PROBABILITY AND MATHEMATICAL STATISTICS Vol. 2, Fasc. 1 (1981), p. 31-35

STEREOLOGICAL FORMULAS FOR MANIFOLD PROCESSES

BY J. MECKE (JENA)

Abstract. Stationary and isotropic q-dimensional random manifolds in \mathbb{R}^n are considered. Formulas are given which allow to determine the expected q-dimensional volume of the random manifold per unit volume of \mathbb{R}^n by measurements of the intersection with a hyperplane or other manifold.

1. Introduction. Let Φ be a stationary and isotropic q-dimensional random manifold in \mathbb{R}^n , where R denotes the real axis and n is fixed $(0 \leq q \leq n)$. A suitable definition of a random manifold or a manifold process is given in section 2. We are interested in the problem of determining the expected q-dimensional volume of Φ per unit volume of \mathbb{R}^n by the measurement of the intersection of Φ with an r-dimensional manifold Ψ . The problem is solved in section 3 for the case where Ψ is fixed (non-random) and bounded, in section 4 for the case where Ψ is a flat, and in section 5 for the case where Ψ is a stationary and isotropic random manifold. The results in sections 4 and 5 are consequences of the result in section 3. The key for the solution of our problems is a theorem of Poincaré type given in [3]. Geometrical notation as "manifold piecewise smooth of class C^{1*} , "special motion", and "kinematic measure" are used in the same sense as in [3].

If some convexity conditions are satisfied, the results of sections 3 and 4 have already been contained in [2] (formulas (7.4) and (7.6)). The results of the paper are also connected with [4].

2. Manifold processes. Denote by σ_q the volume measure for q-dimensional rectifiable manifolds in \mathbb{R}^n $(0 \leq q \leq n)$. Then σ_n is the Lebesgue measure in \mathbb{R}^n and $\sigma_0(A)$ equals the number of elements in the set A. Let \mathscr{A}_q be a family of subsets $\varphi \subset \mathbb{R}^n$ with the property that for any ball $B \subset \mathbb{R}^n$ the intersection $\varphi \cap B$ is a q-dimensional manifold piecewise smooth of class C^1 and $\sigma_q(\varphi \cap B) < \infty$. Denote by \mathfrak{R}_n the Borel σ -algebra in \mathbb{R}^n . Let \mathfrak{A}_q be the σ -algebra in \mathscr{A}_q generated by all functions $\varphi \to \sigma_q(\varphi \cap C)$ $(C \in \mathfrak{R}_n)$.

By a q-dimensional manifold process we mean a random variable Φ with range $[\mathscr{A}_q, \mathfrak{A}_q]$. Its distribution is a probability measure on $[\mathscr{A}_q, \mathfrak{A}_q]$. Examples are given by: flat processes (line processes in the special case q = 1), processes of boundaries of special random closed sets (cf. [2]), random fibrefields in the sense of Ambartzumian [1] (q = 1, e.g. line-segment processes), point processes (q = 0). Let M be the set of special motions m of \mathbb{R}^n , \mathfrak{M} the usual σ -algebra in M, and \varkappa the kinematic measure on $[M, \mathfrak{M}]$.

A q-dimensional manifold process Φ is called stationary and isotropic if the process $m\Phi$ has for all $m \in M$ the same distribution as Φ . If P is the distribution of Φ , this condition is equivalent to

(2.1)
$$\int P(d\varphi)f(m\varphi) = \int P(d\varphi)f(\varphi) \cdot$$

 $(\mathfrak{m} \in M; f: \mathscr{A}_q \to [0, \infty), \mathfrak{A}_q$ -measurable).

Simple examples of stationary and isotropic manifold processes are homogeneous Poisson point processes (q = 0) and unions of hyperspheres with constant radius whose centres form a homogeneous Poisson process (q = n-1).

Suppose Φ is a q-dimensional stationary and isotropic manifold process and $\vartheta \in \mathscr{A}_n$, $\sigma_n(\vartheta) = 1$; then it is easily seen that $E\sigma_q(\Phi \cap \vartheta) = J_{\Phi}$ does not depend on the special choice of ϑ . The value J_{Φ} is called the *intensity* of Φ . If C_n denotes the unit cube $[0, 1]^n$ in \mathbb{R}^n , we have $J_{\Phi} = E\sigma_q(\Phi \cap C_n)$.

3. Intersection with manifolds. Denote by O_m the surface area of the *m*-dimensional unit sphere:

$$D_m = \frac{2\pi^{(m+1)/2}}{\Gamma((m+1)/2)}$$
 (m = 0, 1, 2, ...).

In [3], p. 259, the following theorem of Poincaré type is mentioned:

THEOREM 3.1. Let M^q and M^r be q- and r-dimensional manifolds in \mathbb{R}^n piecewise smooth of class C^1 $(q, r = 0, ..., n; q+r \ge n)$. Then

$$\int \varkappa(d\mathbf{m})\sigma_{q+r-n}(M^q \cap \mathbf{m}M^r) = \frac{O_n \dots O_1 O_{q+r-n}}{O_q O_r} \sigma_q(M^q) \sigma_r(M^r).$$

Putting

$$c(n, q, r) = \frac{O_n O_{q+r-n}}{O_q O_r}$$

or, equivalently,

(3.1)
$$c(n, q, r) = \frac{\Gamma((q+1)/2)\Gamma((r+1)/2)}{\Gamma((n+1)/2)\Gamma((r+q-n+1)/2)}$$

we can prove the following

Manifold processes

THEOREM 3.2. If Φ is a stationary and isotropic q-dimensional manifold process with distribution P and if $\psi \in \mathcal{A}$, $(r, q = 0, ..., n; r+q \ge n)$, then

$$\mathsf{E}\sigma_{q+r-n}(\Phi \cap \psi) = c(n, q, r)\sigma_r(\psi)J_{\Phi}(1)$$

or, equivalently,

(3.2)
$$\int P(d\varphi) \sigma_{q+r-n}(\varphi \cap \psi) = c(n, q, r) \sigma_r(\psi) \int P(d\varphi) \sigma_q(\varphi \cap C_n).$$

Proof. Putting

$$\overline{a(n, q, r)} = \frac{O_n \dots O_1 O_{q+r-n}}{O_n O_r},$$

we obtain, according to theorem 3.1,

(3.3)
$$c(n, q, r) \int P(d\varphi) \sigma_q(\varphi \cap C_n) \sigma_r(\psi) = [a(n, q+r-n, n)]^{-1} \int P(d\varphi) \int \varkappa(d\mathfrak{m}) \sigma_{q+r-n}(\varphi \cap C_n \cap \mathfrak{m}\psi).$$

By Fubini's theorem, the stationarity and isotropy of P (formula (2.1)) and σ_{q+r-n} we obtain

(3.4)
$$\int P(d\varphi) \int \varkappa(d\mathbf{m}) \sigma_{q+r-n}(\varphi \cap C_n \cap \mathbf{m}\psi) = \int \varkappa(d\mathbf{m}) \int P(d\varphi) \sigma_{q+r-n}(\mathbf{m}\varphi \cap \mathbf{m}\psi \cap C_n) = \int P(d\varphi) \int \varkappa(d\mathbf{m}) \sigma_{q+r-n}(\varphi \cap \psi \cap \mathbf{m}^{-1}C_n).$$

Using theorem 3.1 and substituting q+r-n for q and n for r we obtain

(3.5)
$$\int P(d\varphi) \int \varkappa(d\mathfrak{m}) \sigma_{q+r-n}(\varphi \cap \psi \cap \mathfrak{m}^{-1} C_n) = a(n, q+r-n) \int P(d\varphi) \sigma_{q+r-n}(\varphi \cap \psi).$$

Equation (3.2) follows now from (3.3)-(3.5).

4. Intersection with flats. Let Φ be a stationary and isotropic *q*-dimensional manifold process with distribution P and let L_r be an *r*-dimensional flat (*r*-flat) $(q, r = 0, ..., n; q+r \ge n)$. We are interested in the process $\Phi \cap L_r$. Because of the stationarity and isotropy it is sufficient to consider the special case $L_r = R^r \subset R^n$ ⁽²⁾. The intersection $\Phi \cap R^r$ is almost surely a (q+r-n)-dimensional manifold process in R^r invariant under all special motions of R^r . Its intensity (as of a process in R^r) will be denoted by $S(\Phi, r)$:

$$S(\Phi, r) = \int P(d\varphi) \, \sigma_{a+r-n} (\varphi \cap R^r \cap C_r).$$

⁽¹⁾ $\Phi \cap \psi$ is (q+r-n)-dimensional almost surely.

⁽²⁾ R^r is identified with $\{(x_1, ..., x_n) \in R^n : x_{r+1} = ... = x_n = 0\}$.

J. Mecke 🐋

By theorem 3.2 we have

$$(4.1) S(\Phi, r) = c(n, q, r) J_{\Phi},$$

where J_{ϕ} is the intensity of Φ and c(n, q, r) is given by (3.1). Examples.

	n	q	r	c(n, q, r)
	2	1	. 1	2/π
· · · · · · · · · · · · · · · · · · ·	3	2	•2	π/4
	3	. 2	1	1/2
	3	1	2	1/2
	m	m	S	1

The last case corresponds to the usual stereological formulas.

5. Intersection of manifold processes. If Φ and Ψ are independent stationary and isotropic manifold processes of dimensions q and r, respectively, then $\Phi \cap \Psi$ with probability one is an (r+q-n)-dimensional manifold process. We are interested in its intensity $J_{\Phi \cap \Psi}$. Let P be the distribution of Φ and Q the distribution of Ψ . We have

$$J_{\phi \cap \Psi} = \int Q(d\psi) \int P(d\varphi) \sigma_{a+r-n}(\varphi \cap \psi \cap C_n).$$

By theorem 3.2 we obtain

$$\int P(d\varphi) \sigma_{q+r-n}(\varphi \cap \psi \cap C_n) = c(n, q, r) \sigma_r(\psi \cap C_n) J_{\phi}.$$

Hence

$$J_{\Phi\cap\Psi} = c(n,q,r)J_{\Phi} \int Q(d\psi)\sigma_r(\psi \cap C_n).$$

Since $\int Q(d\psi) \sigma_r(\psi \cap C_n) = J_{\Psi}$, we have the final formula

$$J_{\Phi \cap \Psi} = c(n, q, r) J_{\Phi} J_{\Psi}.$$

In the special case where n = 2 and q = r = 1 it reduces to the following nice result:

The intersection of two independent stationary and isotropic random fibrefields in \mathbb{R}^2 with intensities J_1 and J_2 is, with probability one, a point process in \mathbb{R}^2 whose intensity equals $(2/\pi)J_1J_2$.

Added in proof. The definition of \mathscr{A}_q in section 2 must be completed by the assumption that each $\varphi \in \mathscr{A}_q$ is a closed subset of \mathbb{R}^n . (Then a manifold process is a special random closed set.)

34

Manifold processes

REFERENCES

- [1] R. V. Ambartzumian, Stochastic geometry from the standpoint of integral geometry, Advances in Appl. Probability 9 (1977), p. 792-823.
- [2] P. J. Davy, Stereology a statistical viewpoint, Thesis, Austral. Nat. Univ., 1978.
- [3] L. A. Santaló, Integral geometry and geometric probability, Addison-Wesley, Massachusetts, . 1976.
- [4] D. Stoyan, Proofs of some basic stereological formulas without Poisson assumptions, 1979 (to appear).

FSU, Sektion Mathematik DDR-69 Jena UHH

Received on 2. 1. 1980

