'), x = R , x f .  We have 

PU ((@v 8) x') = P, I@U (%(R, x'))) = SUP I@, x', yf)l . 
y8eV" 

= sup 1 ( ~ ' ,  Tyf)l G II Tx'll,, (TIy : 
yeu 

where ~ f ) ( . )  denotes the serninorm on E @, LZ. Therefore, the mapping 8 
is continuous and a simple calculation proves the second part of (c). 

(d) Denote by 2 the closure of T,(Ef) in L ~ ,  where & = T-m,. 
Observe that H,  = T,*(X). Indeed, the map T,% is the norm isomorphism 
of T,(E') onto R,(Er),  and thus extends to the norm isomorphism of ;iY 

onto H,. 
So, if B is the unit ball in 2, then B, = T,* (B)  is also a closed unit 

ball in 23,. As was pointed out in the proof of Theorem 4.1, B, = T,*(B) 
is relatively compact in E. Thus it suffices to show that B,, is closed in E. 

Let {xm) be a net in B which converges in E to some X E E .  Since 
B is a(H,, H;) compact, there exists a subnet {xs) such that xs converges 
to some Z E B ,  in o(H,, HL). By (c) the canonical injection 8 :  H, + E is 
continuous, so it is weakly continuous. Therefore xa converges to z in 
a(E, E'), and hence x = z. This completes the proof of Theorem 4.2. 

I 

Now we give some modification of Theorem 4.2 for non-gaussian 
cylindrical measures. 

, THEOREM 4.3. Let E be a complete 1.c.s. and p a cylindrical measure 
on E such that T F ~ E & , L Z .  Then: 

(a) ~ , E E ;  
(b) R,: E' -+ E and R, (UO)  is relatively compact in E for each convex 

neighborhood U of 0 in E ;  
(c) the canonical injection 8: H, + E is continuous; 
(d) { ~ E H , :  l/hJl, < 1 )  is compact in E .  

The proof of this theorem is similar to that of Theorem 4.2. 
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Remark. .Note that the conditions of Theorem 4.3 are satisfied if p 
is a Radon measure on E having the strong second order. This extends 
the results of Vakhania and Tarieladze (cf. 1101, Theorem 7 and Proposition 6). 

A d d d  in proof. The proof of Theorem 3.1 follows easily from Corollary 1 
of the author's paper Remrlcs on Pettis integrabilitv qf cylindrical 'processes, 
Lecture Notes in Math. 828 (1980), p. 269-273. 

- .  
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