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AN APPLICATION OF WAVELET ANALYSIS
TO PRICING AND HEDGING DERIVATIVE SECURITIES

. BY

JURI HINZ (TUBINGEN)

Abstract. This work provides an application of wavelet analysis
to pricing and hedging path-dependent contingent claims within the
framework of the Black-Scholes model.

1. Introduction. A European contingent claim written on an asset is a fi-
nancial contract which gives its owner the right to receive a payoff at the
expiration date T This payoff depends on the market behaviour (the path) of
the underlying asset during the time [0, T as determined in the contract. Two
problems arise naturally when dealing with contingent claims. The problem of
pricing: Calculate the fair price of the contingent claim at each time 0 <t < T
using the behaviour of the underlying asset during the time [0, ¢]. The problem
of hedging: Having sold the contingent claim, how can the seller insure against
the upcoming random loss at the time 7'? In some cases of interest, in par-

ticular in the case of the Black—Scholes maket, we find the solution of these

problems in terms of the so-called arbitrage-free pricing.

In the Black—Scholes model we specify three financial assets traded con-
tinuously during the time [0, T]. The corresponding prices are modelled by
adapted stochastic processes (S,),E[o a (B,),E[o ), and (Y),E[O r; on the filtered
probability space (Q, (#0115 13) where (%) 0,17 denotes the natural ﬁltratlon
generated by some Brownian motion (W)te[O - The stock process (S,),E[o 1 With
initial value S, > O describes the price of a risky asset. It is given by

S;:=exp{oW,+(u—30%1t}S, for all te[0, T7.

The constants g > 0 and ¢ > 0 are known as the appreciation rate and the
stochastic wvolatility of the stock. The bond process (§,),E[0,T] represents
a risk-free security, assumed to continuously compound in value at the fixed
interest rate r > 0, meaning B,:= ¢" for all te[0, T]. The terminal payoff of
the contlngent c1a1m is given by an % -measurable random variable ¥,. The
process (Y)te[O 11, Which is to be determined, corresponds to the behav1our of
the market price of the contingent claim during [0, T]. The main idea of the
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arbitrage-free pricing is to introduce the discounted processes as
(S,:= €7 " 8 )ejo, 17 and (¥,:= e~ " ¥) 10,17 They describe the prices of the stock
and of the claim if the risk-free security is chosen as the numeraire asset. Supposing
the absence of arbitrage and following standard arguments (see, for example, [10],
[57,[12]), we are led to the following statement: There exists a probability measure
P, which is equivalent to P such that the discounted processes (S,)f0,77 20d (¥seg0,71
are martingales under P. In our setting the measure P is unique and the
Radon-Nikodym derivative dP/dP is explicitly obtained. Furthermore, from the

» 2
S, =exp {aWt—% t} S, for all te[0, T, -
where (W),po,r is @ Brownian motion with respect to P and S, > 0. In the
following let us suppose that Y, € I? (Q, %, P). In this situation the problem of
pricing is easily solved: The fair (discounted) price of the contingent claim at
the time te[0, T] is found by calculating the conditional expectation of Y,
under P: (Y,:= Ep(Yy | #))eo,r7- The problem of hedging admits the following
treatment: Representing the square-integrable martingale (Y),o,77 as the sto-
chastic integral (this is possible in our setting)

t
Y, =Yy+ | y,dW, for all te[0, T7,
0

we obtain (¥ )0, and determine the process (17, 6) = ((1,> 8))scio, ) (the trading
strategy) as, = Y,—y,6 "' and 0, = y,(¢S,) " * for all te [0, T]. In such a strat-
egy, 0, describes the number of units of risky asset held at the time ¢, and #,
describes the amount invested in the riskless asset at the time ¢. The strategy
(n, 0) satisfies -

t t
(1) Y =Y,+ | ndB,+[6,dS, for all te[0, T1,
i ’ 0 0
2 Y,=6,5,+1,B, for all te[0, T].-

" From the equation (1) it follows that, starting with initial investment Y,, the

trading strategy (4, 0) replicates the payoff ¥, of the contingent claim. The
equation (2) means that in order to attain ¥, in this way only the investment
Y, at the time ¢ = 0 is needed. Such a strategy is called self-financing. (For
additional information we refer the reader to [12], [5], [15].) The seller of
contingent claim may apply this trading strategy to avoid the risk completely.
However, since closed-form expressions of Y, and y, are not always available, it
is important to study numerical methods (see, for example, [5], [6], [1]).
In this work we apply some results from the wavelet theory in order to
obtain square-mean approximations of (Yo, 7 and of (y,).0,1;- Let us explain
which I?-approximations are meant. We choose the orthonormal basis (¢*).n
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of I?[0, T] by putting ¢? := ./1/T,
2 2wk
(pf"v:=\/;cos( nTs),
2 k
Q2k+1 :=\/;sin (Z“TS) for all k> 1, se[0, T]

and define the family (E"),.y of linear subspaces of I? [0, T], where E" is spanned
by (¢")i=0. For each ne N let us also introduce the s-algebra a,, generated by
{jo z,dW,: ze E"},- the random variable Y7 := E,(Y;|s,), the martingale
(%"= EP(YTl./,)),E[O ). and the predictable process ()epo,17 defined by

Y7 = E,p (Y)+Iyde
Note that, in view of the properties of the Hermite polynomials,
T T
{X: X is a polynomial in | @2dW,, ..., [ @2dW,}
0 (]

is a dense subspace of I?(Q, o,, P). Moreover, it is well known (see [11],
Chapter 4.2) that

o) T T
U {X: X is a polynomial in | @?dW,, ..., j' osdW,}
n=0 0

is a dense subspace of I?(Q, #;, P). Hence U LZ(Q a,, P) is dense in
I?(Q, %, P). This implies that the sequence (Y"),,eN converges to Y; in the
square mean. Doob’s maximal inequality and the isometry of stochastlc inte-
gral yield:

(3  lim Ep(sup |¥"-¥P) =0, hmE(Hh yl?di) = 0.

n=@ o gef0,T] n—c

Let ne N be sufficiently large. Then, in view of (3), the processes (¥;")ef0,77 and
(874 ),e[o r) are seen to be I>-approximations of (¥)g0,77 20d (¥,)ero. T}, respectively.

‘Throughout this paper let ne N be fixed. For each te[0, T] we introduce
R**1.valued Gaussian random variable

t
&, = (@ —o:= ([ Pt dW)=o.
0
Its covariance matrix G, satisfies
t
= (I (P’s‘(;oéds)l':,l=0-
0

Note that 1—G, is positive definite for all te[0, T[. We shall denote the
transpose (of a matrix) by * and write ¢, for the (column) vector
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(@2, ..., oP)eR"*'. For all te[0, T[ and we 2 we define the random variables
K, ., Ki o€ ?(Q, #;, P) as

K, ,:=|det(1-G)~ 12|
xexp{—3(P;— D, () (1—G) " (D,— D,(w))} exp {3 D% D},
K o= (Pr— 9, ()" (1-G) ' ¢,K, .

Using the notation above, we can formulate the main result of this work as
follows:

- P_liopoélﬁON 1. For all te[0, T[ and weQ:
“) Y (w) = Ep(K:0 Y1),

&) yi (@) = Ep(K}, Yr).

Note that since &, is #,-measurable, the value @,(w)e R"*! is observed at
the time t. For this reason a calculation of (4) and of (5) involves only the
evaluation of the mean value of the random variables Y; K, , and Y; K] ,. This
may be done numerically.

2. The mathematical background. Hilbert spaces used in this work are
separable and inner products are linear on the right. The linear and the closed
linear space spanned by a set M are denoted by lin M and by Iin M, respec-
tively. All integrals of Hilbert space-valued functions are understood in the
weak sense. The group of unitary operators on the Hilbert space 5# is denoted
by % (). The o-algebra generated by a set M of random variables is denoted
by o (M). The space of continuous functions on a topological space X is de-
noted by C(X).

The wavelet analysis was introduced by Grossmann et al. in [7] and [8],
and was motivated by applications in the signal processing. We recall some
recent results from this theory.

Let G be a locally compact group equipped with a left Haar measure p.
A strongly continuous irreducible unitary representation U of G on the Hilbert

_space # is called square integrable if there exists a vector ve # satisfying

(6) v#0 and | KU(g)v, v)|* u(dg) < oo.
G

Such a vector v is called a wavelet. Given G, U, #, and ve # as above we
introduce V: # — C(G), h+— Vh by putting Vh(g):= {U(g)v, h) for all ge G
and hes#. The mapping Vis called the wavelet transform. In [7] it is shown
that the wavelet transform is, up to a positive constant, an isometric operator
from s into I?(G, u). Let us choose the left Haar measure y such that
V becomes isometric. The adjoint V* is given by

V*é=[E(@U(g)vu(dg) for all EeIZ(G, p).
G
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From V*V =1, we infer the inversion formula of the wavelet transform:

) h= | Vhig)U(g)vp(dg) for all hes#.
G

In the following we also need some special constructions of Hilbert spaces; for
proofs and details we refer the reader to [14], p. 92. Let M be any set. The map
k: MxM — C is called a positive definite kernel on M if the matrix
(k(x; x ) j=1 is positive semidefinite for all x,, ..., x,6 M and ne N. Let k be
a positive definite kernel on M. Then there exists a Hilbert space K and a map
e: M — K such that {e(x), e(y)> = k(x, y) for all x, ye M and the linear space
lin {e(x): xeM} is dense in K. The pair (e, K) is called the Kolmogoroff decom-
position of the positive definite kernel k. Let (e,, K,) and (e,, K,) be Kol-
mogoroff decompositions of k. Then there exists a unitary operator g: K; — K,
such that ge, (x) = e,(x) holds for all xe M. In this sense the Kolmogoroff
decomposition is unique. The Kolmogoroff decomposition is useful in con-
structing new Hilbert spaces; for example, we obtain the direct sum H,®H, of
Hilbert spaces H, and H, by decomposing the kernel k on H, x H,, given by

k: ((hy, By), (Wy, By))><hy, B +<hy, Ba).
In this case, e is given as
e: (hy, hy)>h,®Dh,.

Similarly, the symmetric Fock space I (H) over the Hilbert space H is defined by
the decomposition (e, I'(H)) of the following kernel k on H:

k(h, ):= > for all h, WeH.

The vector e(x)e ' (H) is called the exponential vector corresponding to xe H.
The exponential vectors are linearly independent and the map e: H — I'(H) is -
continuous.

_Remark 1. We consider one concrete realization of the symmetric Fock
space over I? [0, T]. For each ze I?[0, T] and te[0, T] we deﬁne the random
varlable é,(z) on our probability space as

t ¢ -
£,(2):= exp{j stWs—E ] zszds}.
0 0

A calculation shows that E, (81 (z) £1(2)) = e¢*” holds for all z, z’ e I? [0, T].
Using the fact that lin{&,(z): ze ?[0, T]} forms a dense subspace of
(Q, #;, P) (see the proof of Lemma 5.36 of [9]), we conclude that
(67(), Z(Q, 1, P)) defines a decomposition of the kernel (z, z')— e<**? on
I?[0, T], and therefore I?(Q, %, P) can be regarded as the symmetric Fock
space over I?[0, T].

Let K be a Hilbert space and T:= {teC: |7] = 1} be the one-dimen-
sional torus. We endow the set Gy:= I'x K with the multiplication o as
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follows:
(t, 2)o(t, z'):= (xt’exp{—ilm <z, ')}, z+2) for all (z, 2), (v, 2) € Gy,

and we obtain a non-abelian topological group (G, o). In the case where K is
a finite-dimensional Hilbert space, (G, o) is a locally compact unimodular
group, which is called the Weyl-Heisenberg group. The Haar measure wg, of
the Weyl-Heisenberg group Gy is given by wg, := 0y @ wg, where wy and wy
denote the Haar measures of T and K, respectively.
Let I' (K) be the Fock space over K. For any ze K the F ock—Weyl operator

Wil2) iy well defined by its action on all exponential vectors as

Wie(@)e(Z) =exp{—3|zlI*—<z, 2>} e(z+2) for all z,zeK.
It can be shown (see [14], p. 135) that each #(2) is a unitarity on I' (K) and
that the Fock—Weyl operators obey the relation _

Wx(@) W (@) = exp{—ilm{z, 2>} Wi(z+2) for all z,z'eK,
from which it follows that the map

Ug: Gy > U(T'(K), (1,2)—>1#5(2),

defines a unitary representation (the Fock representation) of Gg. This represen-
tation is strongly continuous and irreducible (see [14], p. 142).

Remark 2. In the case where K is finite dimensional the Fock represen-
tation Uy of the Weyl-Heisenberg group Gy is square integrable and e(0) can
be chosen as a wavelet (compare with (6)), since

Gj I<U%(9) € (0), e (0))]* wey (dg)
= ,{ § [KUk((z, 2) e(0), e(0))|* oy (dr) g (dz)

= | | Krexp{—|lzll*/2} e(2), e(O)I* ooy (dr) i (d2)

=

= 07 (T) | exp{—llzl*} o (d2) < 0.

Consider a finite-dimensional subspace E of a given Hilbert space H. Let

(e, I' (H)) be the decomposition defining the symmetric Fock space over H. We

denote by Y(E) = I'(H) the space lin{e(z): ze E} « I'(H) and by Pyg the

orthogonal projector onto Y (E). Let us also introduce the following transform:
Y. I'(H)—> C(E), ZLh(z):=<e(z),h) for all zeE.

From this definition we obtain ¥ = £ Py,. Let w; be the Haar measure of
E normalized as

§ exp{—llzll*} wg(d2) = 1,
E
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and y; be the probability measure
v (dz):= exp {—||z||*} wg (dz).

PROPOSITION 2. Using the above notation the following holds:

(i) & is a bounded operator mapping from I' (H) into I?(E, y;). Moreover,
L* L = Py

(i) The adjoint ¥*: I*(E, yz) — I'(H) is given by

E’*C j'é(z)e (2)7e(dz) for all (€2 (E, yy).

Proof. o(i) It is obvious that the decomposition (|, Y'(E)) corresponds to
the symmetric Fock space over E, and therefore we may identify Y (E) with
I'(E). The appropriate Fock-Weyl operators {#%(z): ze E} « % (Y (E)) are
given by

Wi(2):= Py #u(@|rg for all zeE.

From the second remark it follows that
Up: G~ % (Y (E), (z, 2)—>1¥5(2),

defines a representation of Gy which is unitarily equivalent to the Fock
representation Uy. For this reason, U is square integrable, and we may define
the wavelet transform according to U, choosing e(0) as the wavelet. This
transform becomes isometric if the Haar measure wg, = 0,®wg is nor-
malized as

wr(T) = }IzeXp {2’} wg(dz) = 1,

which implies for all he Y (E)
> = [ [KUg(g)e(0), k)| g, (dg)

GE

= [ [ Krexp {— 2?2} e(2), h)|* @ (d2) g (dr).
= [ Ke(@), k)2 yp(d2) = \ZhP. -

Hence ||Prg hl|* = | L P hl|* = [|£LH||? for all he I (H). Finally, we are led to
Py = ZL* & by polarizing ||Prg hl|* = || ZH||* for all hel (H).
(ii) is straightforward. =

3. Pricing contingent claims. Let Y, cI? (Q, #,, P) be a contingent claim
and ne N. For the remainder of this work we identify I? (Q, #;, P) with the
symmetric Fock space over IZ [0, T] as described in the first remark. We also
choose the finite-dimensional subspace

Er:=1in{¢p" ..., ¢"} =« I2[0, T]

4 — PAMS 19.1
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and consider the transform %: I? (Q, %, P) — I?(E", yg») which corresponds
to E" in this context.

Since pointwise arguments are important in this section, let us agree that
for each ¢=(cg,...,c,)eC"*? and te[0, T] the vector &,(},_,c. %"
el?(Q, #;, P) is represented by the function

n

Q-C, mHexp{Z ¢, ¥ (w)—= Z C,, ,j% }

k=0
B = exp {c* &, (co)—zc*G c}.
PROPOSITION 3. For allte[0, T], V" = j LYr(2)8,(2) Ve (dz) holds in the
weak sense and for all te[0, T[ pointwise.

Proof The identity Y (E"):=Tin{&(z): zeE"} holds by definition.
Applying Lemma 5.36 of [9] we conclude that Y'(E") = IZ (&, o,, P), which
implies that the conditional expectation Y = Ep(Yy|#,) coincides with the
projection Pyn Yy. From Proposition 2 it follows that

Yi=Pygn Yr=L*LY, = j LYy (2) 67 (2) yer (d2)
E"

holds in the weak sense for all te[0, T]. To show the pointwise representation
it suffices to prove that for (w,)eQ2x[0, T[ the function f,,: E"—C,
z+>&,(2) (w) is contained in I? (E", ygn):

Efn |fow (2)I 50 (d2) = Ef |6,(2) ()I* exp { —||zI|*} wp- (d2)

= _f |eXp {C*¢t (w)_% c* Gt C}lz

¢ntl

du dv

= [ exp{2u*®,(w)—u*G,u+v*G,v}exp {—uru-— u*v}

Rnt+1 an+1

= | ep(ar @ -w G Du—rr(—G)o} e < oo

Rn+1an+1

The last inequality holds since the matrix (1—G,) is positive definite for all
te[0, T[. =

We are now able to prove (4). By Proposition 3, for all (w, t)e 2 x [0, T[
we obtain

(@) = | LY@ fo0@16:d2) = oo L YrDra@npem
En

= <g *JZaYT>L2m,P) = EP (Kt,w Yr),
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where K_,; = %*f, . This random variable is calculated explicitly as:
Kio= jﬁw(z)g (2) ven(d2)

= | exp{c*d> (w)—%¢*G, c}exp{c*cDT ic*clexp{—c*

cnti1

= ldet(1—G) ™" exp {—4(&7— &, (@))*(1~G) " (@, (w))} exp {3 8% &y},

which proves the statement (4).

4. Hedging contingeiit claims. To apply tools from the wavelet analysis to
the hedging problem we consider the Hilbert space of predictable processes:
(@ x[0, T], o, P®A). Here o denotes the o-algebra of predictable sets and
P®J denotes the restriction to =7 of the measure-theoretic product of P with the
Lebesgue measure 4 on [0, T]. Then, by its construction, the stochastic integral

T
L E@x[0, T], &, P®) > (R, #1, P),  h=(h)eto.y—> | h,dW,,
0

is an isometric operator. Each exponential vector &7(z) is the terminal value of
the martingale

£@) = (E.etorr = (exp { FRUEIE ds})

Moreover, & (z) is the stochastic exponential of the martingale ([ :) 2, dW)eto.m1
and admits the representation

te[0,T]

£2()—1 = [0, AW,
4]

where &(z) = (&,(2))ero,me (@ x [0, T], &, P@4) is given by
&) =28, for all te[O, T].

leen the contmgent claim ¥, and neN We are searching for predlctable
process " = (e, 11 satlsfylng '—-Y = jo yidW,. That means we wish to
obtain y"e I2(@x [0, T], &, P®2), which is uniquely determined by Iy"
= Y7—Y§ since I is injective.

ProPOSITION 4. The process y" satisfies y":= IE,, LY, (2) e(2) yen (d2), where
the integral is understood in the weak sense. Moreover, for all (w, t)e 2 x [0, T(,

yi(@):= | LY;(2)e,(2) (@) yem(d2).
E"
Proof. It follows from Proposition 3 that
YP—Y = | LY (2)(81(2)— &, (2) yen(d2)
En

S
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in the weak sense. Using &,(z)—&,(z) = Ie(z), we are led to

r-Y = fnff Yr(2) Ie(2) ygn(dz) = 1 E[ ZLYr(2)e(2) ypn (d2)

since I is bounded. This proves the weak integral representation of y". To prove
the second assertion it suffices to show that for each (w, t)e Q@ x [0, T[ the
function

flot E"=C, zig(2)(w),

is cgnta_ﬁped:iﬁ LZ(E;'; yg~). This is true since (1—G,) is positive definite for
te[0, T[:

Iﬂ [ferwl? e (d2) = EI |z * 1€, (2) (@) 7en (d2)

_ de
= [ lorcllexp {c* @, (0)—3c* G, c}[*exp{—C*c} rES
ecntl

= [ loru+in)exp {2u* ()

RntlxRgnt1

dud
—u* (G, + 1) u—v*(1— G, v} #< ©. m

Now we are able to show (5) by evaluating

| LY;(2)¢e,(2)(0)yen(dz), where (v, )eQx [0, TT.

We get
@)= | LY(2) (@ V80 (d2) = Flos LYr) 128550
En

={(Z *ﬂ; YT>L2(.Q,P) = Ep(Kt0 Y1),
where K, = ZJ7,. This random variable is calculated explicitly as:

- K= [ Fe@Er@m(d)

= j c* g exp {¢* @, (w)—%c* G,c}
cnt1

de -
x exp {¢* ;. —4c* ¢} exp{—c* c}n"—i1

= (07— 0,(0))" (1-G) "o, |det(1-G)™*7?|

x exp{—1(@r— P, (@))* (1—G) ™ (Pr— P, ())} exp { D} Dy},

which proves (5).
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