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Absbract. In certain cases partial sums of i.i.d. random variables 
with finite variance are better approximated by a sequence of stable 
distributions with indices a, + 2  than by a normal distribution. We 
discuss when this happens and how much the convergence rate can be 
improved by using penultimate approximations. Similar results are 
valid for other stable distributions. 

1. htrodwctbn. Let XI, X,, .. . be independent random variables with 
common distribution function F. We assume that F is either in the domain of 
attraction of a stable law with index less than 2, that is 

1-F(t) 
lim = P ,  
,-+, 1 - F ( t ) + F ( - t )  

for some parameters u E (0, 2) and p E [O, 11, or in the domain of attraction of 
a normal law, i.e. 

Then there exist a, > 0 and b, E R such that 

for all x, where G,  is a stable distribution function for a ~ ( 0 ,  2) and 
X 

G ,  (x) = (24- j exp ( - u2/2) du. 
- m  
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Rate of convergence results in connection with (1.2) can be given under 
second order conditions. First let us concentrate on the case a < 2. 

Suppose there exists a function A with lim,,, A (t) = 0 and not changing 
sign near infinity, such that 

-- .. , , - : . 

b lirn i - ~ ( t ) + ~ ( - t ) - ~  = q. 
['GO A 0) 

Here q is a real constant. The function IAl is then regularly varying with 
non-positive index Q (notation: IA(t)l E R%). 

De Haan and Peng [4] proved that under condition (1.3) for a suitable 
choice of the sequences a, and b, 

exists and is positive. 
Now the question is: can we improve the convergence rate by using a se- 

quence of stable distribution function Gan with a, + ct instead of G, in relation 
(1.4)? In order to answer this question we note that an intermediate step in 
settling (1.4) is a second order relation for the characteristic function of F, 

We take as an example the case 1 < o l <  2 and 1 - F (x) = F (- x) for 
x > 0. In this case the relation for f is the following (see Lemma 1 of de Haan 
.and Peng [4]): 

( t J - e y l  
(1.5) lim sa+da-, - 

R+ rn e 
where 

g, (t) = exp ( - Itla I' (1 - a) cos (na/2)) 

is the characteristic function of GR(x) and 

m 

s,: = J x-"Iogx sinxdx 
0 
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We want to replace u by a sequence M, for which 

Note that for n ca 

lirn - n 1% f Itla,) +logiI,,, ( t )  
= 0. 

n-m A (a,) 

This shows that if we take a, : = a -A (a,), 

lim -log gan ( t )  + log g a  It) = lim - n  1% f (t/a,J +log Qa 0) 
n-+ m A (an) n - r  m A (an) 

when Q = 0. So with that choice 

lim 
- log f (t/an) + 1% 9% (0 

= 0, 
n+ m A (a,) 

i.e, the convergence rate can be improved. 
If Q is less than zero, then for no choice of a,, cancellation is possible, so we 

cannot improve the convergence rate in this case. 
Next let us consider the case o: = 2. Since x-' S ( X )  10 as x -+ a, the func- 

tion 
a ( x ) : =  s u p { a :  2a-'S(a) > x-l) 

is well defined for x  > 1/2. We have 

De Haan and Peng 151 proved that 

lim sup 
I P  (6, XJa (TI) 4 x) - G2 (x)l 

XER n ( 1 - ~ ( a ( n ) ) + ~ ( - a ( n ) ) )  



exists and is positive under the condition 

I - F ( x )  
lim = P"E[O, 11. 
x+m I - F ( x ) + F ( - X )  

Using the same arguments as in the case a < 2,  we find that the rate 
of (1.8) can be improved only in the case e = 0 of (1.9). 

The result in Section 2 shows that for 1 < a < 2 the convergence rate can 
be improved 'a little' if the condition (1.3) holds for g = 0, that is, if the conver- 
gence rite is slow. In that case the convergence rate A(aJ is replaced by 
(A(a3I2. See also Remark 2.2 about the case 0 < ct < 1. 

In Section 3 we consider the normal limit distribution. We shall show that 
if (1.9) holds for Q = 0 the convergence rate can be improved 'a little' when one 
approximates by a sequence of stable distributions with a, + 2  instead of by 
the normal distribution. In that case the rate n (1 - F (a (n)) + F (- a (n))) is re- 
placed by [n (1 - F (a (n)) + F (- a (nj)}I2. The phenomenon has been observed 
before in Iglesias Pereira et al. [lo] and Oliveira [8]. 

2. Maim result for a ~ ( 1 ,  2). Throughout this section we assume that 
a ~ ( 1 , 2 )  (but see Remark 2.2 for 0 < a <  1 )  and EX, = 0. We now need an 
even more stringent condition than the second order condition (1.3). In fact, we 
need a third order condition: suppose there exists a function A,( t )  with 
limt+, A,  ( t )  = 0 and not changing sign near infinity such that 

1 - F ( t x ) + F ( - t x )  -x -a  
1 - F ( t ) + F ( - t )  

- x - " l o g x  

(2.1) lim 
A  ( t )  

t+ca A0 ( t )  
= H ( x ) ,  

- where H ( x )  is not a multiple of x-"logx and suppose that 

1 -F  ( t )  . - 
- m  

1 - F ( t ) + F ( - t )  Y - 
lim 

A2 ( 4  
= q 0 € ( - a 3 ,  a). 

t+m 

Note that (2.1) is equivalent to 

(tx)" K (tx) - tu K ( t )  - A  ( t )  t" K ( t )  log x  
(2.3) lim = xaH(x ) ,  

t+m A  (0 t" K (t)  A0 ( t )  

where K (x)  : = 1 - F (x)  + F ( - x ) .  From Theorem 1 of de Haan and Stadtmiiller 
[7] we can assume that 
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Let us denote by U ( t )  the generalized inverse of the function 
l / ( l -  F ( t )  + F (- t ) ) .  If (1.1) holds, 1 < cr < 2 and E X ,  = 0, the sequence 
C,,,XJU(n) converges in distribution to G, whose characteristic func- 
tion is 

where 

1 for t 2 0, 
- .sgn ( t )  = 

- 1  f o r t < O .  
b 

Now we can state our main results. 

THEOREM 2.1. Let F be a non-lattice distribution function. Suppose (2.1), 
(2.2) and (2.4) hold for some 1 < ol < 2 and Q' < 0. Then (recall EX, = 0) 

unijiirmly for all x ,  where 
w 

C ,  ( t )  = 1 [- (x/l tl)-" (log ( ~ / l t 1 ) ) ~ / 2 ]  sin x d x  
0 

and 

Remark  2.1. Suppose (2. lf, (2.2) and (2.4) hold for Q' = 0. Assume 

lim A, ( t ) /A  ( t )  = c E ( - a, a). 
t'co 

Then the left-hand side of (2.5) still exists, but the limit functiop is diffe- 
rent.. - 

Remark  2.2. For a < 1 we also have a version of Theorem 2.1 when F is 
assumed to be symmetric (cf. Remark 5 of de Haan and Peng 151). 

3. Main result for a = 2 .  We assume throughout this section that EX, = 0 
and that G,* is the stable law with characteristic function 

Define GI: : = 2 -2n ( 1  -F  (a  (n))+F ( - a  (n))). We now need a condition strong- 
er than (1.9). Suppose there exists a function A* (t) with lim,,, A* ( t )  = 0 



and not changing sign near infinity such that 

l - F [ t ~ ) + F [ - t x )  - x - z  
1 - F ( t ) + F ( - t )  XQ* - 1 

lim = x-2  - 
t-+m A* ( t )  e* , x > o ,  

(3.1) 1-F(t) 

l - F ( t ) + F ( - t )  -p*  
lim = q*, 

1-m t ( 1 - ~ ( a ( t ) ) + ~ ( n ( t ) ) )  

wherre* < 0 and -q'* is a real constant. 
4 

Now we state our main theorem. 

T H ~ R E M  3.1. Let F be a non-lattice distribection function. Suppose (3.1) 
holds for e* < 0. Then 

(3.2) lim P (x;= x,/a (4 G X) - GZ ( X I  
n+m [ n ( l - ~ ( a ( n ) ) + ~ ( - a ( n ) ) ) I 2  

ungorrnly for all x, where 
w Itl 

C: ( t )  = - 2  1 (x/ltl)- log (x/ltl) sin x dx - 2 1 (x/ltl)-' log (x/ltl) (sin x -  x )  dx  
It1 0 

and 
m 

C; (t)  = 1 [- 2 (2p* - 1) ( x / ( t ( ) -  log ( x / ( t ( )  + 2q* ( ~ / \ t ( ) - ~ ]  ( 1  - cos x)  d x .  
0 

Remark  3.1. Suppose (3.1) holds for Q* = 0. Assume that 

Then the left-hand of (3.2) still exists, but the limit function is different. 

4. Proofs. The line of reasoning is as follows. The starting p5nt  is Lem- 
ma 4.1 which gives a reformulation of condition (2.1) for F suitable for our 
purposes. The next step is to give an equivalent relation for 1 -f, where f is the 
characteristic function of F. This involves application of Lebesgue's theorem on 
dominated convergence. The dominating function for this application is ob- 
tained in Lemmas 4.3-4.5. Next the limit relation for l - f  is translated into 
a relation for -log f, hence for f", the characteristic function of the n-fold 
convolution of F (Lemma 4.6). The necessary inequalities for the last step, 
translating this relation into the promised limit relation for the n-fold con- 
volution of F, are developed in Lemma 4.7. The proof of this last step is similar 
to the corresponding step in de Haan and Peng [4] and is omitted. 
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Lemmas 4.84.11 present a somewhat similar development for the case of 
the normal distribution. 

LEMMA 4.1. Suppose that (2.1) and (2.4) hold for Q' < 0. Then for x > 0 

I -F( tx )+F( - t x )  - x-E+rr) 
1-F( t )+F(- t )  

lim - - - x - = ( l 0 g x ) ~ / 2 .  
t - m  A2 (t) 

Proof.  Relation (2.1) implies that A ( t )  is slowly varying and A, ( t )  is 
el-varying, and hence .. .. 

(4.1) 
b lim A, ( t) /A ( t)  = 0. 

t-00 

Note that 

We now use (2.1), (4.1), (4.2) and 

(4.3) x Y -  x Y O -  ( y  - yo) xy0 log x = + ( y  - xyO +e(y-yO)  (log xI2 

for dl x > 0,  where 8 E [0, I] .  Lemma 4.1 follows easily since lirn,,,A(t) = 0. 

LEMMA 4.2. Suppose (2.1), (2.2) and (2.4) hold for Q' < 0. ?%en 

n ( l - ~ ( ~ ( n ) x ) + ~ ( - ~ ( n ) x ) ) - x - " + ~ ( ~ ( " ~ )  
(4.4) 

A2 (U (4) 
+ - x - a (log x),/2 

- - 

and .- 

The proof is similar to the proof of Proposition 2 of de Haan and Peng 
[4J, using Lemma 4.1 and (2.2). rn 

The following lemma is an extension of a result of Drees [2]. 

LEMMA 4.3. Let 1 be a measurable function. Suppose there exist a real parame- 
ter y and functions a ,  ( t )  > 0 and a, (t) + 0 with constant sign near infinity such 



112 L. de Haan et al. 

that for all x > O 

lim 
t+ m 

exists as a finite limit and 6(x) is not a multiple uf (xY - l ) / y .  The function a ,  
is regularly varying of index y, and Iu,(t)l is  regularly varying of index 
p < 0. 

Then there exist functions a, (t) > 0 and a, (t) (where la, (t)l > 0) with 
the property that for all E ,  E' > 0 there exists to > 0 such that for' all t 2 to, 
tX ), to* - . . 

where 

[ O O ~  4'/2 for fi = o5 y = o5 
h(x) = { xylogr  for f l =  0,  Y # 0, 

P r o  of. Suppose ,!l = O and y = 0. We proceed as in Orney and Willekens 
[9] and Drees [2]. Write 

I t 

Then El is in the class l7 (for the definition of class IT, see Geluk and de Haan 
[3]). Hence by de Haan and Pereira [ 6 ] ,  Appendix, there exists a slowly vary- 
ing function L with the property that for all dl) ,  d2) > 0 there exists to > 0 such 
that for t 2 to, tx 2 to, 

Next note that (4.6) implies 

exp { - d2) llog XI) 11 (tx) - 11 (0 -1ogx 

... ~ 

Hence 

4 &','. 

1 (tx)-Ejt)-1, (t)logx-L(t)logx - (log xy/2 
L 0) 

- - 11 0x1 - r1 (O -log 1, (ts) - I, (t) --) log s ds. 

L(t) s 

Choose E > 0. By (4.7), for t 2 to, tx 2 to we have 
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< d l )  exp ( E ( ~ )  llog X I )  +E") 1 exp (d2' Jlog sl} - I: S 
E ( l )  

= exp (E'') Jlog XI) + lexp (s'') Ilog XI] - 11. 

Let E("/E(~) < E ,  d2) 6 E A E'. Then the expression is at most e exp {E' Ilog X I ) .  
For /3 A = 0 and y > 0, by Theorem 2 of de Haan and Stadtmuller .[7] the 

function t-? l(t) i s  in the class h'. Hence, by (4.7), for each E ,  E' > 0 there exists 
to > 0 such that for t 2 to, tx  2 to 

Similarly for /3 = 0 and y < 0. 
For fl  c 0, from Theorem 2 of de Haan and Stadtmiiller [7] we have for 

some positive 8, and all x > 0 

with 

E ,  (tx) - I2 (t)  xY + f l -  1 
lim - - 
t+m H,(t) Y + P  

tY-  1 
E2(t) = i( t)-c - (C > 0). 

Y 
Hence by de Haan and Pereira [6], Appendix, there exists a, (t)  > 0 with the 
property that for all E ,  E' > 0 there exists to > 0 such that for t 2 to, tx  2 to 

This completes the proof of the lemma. H 

/2 ( t~) -12( t )  xyffl-1 - - x - ~ - 8  - I Y + B  

LEMMA 4.4. Sqpose the conditions of Lemma 4.1 hold. Then for any E > 0 
there exists to  > 0 such that for ail t 2 to,  tx  2 to 

< E exp ( - E '  llog X I } .  

8 - PAMS 19.1 
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P r o  of. Note that (2.3) implies 

(tx). K (tx) - ta K ( t )  - A ( t )  t" K (t)  (1 + A, (t)/@') log x 1 xe' - 1 
lim =-- 
t 4  rn A It) t" K (t)  A, ( t )  B' e' ' 

By Lemma 4.3 for any E > 0 there exist functions a, ( t) ,  a ,  ( t)  and to > 0 such 
that for all t  2 to, tx  2 to 

(txp K ( t ~ ) -  ta K ( t )  - a, (t)  log x 1 xef - 1 <  EX^' ,gellog~I. 

- - .  -- a2 (0 e' P' 

It is easy to see that 

Ql (t)  a, tt) 
A (t)  tU K (t)  -+I ,  

A 0) ta K (t)  A0 (t)  
-+ 1, 

a, (t) - A (t)  ta K (t) 
-t l/@'. 

A (0 tUK(t)A0 tt) 
Note that 

= x-" ( txp K (tx) - t" K (t)  - A (t )  t" K (t)  log x A, (t)  .- 
A (t)  ta K ( t )  A ,  A 0) 

X 
a2 (0 .-.-.- A*(t) Ao(tx) A (tx) 

A ( t )  ta K (t)  A, ( t)  A, (tx) A (tx) . A (t)  

a, ( t)  - A (t) te K (t)  A,, ( t)  - 
+x-"(logx) 

A (t)  ta K (t)  A, ( t)  ' 

xe' 
+x-" - a2 (0 A0 (0 Ao(tx) A (tx) 

(el)' A (t)  tu K (t)  A, ( t)  . a,(tx) ' a(tx) ' a(t) 

- ~ - a ( ~ ' ) - 2  a2 (t)  A0 (t)  
A (t)  P K (t)  A, ( t )  ' a(0 

A2 (0 
and A,  ( t) /A(t)  + 0. Using (4.8), Potter bounds (see Bingham et al. [I]), and 
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Lemma 4.1, we obtain 

d + ( y  - xyo (log x)' exp (Ify - yo)  log xl) for all x > 0 
and 

b < x-a  E (&llPgx1 + Jlog X I )  +$ x - .  (log x ) ~  e"llogXI. 

This completes the proof of the lemma. 

LEMMA 4.5, Suppose the conditions of Lemma 4.2 hold. Then for any E > 0 
there exists N o  > 0 such that for aIE n 3 N o ,  U (n) 3 N o ,  U (n) x 3 No 

<  EX-^ ((log x( + e"lO"l)+ x-' (log x ) ~  e"l'"gx] 

and 

n [I - F (U (n) x)  - F (- u (n) x)] - ( 2 p  - 1 )  x-"+ 

A2 ( U  (4) 

Proof. Note that 

n [ I -  F (U (n) x) + F (- u (n) x)] - x - ~ + ~ ( ~ ( " ) )  

A2 ( U (4) 

and 

1 - F ( U ( n ) x ) + F ( -  ~ ( n ) x )  
ERV- , ,  

n [ I - F  ( U ( n ) ) + F ( - ~ ( n ) ) ]  - 1 
1 -F(U ( n ) ) + ~ ( -  u (n)) 

+ 0. 
A2 (U (4) 

Thus (4.9) follows from Lemma 4.4 and Potter bounds (see Bingham 
et al. [I]). 
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Note that 

Hence (4.10) follows easily. This completes the proof of the lemma. ra 

LEMMA 4.6. Suppose the conditions of Lemma 4.2 hold. Let f denote the 
characteristic function of F.  Define a, = u- A ( u ( ~ ) ) .  Then 

lim - n 1% f ItlU In)) +log g,,, f t )  
n-t m AZ (U (4) 

= J [ - (x/lt\)-" (log ( ~ / l t l ) ) ~ / 2 ]  sin x d x  
0 

gl 

+ i sgn It) J [- (2p - 1) (x/ltl)-"(log(~/lt1))~/2 +2q0 (x/lt t)-"](I -cos x )  dx 
0 

= : C , ( t )  + i sgn (t) C ,  ( t )  . 

Pro of. Note that for It1 # 0 

an n a  
- ItIan r (1 -a,) cos -+ i sgn (t) ItIan r ( 1  -a,) ( 2 p -  1) s i n 2  

2 2 
m 

= j [n  (1 - F  (U(n)x/ l t l )+ F ( -  U (n)~/ l t l ) ) - (x / l t l ) - '~]  sinx dx 
0 

-(2p- 1) (x/ltl)-"-](l -cos x ) d x .  
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By Lemma 4.5, c l >  1 and Lebesgue's dominated convergence theorem we 
have 

1 " 5 [n (1 - F ( U  (n) x/ltl) + F (- u (n)~/ltl))-(x/ltl)"~] sin x dx 
A2(Ub)) 1 

m 

-+ [ - (~ / l t l )~"  (log (~/lt1))~/2] sin x dx:. 
1 

By Lemma 4.5, Ilsin x)/xl < 1 as 0 6 x < 1, a < 2, and Lebesgue's dominated 
convergence theorem we -have . . 

1 

+ j [- (x/l tl)la (log (~/( t ( ))~/2]  sin xdx . 
0 

Combining 

n [ I -  F (U {n) x/ltl) + F (- U (n) xlltl)] sin x dx 

= .( 8 + 0 (since U E Rvl,,) 
u2 (n) A2 (U (4) 

and 

(similarly to the proof of the above relation), we get 

1 " 1 [n (1 -F(U(n) x/ltl) + F (- U (n) x/ltl))- (x/ltl)-'"1 sinxdx + Cl (t). 
AZ (U (4) 0 - 

Similarly, 

1 " 
j [n (1 - F (U (4 xlltl) - F (- u (4 xiltl)) 

A2 (U (4) 0 

- (2p - 1) (x/lti) -'"I (1 - cos x) ax + C2 (t). 

When expanding -log f = -log (1 -(1 -f)), we find that the second (and 
higher) order term is of lower order, hence the result of the lemma. a 

LEMMA 4.7. Suppose the conditions of Lemma 4.2 hold. Then for any 
E > 0 there exists No > 0 such that for all n 2 N o ,  U In) 2 No, U(n)/ltl >, N o  
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where C is a  positive constant. 

The lemma follows by using the same arguments as in the proofs of 
Lemmas 4.4 and 4.5. 

Proof of Theorem 2.1. The proof is quite similar to the proof of 
Theorem 1 of de Kaan and Peng [4] by using Lemmas 4.6 and 4.7. 

Foryhe proof of Theorem 3.1 we need also some lemmas. 

LEMMA 4.8. Suppose (3.1) holds for Q* < 0. Then for x > 0  

and 

1 -F(a(n)x ) -F( -a (n)x )  
-(2p*- l ) ~ - ~ "  

(4.12) lim 1 - F ( a ( n ) ) + ~ ( - a ( n ) )  
11- 00 n ( l - ~ ( a ( n ) ) + ~ I - a I n ) ) )  

Proof. From the relations S(x) fRV0,  (1.7) and q* < 0 we have 

Combining (4.13) with 

+ 
n  ( l - ~ ( a ( n ) ) + ~ ( - a ( n ) ) )  

and 

(4.15) XY - X ~ o  = -Yo)  X ~ ~ + ~ ( ~ - ~ ~ )  1 ogx, ~ E C O , ~ I ,  
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we have (4.11). Note that 

I 
I and n (; - F (a (n)) + F ( - a  (n))) ERV,. Then (4.12) follows easily. rn 

LEMMA 4.9. Suppose (3.1) holdsfor p* < 0. Then for any E > 0 there exists 
No > 0 such that fur all n 2 N , ,  a(n) 3 N o ,  a ( n ) x >  N o  

The proof is similar to the proofs of Lemmas 4.4 and 4.5. H 

LEMMA 4.10. Suppose (3.1) holds for e* < 0 .  Then 

lirn - n  1% f (t/a (n)) +lo!? g:z (t) 

n-m [ n ( l - ~ ( a ( n ) ) + ~ ( - a ( n ) ) ) 1 2  
m Itl 

= -2  J (x/Jt[)-' log(x/)t)) sin x dx-2 J (x/JtJ)-' log(x/lt)) (sin x-  x) dx 
It1 0 

m - 
+ i sgn (t) j 1:- 2 (2p* - 1) ( ~ / I t l ) - ~  log (x/[tj)+ 2q* (x/[tl) -2] (1 - cos X )  dx. 

0 

Proof.  Note that for t #  0 



CO 

= J { n  (1 - F (a (n) x/ltl)+ F(- a (n) x/ltl))-(1 -.:/2)(x/ltl)-") sin x dx 
It1 

and 
Itl 
1 {n(l -F(a(n)x/ltl)+F(-a(n)x/ltl))-(1 -c~n*/2)(x/ltl)-~') xdx 
0 

= O  (by (1.7)). 

The rest of the proof is similar to that of Lemma 4.6. 

LEMMA 4.11. Suppose (3.1) hoids for Q* < 0. Then for any E > 0 there exists 
N o  > 0 such that for all n 2 N o ,  a(n) 2 N o ,  a(n)/ltl 2 N o  

where C* is a positive constant. 

The proof is similar to the proof of Lemma 4.7 by using Lemma 4.10. 

Proof of Theorem 3.1. The proof is quite similar to the proof of 
Theorem 1 of de Haan and Peng [4] by using Lemmas 4.10 and 4.11. rn 
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