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AN APPLICATION OF WAVELET ANALYSIS 
TO PRICING AND HEDGING DERIVATIVE SECURITIES 

JURI H I N Z  (TUBINGEN) 

Abstract. This work provides an application of wavelet analysis 
to pricing and hedging path-dependent contingent claims within the 
framework of the Black-Scholes model. 

1. Introdwction. A European contingent claim written on an asset is a fi- 
nancial contract which gives its owner the right to receive a payoff at the 
expiration date T This payoff depends on the market behaviour (the path) of 
the underlying asset during the time [0, TJ as determined in the contract. Two 
problems arise naturally when dealing with contingent claims. The problem of 
pricing: Calculate the fair price of the contingent claim at each time 0 < t < T 
using the behaviour of the underlying asset during the time 10, t]. The problem 
of hedging: Having sold the contingent claim, how can the seller insure against 
the upcoming random loss at the time T? In some cases of interest, in par- 
ticular in the case of the BIack-Scholes maket, we find the solution of these 
problems in terms of the so-called arbitrage-free pricing. 

In the Black-Scholes model we specify three financial assets traded con- 
tinuously during the time [0, TI. The corresponding prices are modelled by 
adapted stochastic processes ($)tECo,T], (Bt)w[O,Tl, and ( ~ t E [ o , T 1  on the filtered 
probability space (0, (~),,Io,T1, q, where (&),co,n denotes the natural filtration 
generated by some Brownian motion (~),E[O,,l. The stock process ($))tEIO,G with 
initial value So > 0 describes the price of a risky asset. It is given by 

$:= e ~ ~ f ~ ~ + ( ~ - ~ a ~ ) t ) ~ ,  for all ~E[O,  TI. 

The constants p > 0 and a > 0 are known as the appreciation rate and the 
stochastic volatility of the stock. The bond process (i?j)rE[o,Tl represents 
a risk-free security, assumed to continuously compound in value at the fixed 
interest rate r > 0, meaning fit: = 6 for all BELO, TJ. The terminal payoff of 
the contingent claim is given by an FT-measurable random variable FT. The 
process (t)teD,Tl, which is to be determined, corresponds to the behaviour of 
the market price of the contingent claim during [0, q. The main idea of the 



arbitrage-free pricing is to introduce the discounted processes as 
(St := e-'I g),,[o,rl, and ( x : =  e-'* x),,I,,q, They describe the prices of the stock ' 

and of the claim if the risk-free security is chosen as the numeraire asset. Supposing 
the absence of arbitrage and following standard arguments (see, for example, [lo], 
[5], [12]), we a e  led to the following statement: There exists a probability measure 
P, which is equivalent to P"such that the discounted processes (Sr)tE[o,T1 and (k;),,I,,q 
are martingales under P. In our setting the measure P is unique and the 
Radon-Nikodym derivative d ~ / d P "  is explicitly obtained. Furthermore, from the 
theorem of Girsanov it follows that satisfies 

d 
7 .  

-- 

b 

So for all ~E[O,T] ,  

where (y)tEIO,Tl is a Brownian motion with respect to P and So > 0. In the 
following let us suppose that YT€ L2 (a, FT, P). In this situation the problem of 
pricing is easily solved: The fair (discounted) price of the contingent claim at 
the time ~E[O, TJ is found by calculating the conditional expectation of Y;,. 
under P: (E; : = E, (YT I ~ ) ) t E C o , q .  The problem of hedging admits the following 
treatment: Representing the square-integrable martingale (Y,)t,[,,,I as the sto- 
chastic integral (this is possible in our setting) 

t 

Y,=Y,+jy,dW, for all t~[O,n, 
0 

we obtain (ys)Mo,T1 and determine the process (q, 0) = ((q, ,  O,))t,l,,,l (the trading 
strategy) as q, = K-y,cr-l and 8, = y,(aSJ-' for all t E[O, TI. In such a strat- 
egy, 6, describes the number of units of risky asset held at the time t, and g, 
describes the amount invested in the riskless asset at the time t. The strategy 
(q ,  9) satisfies 

t t 

(1) = yo+ j %dBs+ J 8,dS", for all t€[O, TI,  
0 0 

(21 7 = e,T$+gtBt for all ~ E [ o ,  q.- 
'From the equation (1) it follows that, starting with initial investment YO, the 
trading strategy (g, 0) replicates the payoff F. of the contingent claim. The 
equation (2) means that in order to attain yT in this way only the investment 
Yo at the time t = 0 is needed. Such a strategy is called sew-financing. (For 
additional information we refer the reader to [12], [ 5 ] ,  [15].) The seller of 
contingent claim may apply this trading strategy to avoid the risk completely. 
However, since closed-form expressions of E: and y, are not always available, it 
is important to study numerical methods (see, for example, 151, [6], [I]). 

In this work we apply some results from the wavelet theory in order to 
obtain square-mean approximations of (E;),,IO,q and of (y,),,[o,,l. Let us explain 
which I?-approKimations are meant. We choose the orthonormal basis (qk)kEN 
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of I? [0 ,  fl by putting cp,O : = 

271 ks 
p:k" = J; sin (?) b r  all k 5 1, s E LO1 TI 

and define the family (En),,, of linear subspaces of L2 [0, TI, where En is spanned 
by (cpk)l=O. For each n~ N let us also introduce the a-algebra a,, generated by 
{I: zs dW.  : ZE E n ) ,  - the random variable Y;! : = Ep(YT 1 an), the martingale 
('E;" : = (Ypl e))lE[o,q, and the predictable process (y:)teIo,,l defined by 

Note that, in view of the properties of the Hermite polynomials, 

(X: X is a polynomial in J @ d W , ,  .. ., J p:dW,j 
0 0 

is a dense subspace of E(Q,  CT,, P). Moreover, it is well known (see [Ill, 
Chapter 4.2) that 

w T T u (X: X is a polynomial in j rp: dW,,  . . . , j p: d W,) 
n = O  0 0 

is a dense subspace of C(Q, F T ,  P ) .  Hence Unm=,L?(B, on, P )  is dense in 
E(Q,  ST, P). This implies that the sequence (v),,, converges to Y, in the 
square mean. Doob's maximal inequality and the isometry of stochastic inte- 
gral yield: 

T 

(3) lim E,( sup IE;"- ? I 2 )  = 0, lim E , ( [  ly:-yt12 dt) = 0. 
teIO,T] n+m 0 

Let n~ N be sufficientIy large. Then, in view of (3), the processes (x;),Io,T1 and 
(y:),,Io,Tl are seen to be L?-approximations of and (yt),[o,Tl, respectively. 

Throughout this paper let n E N be fixed. For each t E [0, TI we introduce 
Rnil-valued Gaussian random variable 

Its covariance matrix G, satisfies 
t 

Gt = (1 q4 d ds);,, = 0 .  
0 

Note that 1 - G, is positive definite for all t E [0, T[. We shall denote the 
transpose (of a matrix) by * and write cp ,  for the (column) vector 



46 J. H inz  

(q;, . . . , 501) E Rn + For all t E [0, T [  and w E 62 we define the random variables 
K t , m ,  K : , m ~ E ( 9 y  FT1 P, as 

x exp { -$(djT - @t (~)) t  (1 - GJ - (QT - at (w))) exp (3 @$ , 

Using the notation above, we can formulate the main result of this work as 
follows: . - 

- P~POSITION 1. For all ~E[O, T [  and 0 ~ 6 2 :  

Note that since @, is *-measurable, the value @, (a) ER"' is observed at 
the time t .  For this reason a calculation of (4) and of (5) involves only the 
evaluation of the mean value of the random variables YT K,,, and YT Ki,,. This 
may be done numerically. 

2. The mathematical background. Hilbert spaces used in this work are 
separable and inner products are linear on the right. The linear and the closed 
linear space spanned by a set M are denoted by lin M and by E M ,  respec- 
tively. All integrals of Hilbert space-valued functions are understood in the 
weak sense. The group of unitary operators on the Hilbert space X is denoted 
by % (S'). The a-algebra generated by a set M of random variables is denoted 
by a(M). The space of continuous functions on a topological space X is de- 
noted by C ( X ) .  

The wavelet analysis was introduced by Grossmann et al. in [7] and [8], 
and was motivated by applications in the signal processing. We recall some 
recent results from this theory. 

Let G be a locally compact group equipped with a left Haar measure p. 
A strongly continuous irreducible unitary representation U off3 on the Hilbert 
space S' is called square integrable if there exists a vector v  E Z satisfying 

Such a vector v  is called a wavelet. Given G, U, S', and V E X  as above we 
introduce V :  X + C (G), hi+ V h  by putting Vh (g):  = <U(g) v ,  h )  for all g E G 
and h ~ # .  The mapping Vis called the wavelet transform. In [7] it is shown 
that the wavelet transform is, up to a positive constant, an isometric operator 
from &' into E ( G ,  p). Let us choose the left Haar measure p such that 
V becomes isometric. The adjoint V* is given by 
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From V* V = 1, we infer the inversion formula of the wavelet transform: 

(7) k = j V h  (g)  U (g) up (dg) for all h E X 
G 

In the following we also need some special constructions of Hilbert spaces; for 
proofs and details we refer the reader to [14] ,  p. 92. Let M be any set. The map 
k :  M x  M 4 C is called a positive de$nite kernel on M if the matrix 
(k (xi ,  xi))!,,, , is positive semidefinite fur all x, , . . ., x, E M and n E N. Let k be 
a positive definite kernel on M. Then there exists a Hilbert space K and a map 
e :  M 4 K g c h  that { e  (x), e m )  = k ( x ,  y)  for all x, y E M and the linear space 
lin ( e  (XI: x &) is dense in K. The pair ( e ,  K) is called the Kolmogoroff decom- 
position of the positive definite kernel k. Let ( e l ,  K,) and (e, ,  K,) be Kol- 
rnogoroff decompositions of k. Then there exists a unitary operator Q: K ,  + K, 
such that eel  ( x )  = e2 ( x )  holds for all x E M. In this sense the Kolmogoroff 
decomposition is unique. The Kolmogoroff decomposition is useful in con- 
structing new HiIbert spaces; for example, we obtain the direct sum H I  BH, of 
Hilbert spaces H ,  and H ,  by decomposing the kernel k on W, x H , ,  given by 

In this case, e is given as 

Similarly, the symmetric Fock space T (H) over the Hilbert space H is defined by 
the decomposition (e ,  T ( H ) )  of the following kernel k on H :  

k (h,  h') : = e(h*h') for all h, h' E H 

The vector e ( x )  E T ( H )  is called the exponential vector corresponding to x E H. 
The exponential vectors are linearly independent and the map e :  H + T ( H )  is 
continuous. 

. Remark  1. We consider one concrete realization of the symmetric Fock 
space over I.? [0, T I .  For each z EL? [0, and t E LO, we define the random 
variable b,(z) on our probability space as 

A calculation shows that ~ , ( m b , ( z ' ) )  = e("7"') holds for all z, z' EE [0, TI. 
Using the fact that lin {b,(z): z EL? [0, q) forms a dense subspace of 
E(L2, 9 . ,  P) (see the proof of Lemma 5.36 of [9]), we conclude that 
(bT( . f ,  I.? (a, 9 * ,  P)) defines a decomposition of the kernel (2 ,  z') I+ e("*"') on 
J? 10, T I ,  and therefore E(52, FT, P) can be regarded as the symmetric Fock 
space over 10, TI .  

Let K be a Hilbert space and T : =  {z EC: 171 = 1) be the one-dimen- 
sional torus. We endow the set G,:= T x  K with the multiplication o as 
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follows: 

(T , Z) o (TI, zl) : = (TZ' exp ( - i Im (z, z')) , z + 2') for all (t , z), (z', z') E G,, 

and we obtain a non-abelian topological group (G,, o). In the case where K is 
a finite-dimensional Hilbert space, (GK, o) is a locally compact unirnodular 
group, which is called the Weyl-Heisenberg group. The Haar measure w,, of 
the Weyl-Heisenberg group G, is given by wo, : = oT @ w,, where o, and o, 
denote the Haar measures of T and K ,  respectively. 

Let r ( K )  be the Fock space over K. For any z E K the Fock-Weyl operator 
WK(z)i2 well defined by its action on all exponential vectors as 

"w;,(z)e(z') = exp{-$11z11"{z, zf))e(z+z') for all z, z 'EK. 

It  can be shown (see [14], p. 135) that each WF(z) is a unitarity on r ( K )  and 
that the Fock-Weyl operators obey the relatlon 

W,(z)W,(zf)= exp{-iIm(z,z')}WK(z+z') for all z , z l € K ,  

from which it follows that the map 

defines a unitary representation (the Fock representation) of GK, This represen- 
tation is strongly continuous and irreducible (see [14], p. 142). 

Remark  2, In the case where K is finite dimensional the Fock represen- 
tation UK of the Weyl-Heisenberg group GK is square integrable and e (0) can 
be chosen as a wavelet (compare with (6)), since 

Consider a finite-dimensional subspace E of a given Hilbert space H. Let 
(e, r (H)) be the decomposition defining the symmetric Fock space over H. We 
denote by Y (E) c r (H) the space k (e (2): z E E )  c r (H) and by Py(El the 
orthogonal projector onto Y ( E ) .  Let us also introduce the following transform: 

9 :  ( C ) ,  9h(z) :=  (e(z), h) for all ZEE.  

From this definition we obtain 9 = 9P,(,,. Let wE be the Haar measure of 
E normalized as 
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and y, be the probability measure 

PROPOSITION 2. UsI'ng the above notation the following holds: 
(i) 9 is a bounded operator mapping from r(H) into L2(E, y,). Moreover, 
2* 9 = P,,,,. 

(ii) The adjoint g*: L? ( E ,  yE) -+ r (H) is given by 

p*t=SS(z)e(z)y,(dz) for ail ~ E C ( E , Y ~ ) .  
d 

: . E- 

Pr a of. b(i) It is obvious that the decomposition (el,, r(E)) corresponds to 
the symmetric Fock space over E, and therefore we may identify Y(E) with 
T (E) .  The appropriate Fock-Weyl operators {WE (z): z E E )  c (-2l (Y (E) )  are 
given by 

WE (z) : = Pr(q rjyg ( z ) ( , ( ~ )  for all z E .  

From the second remark it follows that 

defines a representation of GE which is unitarily equivalent to the Fock 
representation U,. For this reason, 0, is square integrable, and we may define 
the wavelet transform according to 0, choosing e(0) as the wavelet. This 
transform becomes isometric if the Haar measure a,, = wTQw, is nor- 
malized as 

which implies for all h~ T(E) 

Hence IIPrca h1I2 = IIpPr(E) h1I2 = l19h112 for all h E T(H). Finally, we are Ied to 
Py(,, = 91i"' 2 by polarizing [IPY(,, h1I2 = l19h112 for all h E T ( H ) .  

(ii) is straightforward, s 

3. Pricing contingent claims. Let yT E I? (a, FT, P )  be a contingent claim 
and n E N. For the remainder of this work we identify L? (8, q T ,  P) with the 
symmetric Fock space over @ [0, TI as described in the first remark. We also 
choose the finite-dimensional subspace 

En:= lin{rpo, ..., qn) c I.? [0, TJ 

4 - PAMS 19.1 
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and consider the transform 9: @(a, FT, P) 4 I? (En, yBn) which corresponds 
to En in this context. 

Since pointwise arguments are important in this section, let us agree that 
for each c = (c,, . . .> c , ) ~ C " ' l  and t E [0, fl the vector aYt(z:=, c, rpk )  
E@(Q> FT, P)  is represented by the function 

- . . . = exp {c*@,(w)-$cf G , c ) .  
b 

PROPOSITION 3. For all t E [O, TI, E;" = jE 9 Y T  (z) gt (2) yE (dz) holds in the 
weak sense and for all t E [O, T [  pointwise. 

P r  o of. The identity Y(En) : = lin (8' (2): z E E)  holds by definition. 
Applying Lemma 5.36 of [9] we conclude that Y(En) = ,!?(a, un, P), which 
implies that the conditional expectation Y; = E,(Y, I Fn) coincides with the 
projection P,(p) Y,. From Proposition 2 it follows that 

holds in the weak sense for all t E [D, TI. To show the pointwise representation 
it suffices to prove that for (w, t ) ~  SZ x [0, T [  the function f,,,: E n  4 C, 
z H $ (z) (a) is contained in I? (En, YE.): 

The last inequality holds since the matrix (1 -G,) is positive definite for all 
t€[O, T [ .  Ed 

We are now able to prove (4). By Proposition 3, for all (w, t) E IR x [0, TI 
we obtain 
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- 
where Kt,, = 9* fK. This random variable is calculated explicitly as: 

= Idet (1 - Gt)-lt2/ exp (-4 (@,-@,(w))*(I - G,)- '(9.- Qi, (w))) exp (i @$ @,) , 

which proves the statement (4). 

4. Hdgimg mntingefit claims. To apply tools from the wavelet analysis to 
the hedging broblem we consider the Hilbert: space of predictable processes: 
I? (O x [0 ,  17, d, P@L) .  Here d denotes the cr-algebra of predi~table sets and 
P@A denotes the restriction to d of the measure-theoretic product of P with the 
Lebesgue measure A on LO, fl. Then, by its construction, the stochastic integral 

T 

~ : L ~ ~ ~ x c o , T I , ~ , P ~ ~ ) - , L ~ ( ~ , F ~ , P ) ,  h = ( h , ) , , o , q ~ j h , d ~ ,  
0 

is an isometric operator. Each exponential vector tTT ( z )  is the terminal value of 
the martingale 

~ ( ~ ) = ( ~ . ( l ) ) * ~ o . ~ , =  a 

teo.l'l 

Moreover, C(z)  is the stochastic exponential of the martingale (1: z, dw)lEh.r,o 
and admits the representation 

T 

sT(z1-1 = SEt(z)dY, 
0 

where E ( Z )  = ( E ~ ( Z ) ) ~ , ~ ~ , ~ E C ( ~ ~ X  [0,  TI, dl P@A} is given by 

q (2) = zt gt (z) for all t E [0,  7'l. 

Given the contingent claim 'YT and nEN we are searching for predictable 
process y" = (yy)tgo,q satisfying - Y; = ~iyf d K .  That means we wish to 
obtain yn E I? (Q x [0,  TI, d, POR), which is uniquely determined by ly" 
= YF- since I is injective. 

PROPOSITION 4. The process yn satisJies y" : = j, 9 Y, (2)  E (2) YE" (dz),  where 
the integral is understood in the weak sense. Moreover, for all (w,  t) E $2 x [0,  T I ,  

J t  (4 : = j 3 YT (2) &t (z) (4  YE^ td4.  
E" 

Proof. It follows from Proposition 3 that 
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I in the weak sense. Using bT (z)- 8, (2) = IE (z ) ,  we are led to 
I 

since I is bounded. This proves the weak integral representation of y", To prove 
the second assertion it suffices to show that for each (o, ~ ) E Q  x LO, TI the 
function 

fiw: P A C ,  ~ H E * ( z ) ( ~ ) ,  

is contZiped-in @(I?', y p ) .  This is true since (l-G,) is positive definite for 
t E [0, T[: 

Now we are able to show (5) by evaluating 

{ 9YT (z) E~ C Z )  (4 YF (dz), where (w , t) E B x [O ,  T [ .  
E " 

We get 
Y ;  (01 = j ~ Y T ( z )  f:,w ( ~ Y F  (dz) = a, T Y T T ) L ~ ( E ~ , Y ~ ~ )  

E" 

where = Y z .  This random variable is calculated explicitly as: 
7- Kt,, - j K l z )  8 T  (2) YE" (dz) 

E" 

= j E* (pt exp {E* a, (w) -3 E* Gt E)  
F+' 

which proves (5). 
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