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Abstract. The concept of minimum contrast functional~ is intro- 
duced. It is shown that certain statistical procedures (asymptotically 
similar tests, asymptotically similar confidence procedures and 
asymptotically median unbiased estimators) derived from the 
minimum contrast estimators are 2nd order efficient, provided the 
family of probability measures is rich enough to contain, together 
with each probability measure, contiguous probability measures 
which are asymptotically "least favorable". The 2nd order efficiency 
of statistical based on the maximum likelihood estimator 
follows by application of these results to parametric families of 
probability measures. The results are valid only for "continuous" 
probability measures. 

I. Introduction. Let (X, d) be a measurable space and 5@ a family of 
p-measures (probability measures) P l d .  Let x: T]P + R-e a functional 
defined on !$3. The underlying intuitive idea is that the features of P, 
relevant for the solution of a certain practical problem, can be summarized' 
by a k-dimensional vector x ( P ) .  Examples of such functionals are the mean, 
the mode, a quantile, a measure of variance, a measure- of concentration 
(like the Lorenz-measure), a measure of correlation in case of X = R2, etc. 
For many situations this approach is more natural than the assumption 
that T]P is a parametrized family. At least, it is more general (see Example 3). 

Our aim is to make assertions about x ( P ) ,  based on a sample 
(x,, . . . , X,)E X" which is governed by P". A successful theory requires certain 
restrictions on the functional. For an asymptotic theory at the level o(nO) 
(leading, for instance, to a normal approximation for estimators), it suffices 
to assume 1st order "differentiability" of the functional. For an asymptotic 
theory of higher order, more restrictive assumptions are needed. 

As a first step we shall deal here with a speciaI type of functionals 
to be called m.c. (minimum contrast) functionals: Let f: X x T, T c Rk, be 
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such that x + f (x, t )  is d-measurable and P-integrable for every P E p, 
t E T. Assume that for every P E '$3 the function t + P (  f (. , t)) has a unique 
minimum in T, say K ( P ) .  Then P+x(P)  defines a functional on '@, 
assuming its values in lZk. 

The following examples illustrate the concept of an m.c. functional. 
Example 1. If is the family of all p-measures over the Borel algebra 

of R with finite 1st moment, and f (x, t) = f, (x - t), where 
-- 

then the m.c. functional is the q-quantile. 
Example 2. If is the family of all p-measures over the Borel algebra 

of ltk with symmetric and unimodal Lebesgue density and f (x, t )  = f, ( x - t ) ,  
where fo: R~ 4 R is neg-unimodal (i.e, bowl-shaped), symmetric about 0, and 
bounded, then the m.c. estimator is the center of symmetry. This follows 
easily from Theorem 1 in [I]. 

Example 3. If = (P,: t IZ T ) ,  T c Rk, is a parametrized family with 
densities p (- , t )  and f (. , t) = - log p (. , t), then the m.c. functional is x (P,) = t .  

Further examples can be found in [7] and [4], p. 724-725. 
Let Q," denote the empirical p-measure pertaining to the sample 

x = ( x l ,  . . . , x,). If t + Q,X (f (. , t)) has a unique minimum in T for every 
XEX", this defines an estimator dn), the so-called m.c. (minimum contrast) 
estimator. 

The purpose of this paper is to show that, under natural conditions, 
statistical procedures based on the m.c. estimator are 2nd order efficient. 

Organizat ion of the paper. In Section 2 we introduce some basic 
notions. Section 3 contains the notation. In Section 4 it is shown how 
asymptotically similar tests of level or+ o (n-'I2) can be obtained by asymptotic 
studentization applied to the m.c. estimator. In Section 5 the 2nd order 
efficiency of these tests is established. Sections 6 and 7 establish the 
corresponding optimum properties for confidence procedures and median 
unbiased estimators. Section 8 lists the regularity conditions. 

Part I1 of this paper (see [ a ] )  contains lemmas and the proofs. 

2. Basic notions. It will be convenient in this and the following sections 
to write (x0 (P), x1 (P), . . ., xp (P)), where x0 (P) is the parameter under 
investigation, whereis xi(P), i = I, ..., p, are nuisance parameters. We first 
consider the problem of testing the hypothesis x,(P)  = to against alternatives 
x, ( P )  > to, using a c.f. (critical function) q, (., to): X" + [0, 11. 

Let 
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Let g, c 9,  EN, denote a sequence of families of p-measures, usually 
a "shrinking" sequence of neighborhoods of a fixed p-measure P, .  

(2.2) Definition. Asequence of c.f. 9,: X" x K -t [0, 11, n EN,  is asymptotically 
[sirnihr] of level a+o(n-")or q,,  EN, if 

P"(P.(-, x,(P))) < [=I U + O ~ - ~ )  

uniformly for P E "$, . 
SeG~ences of hypotheses. In asymptotic theory it is usual to think of 

a fixed hypothesis and--of -a sequence of alternatives converging - as the 
sample size increases - to this hypothesis in such a way that the power 
under this sequence of alternatives converges to some positive number 
smaller than 1. If the hypothesis is simple, this appears most natural. If 
we have a structural ,parameter 8 and a nuisance parameter q (hypothesis: 
((B,, q): ~ E H } ) ,  it is natural to consider the sequence of aIternatives 
(O,+n-'I2 t ,  q , )  for some fixed value q ,  of the nuisance parameter. 

But how should we choose the sequence of alternatives in a non-parametric 
set up? Assume -that we are given some functional x, defined on a large 
class of p-measures, say 13, and consider the hypothesis {Q": Q E p, w, (Q) = to} .  
We are interested in the power against alternatives P: with xO(Pn) 
= to +n-'I2 A .  But what are reasonable criteria for the choice of the sequence 
Pn in this case, considering that no p-measure of the hypothesis is distinguished? 

This, perhaps, is the right place to remember that; in reality, neither 
the hypothesis nor the alternatives "move". We have a fixed hypothesis 
{Qn:  Q E ~ ,  wo(Q) = t,} and we are interested in the rejection probability 
of a certain alternative Pn with x0 ( P )  = t , .  Properly understood, our 
asymptotic formulas render approximations to the rejection probability which 
hopefully will be sufficiently accurate if the sample size is adjusted to the 
interesting alternatives in such a way that the rejection probability is high, 
but not too close to 1. For the purpose of obtaining such approximations 
we may as well keep the alternative Pn fixed and consider the rejec- 
tion power under this alternative for the hypothesis (Qn: Q E  '$, xO (Q) 
= x o ( ~ ) - n - 1 / 2 ~ ) .  

As far as the approximation of the rejection power is concerned, this 
approach serves the same purpose, and it saves us choosing a sequence 
of alternatives, thereby introducing an arbitrary ingredient into our con- 
siderations. Moreover, this modzed concept of an asymptotic power function 
is exactly what we need for the evaluation of confidence procedures and 
median unbiased estimators. 

3. Notation. Let (X, d)  be a measurable space. 
For A c X let A' := X\A. 
Let (X", dn) be the n-fold Cartesian product of (X, d). For a p-measure 

P l d  let P " l d n  denote the n-fold product of P. 
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Let Wm denote the mdimensional Euclidean space, W its Bore1 algebra, 
and ( 1  - ( 1  the Euclidean norm. . 

Points ueRPS will be denoted by (u,, u,, ..., up).  
The P-integral of an d-measurable function h: X + Rm wilt be written 

as P (h) or j h (x) P (dx) ,  where integration is to be understood componentwise. 
For any d-measurable function h: X + Rm and any p-measure PI& 

the induced measure P * h 13" is defined by P * h(B) := P(hll  (B)), B€&lrn. 
- The sup-metric on the space of all p-measures over 4 is defined by 

the distance function - . . 

~ h e - t o ~ o l o ~ ~  induced by this metric is the strong topology. 
Finally, 

qz denotes the Lebesgue density of the multivariate normal distribution 
with mean vector zero and covariance matrix Z. 

Let T c RP+l. For a function h: T+ R and a multi-index a = (Q, ..,, a,) 
which belongs to (N u {O))p+' let , 

P 81.1 
Iul := C aj and hU( t )  := 

j=o  at;, . . . at: 
(t). 

For notational convenience we also use 
ak+ 1 

h(i0 ... ik) (t) : = 
at,, . . . atik h  ( t ) .  

Furthermore, 

h ( t)  : = h i  ( t i  = , , h" ( t )  : = (h(i"t)))i, = O,. . . ,p. 

For P E P  and a contrast function f,   EN and 0 = k, < k 1  < k, 
< . . . < k g - ,  < k g  we define 

and for x E X" 
n q f ( i k l - l  + l-.ikl' 

( x )  := ,-I J'!y!..ikl ,..., ikq - + 1. . .zkq 
v = l  I = I  

(x,, , x("' ( x ) )  . 

Furthermore, 

F. .  (P)  : = ( P  ( f "" (. , (P))))i, j = o,.. .,p F ,  ,. (P) : = ( P  ( f "' f ( j )  (. , ( ~ ) ) ) ) i .  j = a. .. . .p. 
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The second order optimality. I I 
Let (Aij  (P)) i , j  =,,,.,,, denote the inverse of the matrix F , .  and (A$) (x))~,~= , ,..., 

the inverse of the matrix ( F ! ; ) ( X ) ) ~ , ~ ~ , ,  __,, whenever defined, and (8ij)i,j= ,..., 
elsewhere. 

C o n v e n t  ion. .  If an index occurs in a product more than once, this 
means summation over all possible values of this index. 

For P E ' ~  and j = 0, ..., p let 

A(-,  P )  := - A j i ( P )  f ' i ) ( . ,  x ( P ) ) ,  - - - - 

, crij(Pj := P ( X ( . ,  P ) f j ( . ,  P ) ) ,  tTj(P] := D ~ ~ ( P ] ~ / ~ ,  

We remark that gij = Ai,A, F,,,. 
Given h (. , P) : X 4 Rm, we define k(. , Pj: X n  + Rm by 

v =  1 

For n N let 4 be families of p-measures over d, let hn (., Q) : X" + R 
and g, (., Q ) :  X n  4 R ,  Q E Qn be measurable functions. 

We write for r 2 0 . 

hn (. , Q )  = on (r) with respect to Eln 

.supPn{lh,(., Q)I > c )  = o(n- ' )*  for every c > 0. 
P.Q€q, 

We remark that h, ( . ,  Q)  = on(r )  implies the existence of a sequence 
cn 10,  EN, such that - 

sup Pn (lh, (-, Q)I > c,) = o  ( n - 3 .  
P '&a,, 

We write for r, s 2 0 

if 

ns ((f. (-, Q) -gn ( 0 ,  Q)) = 0, (d. 
We define 

(3.2) u , , , ( p , ) : =  { Q E F ~ :  d(P"*, Q") d 1-81 for SE(O, I), 

where d is the sup-distance. 

4. Critical regions for x,. The results of this and the foIlowing sections 
are obtained under a number of regularity conditions which will be listed in 
Section 8. Among these we have the mutual absolute continuity of the 
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measures in v ,  the continuity of P + x(P)  and various moment conditions 
on f and its derivatives, etc. 

Moreover, we require that a variant of Crambr's Condition C is fulfilled 
for the joint distribution induced by certain derivative; of f. In fact, this 
restricts the applicability of our results to families '$ with Lebesgue densities. 
It is, however, to be expected that the corresponding 2nd order optimum 
properties can be obtained for certain randomized estimators without 
a restriction like Cramkr's Condition. 

In this section -we shall show how c.r. (critical regions) for xo can be 
obtained by applying an asymptotic studentization procedure to the m.c. 
estimator. 

Under suitable regularity conditions (see Lemma (9.70) in [a]), the m.c. 
estimator x(") admits a stochastic expansion of 'type 

with polynomials Mi( , ,  -, PI defined by (9.74) in [8]. 
Let o,(P) := coo (P)ll? Then (4.1) implies, in particular, that 

(4.2) Pn {nv2 (xg' - to)  - N ,  a, (PI) = a + o (no) 
iP 

for every P E with xo (P)  = t o .  
Assume that there exists an estimator-sequence for a,, say a t ) ,  n sN ,  

which admits a stochastic expansion 

(4.3) n1I2 (ar - a, (P)) = a(. , P )  + on (+) . 

By Lemma (9.63) in [8], 

for every P E 9 with X ,  (P)  = t o .  
Under suitable conditions there exists C, (P)ER such that 

Using the stochastic expansions (4.1) and (4.3) we obtain 
\ 

whence 



The second order optirnality. I 

Replacing c,(P) by an estimator ctl  for which 

(4.6) ct)  = c. (P)  + 0, (p) 
we obtain a sequence of c.r. of level a + ~ ( n - ' ~ ~ ) .  

Theorem (4.16) below specifies regularity conditions under which this 
asymptotic studentization procedure is feasible. 

The c.r. obtained by asymptotic studentization are particular instances 
of a more general class of c.r. (F,(., to) > 0) based on test statistics 
F, ('9 to). . . 

For .simplicity, we say-that a sequence of test statistics F,, n E N ,  is 
asymptotically [similar] of  level a+o(n-")  if the sequence of c.r. {F, > 0) 
has this property (see Definition (2.2)). 

Let P, EY.  For B E ( O ,  1) let U,,,(P,) be defined by (3.2). 

(4.7) Definition. A sequence of test statistics F,IXn x K,  EN (for de- 
I 

finition of M see (2.1)), is of type S if it admits an asymptotic expansion 
of the following kind: 

(4.8) I;,(., x (P) )  = cIP)+.&t., ~ ) + n - ' / % ( & { . ,  PI, 8(-,  P) ,  ~ ) + n - ' / ~ o , ( ~ )  

with respect to LT,,a(P,) for every 5 ~ ( 0 ,  1) (see (3.111, where M (-, ., P)  are 
polynomials and g(., P): X + Rm are measurable functions, fulfilling the 
regularity conditions specified in the sequel. 

We consider only test statistics with leading term because test statistics 
with a different leading term are inefficient, and we investigate the 2nd order 
efficiency of 1st order efficient test statistics. 

(4.9) Remark. Note that under suitable moment conditions on fo and g 
the sequence F,, n EN, is asymptotic all^ similar of level a + o(nO) for U,,, (P,) 
iff c ( P )  = N,a, ( P )  (as a consequence of Lemma (9.63) in [8j and the 
Central Limit Theorem). ! 

I 
Regularity conditions required for test statistics of type S: 

I ! 

(4.10) The coefficients of M (. , . , P ) ,  considered as functions of P, are 
continuous at P ,  . 

(4.11) P -, g ( x  , P )  is continuous at P ,  for P,-a,a. x  E X. 
I I 

(4.12) fo (-, P,) and gi (-, P,) are P,-uncorrelated for i = 1, . . . , m. 

There exists a strong neighborhood U, of P, in '$ such that 

(4.13) P (g (-, P)) = 0 for P E U * ,  I 



(4.16) T H E O R E M .  Assume that ut' and c f )  are estimator-sequences for a. and 
c,, fuljilling (4.3) and (4.6), where the remainders on(+) hold with respect to 
U,,, (P,) for every 6 E (0, 1) .  

Then the sequence of test statistics Fn,   EN, obtained from the m.c. 
estimator by asymptotic strrdentization, namely , 

(4.17) Fn (x, to)  : = nil2 (xFJ (x)- to) + N ,  GI;) (x) -n-'I2 cr '  (x), 
is of type S and for every SE(O, 1) asymptoticaIly similar of level a + ~ ( n - ' ' ~ )  
.fop Vn,b( f '* l .  

In addition to General Assumptions (8.1)-(8.5) we need the following regularity 
conditions : 

(4.18) P + k (x, F )  is continuous a t  P ,  ,for P,-n.a. x E X .  _ - " 

There exists a saong neighborhood U, of P, in !@ such that 

(4.20) M $ ( { P * ~ " ( - , ~ ( Q ) ) :  P , Q E u * ) ) ~ o ~  (a !=  1 , 2 , 3 ,  

(4.21) L*,,, (PI (P,), U*)) for p: X x T R ij (a1 = 3 ,  

(4.22) M , ( ( P * k ( - , Q ) :  P , Q f U , ] ) ,  

(4.23) c * ( { P , * ( L ( . , P ) , ~ = O  ,..., p , f $ ' ( . , ~ ) ,  j = 0  , , . ,  p, k ( - , P ) ) :  PEU,)) .  

(4.24) Remark. By repeated applications of the asymptotic studentization 
procedure one can obtain c.r. which are asymptotically similar of arbitrarily 
high order. For the case of a 1-dimensional m.c. function, a c.r. which 
is asymptotically similar of level a +  o (n-') was given in [7] (Theorem 3.1, 
p. 119). This paper also contains numerical computations showing that, 
for the particular case of the expectation, these critical regions keep the 
prescribed error type one with 'sufficient accuracy. 

The following proposition gives conditions under which estimator-sequences 
for a, and ca fulfilling (4.3) and (4.6) exist: 

(4.25) PROPOSITION. (i) The estimator-seqwnce 

(4.26) a$) := ~g/;i'gj~p'j' 
fuEJills (4.3) with 

(ii) The estimator-sequence c r )  obtained from c, (P) (see (4.5)) by replacing 
Fi l . . . i  ql,..., i qk -  +l...C(P) by F t )  ... iq igk-l+l...ir and Aij ( P )  by At' fulfills (4.6). 

The remainders on($) in (i) and (ii) hold with respect to Un,6(P,) for euery 
6 € ( O ,  1 ) .  
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In additi~n to General Asswnptions (8.1)-(8.3) and (8.5) we need the 
following regularity conditions : 

Regu lar  it y c o n d i t i o n s  for (i). There exists a strong neighborhood 
U ,  of P,  in such that 

(4.29) W ( { p * f " ( - , x ( Q ) ) :  P , Q . U , ) ) ~ . I .  l a l=  1 , 2 ,  
- ~ t ( { ~ * f " ( . ,  x(Q1): p ,  Q E  u*)) for lul = 3 ;  . - - - 

-. - -  

. ,  . (4.30) -L3 ( x  (P,), U,) for f": X x T +  R if' la[ = 2, 
L, ( w  ( P , ) ,  U , )  fop f": X x T+ R if la1 = 3. 

_ _  . --- - 
~ e ~ u l a r i t ~  c o n d i t i o n s  for  (ii). There exists a strong neighborhood U ,  

of P+ in such thut 

(4.32) ~ $ , ~ ( ( f ' * f " ( . , x ( Q ) ) :  P , Q ~ v , } ) f o r  la l=  1, 

~ b 1 4 ( { f '  *f '(-, z(Q)): P ,  Q E  u*)) for la1 = 2 ,  
W j Z  ((P* f 'I-, 4Q)): P ,  Q E  U*})  for la1 = 3 ;  

(4-33) L9/5 (x (Pel, U*) for fOL : X x T -+ R if la1 = 1,  
Lg/,(x(P*), U*) for fa: X X  T-+R if la] = 2,  
L,(x(P,) ,  U,) for f a :  X x T - r R  ifla1 = 3. 

5. Second order efficiency of the c.r. for x,. In this section we shall 
show that all c.r. of type S (in particular, the c.r. obtained from the m.c. 
estimator by  asymptotic studentization; see Theorem (4.16)) are 2nd order 
efficient. 

(5.1) THEOREM. Let rp,,  EN, be a sequence of c f .  which is asymptotically 
of Eevel a= o (nP1/')  for U,,, (P,) for every 6~ (0, I), and let F,, , n EN, be 
a sequence of test statistics for x, of type S (see (4.7)) which-is asymptoticaIIy 
similar of level a+ o (n-'I2) for U,,, (P,) for every S ~ ( 0 ,  1). 

Assume that for every A > 0 there exists a sequence Pn,d E '$,  EN, 
fulfilling 

(5-2) x,, (Pn,J = xo (P*) - n - 'Iz A ,  

and admitting a P,-density 

(5.3) P,,A := 1-n -112Ao;~ f0 ( . ,  P,)+n-1d2h+n-3/2 P,,A , 

such that 
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and for every A, > 0 

(5.5) M4,2 ( P ,  *r,,, : n E  N ,  0 < A < d o )  and sup P ,  (rL1 = o(4 .  
O<dSd0 

Then for every A ,  > 0 

tlniforrnly for O < A 4 d o ,  where - 

(5.7) n,(d, a) = &(N, + do, ')- n- l i 2  dve2 oo r p ( N E f A G l )  x 

x [A;~AO.  A,*(%-' (tFr,,, +A,"F".(fF,, A " P ~ , . - ~ ~ d ~ - f ~ . ~ r , , * ) 1 .  

In addition to General Assumptions (8.1)-(8.5) we need the following regularity 
conditions : 

(5.9) L 4 ( x ( P , ) , P , ) f o r f a :  X x T - R  i f ( a ( = 2 ,  
L , ( ~ ( P , ) ,  P,) for f " :  X x  T+ W if Jlal = 3 .  

The basic idea of the proof is as follows. Let Pn.d, n EN, D < A < A,, 
be sequences of pmeasures fulfilling (5.2) and admitting a P,-density 

(5.10) PnA := ~ + n - ' / ~  dg+n-17  rrr A . 

According to Lemma (9.35) in [8] the sequence of most powerful level 
a-tests for PnnA : P i  has power @ ( N ,  + A P ,  (g2)'12) +o  (no). If a sequence of 
c.f. tp,, n E N, is asymptotically of level a+ o(nO) for (P,) for every b e  (0, 1), 
we obtain 

P, (q, (-, xx, (P,)  -n-'Iz A))  B i d  @ (Na+ AP, (g2)'12) + o(nO), 
0 

where the infimum is taken over all g for which p-measures P,,,, BEN, 
0 < A B A, ,  with (5.2) and (5.10) belong to '$I. From (5.2) and (5.10) we 
obtain P ,  (do) = - 1 .  

To obtain a small upper bound for P i  (cp, ( , xo (P,) - n- ' I ' d ) )  we have 
to minimize P, (gZ),  subject to the condition P, ( d o )  = - 1 .  By Wilder's 
inequality this minimum is attabed for go = - a 2  fo, provided PRd, 
 EN, belong to for this function. (These p-measures are asymptotically 
least favorable in the sense that they are asymptotically most diilicult to 
discriminate from P,  .) 

Thus we obtain the upper bound 
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Since this upper bound is attained for every sequence of test functions 
of type S, this bound is sharp and the test functions are asymptotically 
optimal up to an error term o(no) .  Theorem (5.1) asserts that this optimality 
even holds true with an error term ~ ( n - l / ~ ) .  

The purpose of Corollaries (5.11) and (5.15) is to exhibit natural 
conditions under which the family contains p-measures P,,, ,  EN, 0 < A B do, 
fulfilling (5.2)-(5.5). Corollary (5.15) shows that tliis always is the case if 

is a parametrized family and P * E ~  an "inner" point. 
  not her condition - most natural within a non-parametric set up - 

is that. +$ contains all --measures in a certain neighborhood of P,  . This, 
is the situation considered in Corollary (5.11). 

To make the nature of this assumption more transparent,.-let us first 
consider two egamples where it is not fulfilled. 

Assume first that Q = (N, , , , , :  OER) and let f ( x ,  t) = f * ( x - t ) ,  where 
f* is any sufficiently regular N(,,ll-integrable function which is symmetric 
about the origin. Then x(P,) = 8, but the test based on the contrast 
function f, is n o t  optimal unless f, (x) = cx2, because for other contras't 
functions f, 'the least favorable p-measures with Nr#.,,-densities 

do not belong to (N( , , , , :  B E  R). 
As another example consider the cask where '$*is a family with symmetric 

unimodal densities and f ( x ,  t )  : =. f, ( x  - t ) ,  f, being bounded, neg-unimodal, 
and symmetric about 0. The pertaining m.c. functional is the center of 
symmetry (se_e Example 3). Corollary (5.11) requires that the family '$ 
contains together with P ,  certain p-measures with P,-deilsity p,,., := I +  
+ AAoi f (i)+ n-'F,,, . This, however, is not the case, since such p-measures 
are not symmetric any more. Hence Corollary (5.11) is not applicable. In 
fact, it is well known that fog 1-dimensional symmetric distributions with 
unknown shape the center of symmetry can be estimated with the same 
asymptotic efficiency as in the case of known shape (see, e.g., [9]). 

(5.11) COROLLARY. Assume that there exists a constant c > 0 such that any 
p-measure P admitting a P,-density p with 

sup lpfx)- lI  6 c 
X € X  

belongs to  q. 
Then the c.r. obtained from the m.c. estimator by asymptotic stdentization 

(see (4.17)) is 2nd order efjicient in the sense of (5.6). 
In addition to the assumptions of Theorem (4.16) we need the following 

regularity conditions : 
I 

(5.12) M3,2 (P* * f a  (.. 4p.1)) for Ill1 = 1,  
~4 (P* *fa (.I x (PC))) for l ~ l  = 2; 
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(5.13) Lt (x(P.1, P,)  for f ": X x T-r  R if la1 = 2, 
L,(x(P*),P*) forfa:  X X T +  R if lor] = 3 .  

(5.14) Remark. For the special case of quantiles, a related result was 
obtained in [6] (Theorem 3, p. 114) proving the 1st order efficiency of 
statistical procedures based on the sample quantile. 

The following corollary concerns the case of a parametrized family of 
p~measures, say 13 = {P,: B E @ )  with O c R p f  l. With the likelihood 
contrast function f [ x ,  0) = -logp(xl 8), we obtain the m.c. functional 
x(P8) = 0. The peFtaining m.c, estimator is the m.l. (maximum likelihood} 
estimator. 

(5.15) COROLLARY. Assume that 13 = (P , :  8~ O )  with @ c--Rpf I ,  and B* is 
a11 inner point of 8. 

Then the c.r. obtained fiorn the m.1. estimator by asymptotic studentization 
is 2nd order eflcient in the sense of (5.6). 

In addition to the assumptions of Theorem (4.16) and conditions (5.12) 
and (5.13) for P, = P# and f (., 8) = -log p (., 0) we need .the following 
regularity conditions : a 

(5.16) Mg(PB * p a ( - ,  O*)/p (., B*)) for la1 = 2, 
Lz(B*, PB*) for pa(,,8*)/p(.,8*): X x B + R  if lor1 = 2. 

This result is, of course, well known (see [2], p. 40, Theorem 9.1, and 
p. 38, Theorem 8.1, and [ 5 ] ,  p. 260, Proposition). It is mentioned here 
because it is of some interest that Theorem (5.1), aiming at non-parametric 
applications, yields this parametric result as a by-product (of course under 
somewhat different regularity conditions). 

Moreover, we infer from Theorem (5.1) that the 2nd order efficiency is 
not diminished if the estimator for a, used in the asymptotic studentization 
procedure is inefficient. 

Let 

L(0) := ( P O  (Uog p)"' ( ' 9  6) flog P)" (., @ ) ) i , j = O  ....,p, I 

A(0) := ~ ( o ) - l .  

In the case of the likelihood contrast function we have F.,. (P,) = L(0) 
and F. ,  (Po) = - L (B), whence A (Po) = -A ( B ) ,  and therefore 

Hence an estimator for a,, more natural than the estimator at) given 
in Proposition (4.251, is A,~(O("))~/~,  where 0("' is the m.l. estimator. If Aoo 
is difficult to obtain (as, for instance, in the case of mixtures), one could 
as well use (AI;A)'i2, where A',J(fx is the (0,O)-element of the matrix 
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obtained by inversion of 
n 

(n  - C F i )  (x,  , O(") (x)) (xv , B(") (x))).,~ t - - 0, ..., P a  
v = l  

Using of1 as given by (4.26) rather than ( A ~ A ) ' / '  or (Ao,(8(n'))112 leads 
to a c.r. which is asymptotically similar also for g-measures in the neighborhood 
of {P,: O E  O } ,  without diminishing the power by more than o(n-112) if 
the model (P,: O E  O j  is correct. . -- 

6. Optimal confidence-jiirmedures. In Section 4, criticaI regions 

Cn,a(to) : = {nil2 (x$)- to)- IVa (r$')+ n-II2 cf) > 0) 

have been obtained which are asymptotically similar of level ~ + o ( n - ' / ~ )  for 
the hypothesis x,(P)  = to.  Assume this holds true for any hypothesis to EK 
(for K see (2.1)). In view of their 'special structure, these c.r. can be 
inverted immediately to confidence procedures for xo. 

Let 

(6.1) '0,~ := xb"'-n-l121\i al;)+n-lcp. 

Then P" (c.,~ (xo (P)) )  = a + o (nu ' I 2 )  for all P E $ implies 

P" { ~ C F ) ~  < xo (P)}  = 1 - E+ o (n- lJ2)  for all P E v .  
(6.2) D e fi  n i t i on. A sequence of confidence procedures K,, , n EN, assigning 
to each XEX" a set K , ( x )  c K is asymptotically [similar] with confidence 
coefficient 1 - a + o (nWs)  if for every P ,  E '$ and every 5 ~ ( 0 ,  1) 

uniformly for P  E UnSg (P*) . 
Hence the confidence procedure x + [icF,)= (x), co) is asymptotically similar 

with confidence coefficient 1 - u + o (n-'1, and the confidence sets, being rays, 
are of a particularly useful structure. Moreover, the 2nd order ' efficiency, 
proved for the c.r. C,,, (to) in Section 5, , carries over to the confidence 
procedure derived thereof. 

(6.3) THEOREM, _ti) The sequence of confidence procedures x + [~$!~(x), a), 
n E N, is asymptotically similar with confidence coeficient 1 -or + o (n- ' I 2 ) .  

(ii) I t  is optimal in the following sense prouided for euery A > 0 there 
exists a sequence Pn,d E 9, n EN,  fu&lling (5.2) - (5.5) : 

If K , ,   EN, is any sequence of confidence procedures with asymptotic 
confidence coeflcient 1 - ol+ o(n-li2), then for every P,  E '$! and every A, > 0 

uniformly for 0 < A < A , .  



Assertions (i) and (ii) are trzse if the assumptions of Theorem .(4.16) and 
(5.12) and (5.13) ho'ld true ,for every P,E'@.  

Natural conditions on under which sequences Pn,d,  EN, fu1filling 
(5.2)-(5.5) exist are given in Corollaries (5.11) and (5.15). 

Theorem (6.3) follows immediately from Theorems (4.16) and (5.1) applied 
for qpj (' : = l i xE~n: td~ , , ( r ) }  . 

9. Optimal median unbiased estimators. In this section we shall show that 
%(n) ,,,,,, the Iower confidence bound with confidence coefficient 5, if considered 

as an estimator for x,(P), is asymptotically median unbiased up to an error 
term o(n-lI2), and is 2nd order efficient within this class of estimators. 

(7.1) t ie  fini  t ion. An estimator-sequence t t ) ,  n~ M ,  for xo is asymptotically 
median unbiased o(n-") if for every P,E and every 6 E(O, 1) 

P" {XE P: x0 (P)  < t$"(x)) 2 ++o(n-'), 

uniformly for P E U,,, (P,) . 
(7.2) THEOREM. (i) The sequence ~ g , ) ~ , ~ ,   EN, is asyntptotically median 
unbiased o (n - '/'), c 

(ii) It is optimal in the foliowing sense provided for every A # 0 there 
exists a sequence P n , ~  E 13, n E N ,  fulJilIing (5.2)-(5.5) (the supremum in (5.5) 
is taken over 0 < (A( ,< A,): 

If tg' is any estimator-sequence for x, which is asymptotically median 
unbiased o(n-'I2), then for every P, E and every A, > 0 

P t  {XE Xn: xo (P,)-n-liz A' < tg) (x)  < x,(p,)+ n-'l2 A") 

,< P",x E Xn : xO (P*) - n - liz d f  < ,&"I o , i , 2 ( ~ )  < x ~ ( P ~ ) + n - ~ / ~  A " ) + o ( ~ - ~ J ~ )  

uniformly for 0 < A;, A" < A , .  
Assertions (i) and (ii) are true $ the assumptions of Theorem (4.16) and 

(5.12) and (5.13) hold true for every P, E !j3. 
I 

From this theorem one can easily derive corollaries corresponding to 
Corollaries (5.11) and (5.15). 

With o(n-'I2) replaced by o(nO) the non-parametric optimality assertion 
occurs in [6] (Corollary 2; p. 116) for the particular case of the sample 
quantile. For general m.c. estimators a somewhat different but intuitively 
related 1st order dptimality assertion occurs in [4] (p. 738, Theorem 4.4). 
See also [3]. 

Theorem (7.2) follows from Theorem (6.3) and Remarks (9.34) and (9.56) 
in [8] applied to the confidence procedures K,,(x) = [t$"(x), m) and K,(x) 
= ( - a, tg) ( x )  J , respectively. 
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8. Regularity conditions. In this section we list the regularity conditions 
which are needed somewhere for the proofs. At the end of this section 
we specify some "general assumptions", which are made throughout the 
paper. 

Conditions M,, M:, C ,  and C* refer to a family of p-measures Q 
over gp+ l.  

CONDITION M ,  (D). SUP 5 Ilxll' Q (dx) < m. 
QeC. 

CONDITION (Q). Condition M,+,(Q) is fulfilled for some S > 0. 
.. - - 

CONDITION C(X3). lim sup I exp [ iuj  tJQ (dull < 1.  
'ltll-+m QEQ 

CONDITION C* (a), Every QEB is concentrated on a k-dimensional aft?ne 
subspace and there exists a subindex (i,, ..., ik) of (0, .... p) with il = 0 such 
that Condition C ((Q * (nil, . . . , qk): Q E a)) is fulfilled. 

Let now Q be a family of p-measures over d. 

CONDITION Lr. h :  X x T +  R fulfills Condition L, (t, Q) if for some 
neighborhood V(t) of t 

I h (x , t ')  - h (x, t1')1 < g (x) II tr  - t" [I 
for t', t" E V(t ) ,  where g fulfills M ,  ((Q * 8 :  Q E Q)). 

C o ~ ~ r r r o N  L:. L,+; is fulfilled for some s > 0. 

Let T denote the closure of T in the one-point compactification of RP+'.  

CONDITION K r  . h: X x T + R fulfills K, ( t ,  D) if 
(a) M,*({Q* h ( - ,  t): QEQ)), 
(b) for each S E  T\{t) there exists a neighborhood V(s )  of s id T such that 

M,*((Q*linf { h ( . ,  u): u ~ V ( s ) n  T)I: QEQ]) 
is fulfilled. 

We introduce the following General Assumptions: 

(8.1) The measur& in !$I are mutually absolutely continuous. 

(8.2) - t + f (-, t) is three times differentiable on T, and t + P ( f  (., t)) can 
be extended to a continuous function on T for every P E '$. 

(8.3) f: X x T +  R fulfills Lj ( t ,  P). 

(8.4) For each P E '$ there exist a strong neighborhood U ( P )  of P and 
a neighborhood V ( x  (P)) of x (P) such that 

inf inf R ( Q , t ) > O y  
QEUIP) wV(xI PI) 

where I (Q, t )  is the smallest eigenvalue of the matrix Q (f ('j' (-, t))i,j=o,...,a. 
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(8.5) For every P E  a3 and 8 - ~ ( 0 ,  I), 

sup sup nil2 llx(Q)-x(P)II < co, 
n&' QfU.,d(P)  

where U,,, is defined by (3.2). 

We remark that assumption (8.3) guarantees that the order of differentiation 
and integration can be interchanged for t -+ P (f (. , t)) .  

It will be shown eIsewhere that (8.5) holds under certain regularity 
assumptions. 

.. - -  
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