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FOB REACTION-DIFFUSION EQUATIONS 

Abstract. A reaction-diffusion equation an [0, 11' with the heat 
conductivity IC > 0, a polynomial drift term, and an additive random 
perturbation is considered. It is shown that if IC tends to infinity, then 
the corresponding solutions of the equation converge to a process 
satisfying an ordinary It6 equation. 

0. INTRODUCTION 

This work is concerned with the asymptotic behaviour of the solutions of 
the stochastic reaction-diffusion equation 

on the d-dimensional cube O = 10, 1Ld, as K tends to infinity. In equation (0.1), 
A is the Laplace operator with the Neumann boundary conditions, WQ stands 
for a Brownian motion with the covariance operator Q, f is a real function, and 
u is a positive constant. We will show that, under some conditions on the 
functionf, the limit exists and can be identified with a solution Y to a stochastic 
ordinary differential equation. So if the heat conductivity rc is sufficiently large, 
the solution to the stochastic reaction-diffusion equation (0.1) can be regarded 
as a solution of an ordinary It8 equation which is much easier to investigate. 
We allow rather general class of non-linear functions f including polynomials 
with negative leading coefficients, frequently used in applications (see e.g. [I]). 

The same asymptotic problem was considered by Funaki 141. He studied 
the stochastic heat equation 

* The paper was written while the author was visiting Institute of Mathematics, Polish 
Academy of Sciences, Warsaw, Poland. This research is partially supported by Sharif University of 
Technology and Institute for Studies in Theoretical Physics and Mathematics, Teheran, Iran. 



64 Sh. Z a m a n i  

on the interval 10, 11. Funaki required that d = 1 and that functions f and 
g satisfy Lipschitz conditions. We investigate the case of general dimensions 
d and do not assume the Lipschitz condition on f. With the initial value 
considered to be continuous in space variable, we treat the equation in the 
space of continuous functions and derive the convergence d its solutions in 
that space almost surely. In [4] a considerably weaker convergence is obtained 
(see [4J, Theorem 3.1). On the other hand, we deduce the convergence of 
sequences of solutions indexed by (IC,),"= satisfying a certain condition, where 
Funaki does not restrict the coefficient K in the equation We assume also that 
the random fluctuations do not depend on the solution, setting g constant. The 
case of don-constant diffusion function g and general dimension d cannot be 
handled at the moment with the techniques of the paper. 

The paper is organized as follows. In Section 1 we give a precise definition 
of the solution to equation (0.1), and introduce the equation for the limit 
process. We state conditions under which these equations have solutions. The 
proof of the existence results can be deduced from recent works (see [2], [3] 
and €51). For complete considerations we refer to our preprint [ti]. In Sec- 
tion 2 we show that solutions to equations (0.1) are bounded, with respect to rc, 
in an appropriate sense. For this we need an estimate of stochastic convolution 
as well as a formula which links the norms of the solutions directly to the norm 
of the stochastic convolution (see Lemmas 2.1 and 2.4). We show also that the 
generalized solution of (0.1) depends continuously on the initial condition uni- 
formly in K. Finally, Section 3 is devoted to the proof of the main result. 

1. FORMULATION OF THE MAIN RESULT 

The reaction-diffusion equation we deal with is the following: 

where O = 10, 1Cd (d 2 I), and v = v (c) is the outer normal to 80 at c E dO. The 
coefficient IC of the Laplace operator A is a positive number. By W, we denote 
the Brownian motion with covariance operator Q on the probability space 
(9, E E,  P) with the right continuous filtration {9J,, , . 

We consider the following condition onf; the non-linear part of the equation: 

(A.l) The function f :  R -t R is of the form f = f, +fa, where f, is a de- 
creasing polynomial of degree y > 1 and f, is Lipschitz continuous with the 
Lipschitz constant K. 

It is important to note that all polynomials of odd degrees and with 
negative leading coefficients satisfy (A.l). 
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We will interpret equation (1.1) as an evolution equation 

on the space E = C() of continuous functions on D, and on the Hilbert space 
H = I.? (0). To cover the Neumann boundary condition we define the operator 
A on H by 

where v denotes the outer normal to 80, and H2 (0) is the Sobolev space W2,2 (0). 
The operator A is a non-pbsitive self-adjoint generator of an analytic semigroup 
S (t), t 2 0, oh H. We denote the orthogonal eigenvectors and the eigenvalues of I 
A by {e,)i",,, and (-A,)z *, respectively. A, is zero, and 0 < A ,  G A, 6 . . . , e ,  is I 

the constant function 1. The orthogonal projection of H into its subspace 
spanned by a, (the space of constant functions) will be denoted by PI,  and the 
orthogonal projection into the subspace spanned by {ei)zl by P i .  

Define F: E + E to be the Nernitskii operator corresponding to f, 

and {W(t)),30 the @Wiener process on H which is defined by 

where {Pi)So is a sequence of independent real-valued Ft-adapted standard 
Wiener processes, and (yi)?=,, are the eigenvalues of the operator Q. 

We fix the Hilbert space H and the Banach space E: 

throughout the paper. The scalar product and the norm in H are denoted by 
(., .) and I.I,, whereas the duality form on E x  E* and the norm in E are 
denoted by (-, a )  and I.I,, respectively. 

Further we assume 

(A.2) For the covariance operator Q on H we have - 

m 

< m for some as lo ,  I[, 
i =  1 

where {ei}go and (- Ai)g"=,re eigenvectors and eigenvalues of A, respectively, 
as introduced before. 

Remark  1.1. Denote the part of A on P i  H by A,. Then the operator Q, 

5 - PAMS 19.1 
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satisfies (A.2) if and only if #? > d/2 - 1. In particular, in the case d = 1, Q may 
be the identity operator and W(t)  a cylindrical Wiener process, the case con- 
sidered by Funaki [4]. 

By a mild solution of (1.1) (or (1.2)) we mean the predictable process X 
taking values in the domain of I; (i-e. C@)) and satisfying the following integral 
equation: 

t t 

(1.3) X ( t ) = S ( r c t ) ~ + ~ ~ ( ~ ( t - ~ ) ) ~ ( ~ ( s ) ) d s + ~ ~ ( u ( t - ~ ) ) d W ( s ) .  
0 0 

An_ H-valued process 2 is a generalized solution of (1.2) if for an arbitrary 
sequence {x,] c E such that lim,,, Ix - x,lH = 0 the corresponding sequence 
of mild solutions (X,] converges to 2 in C([O, TI;  H) P-a.s. for any interval 
ro, 77. 

Existence and uniqueness of a mild and generalized solution to equation 
(1.2) for arbitrary ti > 0 could be find in literature (see e.g. [2], [3] and [5 ] ) .  For 
a self-contained presentation of these results see [6] .  

Now consider the following scalar equation: 

where 

f and x are the same as in equation (1.1), and y o  and fi,(t) the same as in the 
expansion of W ( t)  = zo f i  pi ( t)  ei. 

Existence and uniqueness of a non-exploding solution to equation (1.4) 
can be derived for the drift term f satisfying (A.l). For the proof see [ 6 ] .  This 
equation could be considered as the projection of equation (1.2) (as an equation 
on H) into the subspace PI H, that is 

Our main result is the following theorem: 

THEOREM 1.2. Assume that (A.l) and (A.2) hold and (tin),"=, every se- 
quence satisfying Cz, x,* < cc for a constant > 0. 7'hen: 

(i) for every initial value x E E the mild solutions X(Kn)(. ,  x) of equations (1.2) 
converge to the solution Y ( - ,  2) of equation (1.4) in the sense that 

P(1im IX("-)(t, x)- Y ( t ,  2)l, = 0 
n-+m 

uni$orormly in t on each compact subset of 10, m[) = 1; 

(ii) for every X E  H and the generalized solutions T(Kn)(., x )  of (1.2), one has 

P(1im 12("~)(t ,  x)- Y ( t ,  f)l, = 0 
n-+ m 

uniformly in t on each compact subset of 10, m[) = 1. 



Reaction-diQusion equations 67 

We would like to state that considering the sequence of parameters 
( K , } ~ = ~  satisfying the condition mentioned in the theorem is imposed by the 
method of the proof for which we do not know any alternatives in the case of 
non-Lipschitz f. We wilI use Borel-Cantelli's lemma to derive some pathwise 
estimates for a stochastic convolution from the momential ones (see Corollary 
2.2). To use this lemma it is necessary to work with a countable set of u's, 
namely (K,},"=,, which should satisfy also the mentioned condition as the 
weakest one. However, in the case where f is a Lipschitz function, it is possible 
to proceed in the moment form and there is no need to restrict the coefficient K, 

as can be -observed by-following the proof of Theorem 2.1 in Section 3. 
b 

2. PRELIMINARY RESULTS 

2.1. Main estimates. Let U(t), t 2 0, be the semigroup generated by A,, 
the part of A in P i  H. The following lemma holds: 

LEMMA 2.1. Assum (A.2) holds. k t  K 2 1. Then the convolution 

has an E-continuous uersion. Moreover, given T > 0, for every r > 2(d+ l)/a 
there exists a constant C, = C,(T) > 0, such that 

A proof of the lemma for the case rc = 1 could be found in [3j (Theorem 
5.2.9). For general K 2 1 the proof differs only in detail and is stated in [6] .  

Here we would like to define a notation. For every fl > 0 we denote - .  
by X(b) the set of all increasing sequences (rc,},"=, satisfying u, 2 1 and 
r=l~,p < 00. 

COROLLARY 2.2. Assume (A.2) is satisfied, the sequence (u,},"=~ belongs to 
X(P) for a constant /3 > 0, and T > 0. Thenfor every p > l/(l -a) there exists 
a set 9 ofprobability 1 with the property that for all w E 3 there is no (o) ~7Vsuch 
that 

sup I ~ ~ ) ( t , c u ) l , < ~ ; ~ J ~ ~ ,  n>n,,(co). 
tECD, TI 

P r o  of. Let p > 0 be such that l /p  < 1 -a (p > 1/(1- ol)), and choose 

r > max -:- y). 
Then for every u 2 1 

P ( sup ] WE (t)lE > u- 'IzP) < urIP E [ SUP I Kt) ( t) lg]  
~ E [ O , T ]  t E [ O , q  
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and, by Lemma 2.1, 

Writing this latter inequality for the sequence {K,),"=~ in X(fl), we obtain 

Now Borel-CantelIi's lemma implies 

P ( sup IQtn)(t)lE > K; uZP for infinitely many n E N) = 0. 
f~LO,rrl 

That is, there exists a set Q  of probability 1, and for every WE% there is 
no (a) E M  such that 

sup 1 Ke) It, w)IE < u; n 3 no (co). a 
tf[O.Tl 

Rem a r k  2.3. The convolution 

can be rewritten as 

Thus Wy)( t ) ,  t 2 0 ,  has also an E-continuous version. By the same hypothesis 
as in Corollary 2.2 and for the same set 3, ~ E Q ,  and no (u)EN 

sup I wP' ( t ,  o)l, $ ,,& sup IBo (t , .)I + n; '/2p, n > no (o). 
t ~ [ O , q  t do ,  TI 

LEMMA 2.4. Assume that (A.l) is satisJied and K 2 1. Then for every X E E  
and z E C ([0, oo [; E )  there exists a unique mild solution for the following equa- 
tion: 

Moreover, there exists C > 0 independent of rc such that for all t 2 0 

Lemma 2.4 is the main part of existence and uniqueness theorems,for 
equation (1.2) and could be found in references stated before, especially we refer 
the reader to 121, Proposition 3.2. The complete proof is stated in [6]. 
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THEOREM 2.5. Assume that (A.l) and (A.2) are satisfied, the sequence 
(K,):~ belongs to S ( P )  for a constant jl > 0, and T > 0. Then for arbitrary 
x E E the unique mild solution X(3 It, x ) ,  t 2 0, of equation (1.2) has an E-con- 
tinuous version. Moreover, 

sup sup IX("-'(t, x)IE < Q a s .  
 EN t e [Q,T]  

Proof.  Pix X E  E, and for K 2 1 set 

uiK' (t) = X@] (t  , x) - ( t )  , t 2 0. 

Then u"? is+ A d  solution of (2.1) for z = KiK), which b y  the previous lemma 
exists, is in C([O, a[; E)  and 

I 

l ~ ( ~ ) ( t ) I ~  < ect ( 1 x 1 ~  + C j (1 + I  K(') (s)lk)ds), t 3 0. 
0 

Consequently, 
t 

IXcK) (1, x)l, < ect (lxls+ C (I + lWK) ( S ) I & )  ds) + 1 I%[") (t)lE, t 2 0,  
0 

and 

(2.2) sup IX(") ( t ,  x)I, d eCT (1x1, + C T +  C T  sup I & ( K )  (t)l&) + sup I&("' (t)[,. 
t ~ C o , T l  ~E[O,TI ts[O, TI 

Now take p > l/(l -a) arbitrary and let o E 9, the set mentioned in Corolla- 
ry 2.2. Then by Remark 2.3 there exists M ,  (w)  > 0 such that 

sup sup IWKn)( t ,  w)], < M I  ( 0 ) .  
n 2 no(co) t ~ [ O , q  

Also, as W K ) ( t ,  o) is continuous in t,  setting 

M,(w)= sup sup IF@Mn)(t ,~)lE,  
n < n o ( 4  ~E[D, 7.l 

and 
M (4 = max (MI (4, M ,  (o)), 

we obtain 

sup sup I WKn) (t, w)IE < M (w). - 

 EN t a Q , T ]  

This last estimate together with inequality (2.2) implies the assertion of the 
theorem. 

The following theorem will be concluded from a lemma analogous to 
Lemma 2.4 for equation (1.4). 

THEOREM 2.6. Assume that (A.1) is satisjed and T > 0. n e n  for an arbi- 
trary initial value ~ E R  the solution Y ( t ,  a), t 2 0, of equation (1.4) has a con- 
tinuous version which satisfies 

sup I Y ( t ,  a)l < oo a.s. 
t d O ,  TI 



70 Sh. Zamani 

2.2. The Nedtskii operator. The following lemma summarizes the prop- 
erties of the Nemitskii operator F which will be used throughout. 

LFIMMA 2.7. Assume that (A.1) holds. Then 
(i) for every x ,  y E E ,  

(ii) thme exists C > 0 such that for aery x, ~ E E  

tF(x) -F(~) l ,  -- G CIx-~ l , (~+ Ix l$ -~+ Iv l i~ ) .  
- P G o t  :(i) Let a, q e R be arbitrary. The decreasing function. fo satisfies 

Cfo(u)-fo(?))(g-tl) 6 07 
and for the Lipschitz function f, with the Lipschitz constant K > 0 we have 

C f , ( ~ ) - f 1  (v))ta-?) If1i4--fi(v)l Iu-rll G Klu-tll2. 

Therefore f satisfies 
@(a) -fIv)) (a-  S )  G K I- ?I2> 

from which part (i) follows. 
(ii) For the polynomial part f, off  there exists a positive constant C, such 

that 
V b ( f l ) - f ~ ( ~ ) l  G Clla-vI (~+lalY-i+ItlIY-l), a, V E R ,  

and for the Lipschitz part fl of f 

Consequently, 

where C > 0 is also a constant. From this latter inequality we obtain part (ii) H 

23. Continuoas dependence on initial Lta .  Concerning the continuity of 
the generalized solution of equation (1.2) with respect to the initial value, we 
have the following result uniform in K. - 

THEOREEA 2.8. Assume (A.1) and (A.2) hold. Then for arbitrary initial ualues 
x, y E H and all K 2 1 ,  the generalized solution of (1.2) satisJies 

P r o  of. By the definition of the generalized solution it is enough to prove 
the theorem for x ,  Y E  E and for the corresponding mild solutions. Let X(")(t, x)  
and X(") ( t  , y) be two solutions of (1.2) corresponding to initial values x, y E E. 
Then, going if necessary to smooth approximations of the solutions, we can 
assume that X(")(t, x)- X(") ( t ,  y) satisfies the following problem strongly: 

d~/dt=~c~~(t)+~(x(~)(t,~))-~(x(~)(t,y)), u(o)=x-y .  
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We have 

+ ( F  (X'"' ( t  , x ) )  - F (x'"' (t ,  y)), X(") (t , x) - X'"] ( t  , y) ) ,  

which, by the non-positivity of A and Lemma 2.7 (i), implies 

and, by the Gronwall lemma, 

A similar result holds for the solution of equation (1.4). 

THEOREM 2.9. Assume that (A.l) is satisfied. Thenfor arbitrary initial ualues 
a, b E W the solution of equation (1.4) satisfies 

IY(t,  a)- Y ( t ,  b)l < eKt la- b ]  as., t 2 0. 

3. PROOF OF THE MAIN RESULT 

We start with the following basic lemma: 

LEMMA 3.1. Assume that (A.1) and (A.2) are satisfied and the sequence 
(rc,}?= belongs to X (P) for a constant P > 0. Further, suppose T > 0 and x E E. 
Let p > l / ( l  -a) be arbitrary and 3 the corresponding set as mentioned in Co- 
rollary 2.2. Then for euery w E 9 there exists n, (w)  E N  and C = C (w) > 0 such that 

IX("n)(t, x ,  o)- Y ( t ,  R ,  w)IE < C(exp {-A, K ,  t }  + K ; ~ )  lxlE+ C K ; ~ I ~ ~ ,  

n 2 no(w),  ~ECO, 77. 
Proof.  Let x E E and o E 3 be fixed, and denote the mild solution of (1.2) 

and the solution of (1.4) by X(")(t) and Y ( t ) ,  respectively. Let t €10, TI. We 
recall that X(")(t) satisfies the following integral equation: - 

which, since A, is zero and, consequently, S (rct) = P, @ P i  S ( ~ t ) ,  can be written as 
t 

By (1.5) we have 
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whence 
t 

xcK) ( t )  - Y ( t )  = 1 P , [F (xtK) (s)) - F ( Y(s))] ds + P: (t) , 
0 

and 
1 

(3.1) (X'"' ( t )  - Y (t)(, < ( PI [F (X'"' (s)) - F (~(s))]  ds 1, + ( P i  X @ )  (t)  1,. 
0 

We start with the second term in the right-hand side of (3.1). We have 
t t 

PLX(") (I) .  = LT ( ~ t )  x + j U (I< (t - s)) F (X") (s)) ds + U (u (t - s))dW (s), 
b 

0  0 

where U(t), t 2 0, is the semigroup generated by Ao, as .mentioned before. 
Consequently, 

t 

+I J u ( ~ i t - ~ ) ) d W l s ) l , .  
0 

First, we obtain 

IU(K~)XIE G IIU(U~)IIL(E) I X I E  < ~ X P  (-11 ~ t )  IxlE- 

Next, for a constant C > 0, 
t t 

I 1 U (K ( t  - s)) F (XcK1 (s)) dsl, < 1 I U (K ( t  - s)) F (xIK) (s)) I E  ds 
0 0 

t 

< C 1 exp { - 1, us) (1 + lx'") (s)lk) ds 
0  

t  

< C sup (I + 1 ~ ' " )  (s)lJ) j exp ( -A, rcs) ds 
~€[O.tl 0 

Setting 

C < sup (l+lx(")(s)lH)-. - 
&O.tl 1, K - 

which is a finite number by Theorem 2.5, we get 
t 

1 j U (u,, (t - s)) F (X1"-) (s)) ds 1 ,  < MK; . 
0 

Finally, for the last term of (3.2) by Corollary 2.2 we have 
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Summing up 

(3.3) IPi X1"")(t)l, d exp (-A, K, t) Ixl,+M~;l+ u;112p, n 2 no (0). 

For the first term in the right-hand side of (3.1) we have 

and, by'lemma 2.7 (ii), the last term in the inequality may be estimated by 

t 

< C sup (1 + IX("'(s)l;-l+ I Y l )  j IX1") (s) - Y (s)I, ds.  
=[O,tI 0 

Setting 
L = LIT) = Csup sup ( ~ + I X ' " ~ ) ( ~ ) ~ H - ~ + I Y ( ~ ) I E - ' ) ,  

EN t € [ O , ' r I  

which is a f ~ t e  number by Theorems 2.5 and 2.6, we obtain 

Combining (3.1), (3.3) and (3.4), for n 2 no(o) we have 

Sinee rc, < K; for a11 n E N, for D = D (7') = M + 1 we obtain 

IX("*) (t) - Y (t) l B  

By the Gronwall inequality, we get 

IX("n' (t) - Y ( t )  1, 

or, for a suitable C = C ( T )  > 0, 

IX("-) ( t )  - Y d C (exp { - A, K ,  t) + rc; l )  [xIE + Crc; 'Izp, n 2 no (0). H 
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Remark  3.2. The assertion of the lemma holds also in the H-norm. 
That is, 

sup IX(""'(t, x, w)- Y ( t ,  2, w)i, 
t d O ,  TI 

< C ( e x p ( - ~ l ~ , t ) f  K ~ ~ ) ~ x ~ ~ + C K , - ~ / ~ ~ ,  n 2 nO(m). 

Notice that in the left-hand side of the inequalities in the previous lemma the 
E-norms may always be replaced by H-norms as the latters are smaller, and 
also 

m 

= exp { - 2 4  ~ t )  {x, eJ2 6 exp ( 2 4  ~ t )  Ixli, t E [0, TI. 
i =  1 

Now we can complete the proof of the theorem. 

(i) Let 0 < Ti < T, < m be arbitrary. Then, by Lemma 3.1, for every 
o E 99 = gT2 we have 

This inequality implies 

lim sup JX("") (t, x) - Y (t, R)tE = 0 as., 
*-+m t ~ [ T i , T z j  

which, as Ti and T, are arbitrary, states part (i) of the theorem. 

(ii) Let 0 < TI < T, < oo be arbitrary. Fix XEH and 0~ 9 = gT,. For 
every Y E  E and t~ [TI,  T2] we may write 

Now suppose E > 0 is given and let ~ , E E  be such that 

Then, using Theorem 2.8, Remark 3.2, and Theorem 2.9, we obtain 
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for t~ [TI ,  T2] and all n 2 n,(w), where C, is the constant C in Remark 3.2 
for y,. By the choice of y, we have 

(3.5) SUP ~z'""'(t, X, a)- Y( t ,  f, w)lH 
tdTi ,T21 

< E +  CC, (exp ( - A ,  rc, TI) + K, lyelH + C, u"1'2p 

for all n 2 no (a). That is 

lim sup ~ z ~ ~ ~ '  (t, x) - Y (t, 2)1, < e as. 
"-Cw t&[Ti,T2] 

. - 
As E > Q aiid T; and T, are arbitrary, we obtain the desired result. 
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