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AN ANCILLARY PARADOX IN TESTING 

a W N  HE* (LAWRENCE, WSAS) 

Abstract. In multiple linear regression with normally distributed 
errors, it is shown that a test procedure for a hypothesis about the 
intercept which i s  %-admissible when the design matrix is fixed is inad- 
missible when the design matrix is an ancillary statistic. The result of 
this paper is a complementary one to Brown's paper [2]. 

1. Introduction. The purpose of this paper is to show an ancillary paradox 
in testing which appears in a linear regression. It will be shown that a test 
procedure for a hypothesis involving the intercept is a-admissible when the 
design matrix is fixed, but the test prpcedure is inadmissible when the design 
matrix is an ancillary statistic. 

Consider the usual multiple linear regression 

where Y = (Y,, . . ., 'Y,)' is the dependent variable vector, p~ R, P = (PI, . . ., b,)' 
E RP are unknown parameters, and & = (F,, . . ., r/;,)', i = 1, . . ., n, are the 
predictor variables. The errors (E,, . . ., E,)' are assumed to be normally dis- 
tributed, i.e., 

(1.2) (El , . . ., E")' N (0, o2 I ) .  . - 

We are interested in testing for a hypothesis about the y-intercept value ,u, 
i.e., the population mean of the dependent variables when the predictor varia- 
bles are a11 zero. 

The main purpose of this paper is to show that the admissibility of a test 
procedure for a hypothesis about p depends on the distribution of the predictor 
variables, i.e., the test is a-admissible if the predictor variables are preassigned 
constant values, but it is inadmissible if the predictor variables are independent 
normal having mean 0 and identity covariance matrix. This result is a com- 
plementary to that of Brown [2]. 
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Fisher [3] introduces the notion of an ancillary statistic partly as a basis 
for conditioning, which is an old and commonly used tool in statistical in- 
ference. Fisher [3] defines an ancillary statistic U as one that has a law in- 
dependent of 8, and together with the m.1.e. forms a suscient statistic. 
Fisher's rationale for considering ancillarity is as follows: U by itself contains 
no information about 8, and does not affect 9. However, the value of U may tell 
us something about the precision of 0, e.g., Var, (d I U = er) might depend on u. 
It is widely believed that the value of ancillary statistic does not affect statistical 
inferences, i.e., statistical inference should be carried out conditional on the 
value of any 'ancillary statistic. 

Broivn [2] shows that in multiple linear regression the admissibility of the 
ordinary estimator of the constant term depends on the distribution of the 
predictor variables, which are ancillary statistics. He [4]-[7] extends Brown's 
results to various models, and He and Strawderman [8] discuss the estimation 
in elliptically contoured regression. 

We will discuss a test procedure in Section 2 for a fixed design. We prove 
that a test procedure for a hypothesis about intercept p is a-admissible when 
the predictor variables are fixed. In Section 3 we prove that the test procedure 
is inadmissible when the predictor variables are random with known normal 
distribution having mean 0 and identity covariance matrix. 

2. The case of fixed design: Admissibility of test. We will first consider the 
case where the predictor variables V are fixed. 

Under the model (1.1) and assumption (1.2) we know that 

with an (n x p)-matrix V = (Vl, . . ., K)', and 1 = (I, . . ., I)'ER". 
Let P =  n-' lt Y (a scalar), P =  nP1 1' V (a ( 1  x p) row vector), and 

S = (V- 1 P)' (V- 1 P) (a ( p  x p)-matrix and positive definite with probability 1). 
The least squared estimators of p and are, respectively, the following: 

and 

(2.3) 

where 
n - l+p- lp t  - p - l  

Z ( V )  = aZ -s-1 p' 
. We will consider testing the intercept p in the regression model (1.1). Our 
hypothesis is 
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A test #, is called a-admissible (Lehmann [9], p. 306) if, for any other level-u 
test 4, 

EP # ( Y  2 EP # ( for all P E H, 
implies 

E , + ( Y )  = E , & , ( Y )  for all p f H a .  

This definition takes no account of the relationship of E, q5 (Y) and E ,  4, (Y) 
for ~ E H , ,  beyond the requirement that both tests are of Ievel a. 

Let I ( A )  be. the indicator function of the set A. We have the following - - .  
lemma: - , 

LEMMA 2.1. For given aZ and K the test $o(@) = I (c, < f i .< c , )  is a-ad- 
missible for the hypothesis (2.4) if and only if 

where ol is the size of' the test. 

Proof.  From formula (2.3) we know that ,i - N ( p ,  cri), where 02 
= (npl+ VS-l V')a2. By Theorem 6 of Lehmann [9], p. 82, the test 
do(@) = i (c, < p < c2) is the UMP test. 

If (2.5) holds, the test 4, (PI is the UMP unbiased test, then it is a-admis- 
sible. 

Suppose 4, (ti) is a-admissible and (2.5) does not hold; then using the same 
method as in Example 12 of Lehmann [9], p. 306, we see that 4, (k) is not 
a-admissible. s 

3. The case of random design: Inadmissibility of test. In this section we will 
assume that V = (Vl, . . ., K),)' is random with distribution 

The usual least squared estimator of ,u is still 

Following ideas in Brown [2], 

(3.2) P = 7- P m ,  S) = f i+ P(B-b(fl, s)) 
will be used as a competitive estimator of @, where 8" is a certain function of 
f i  and S.  Using the above estimators, we construct a competitive test as follows: 

for the hypothesis defined in (2.4), which is 

where p, < p2 are given constants. As in Lemma 2.1, for given a2 and fixed K 
the test 4, is a-admissible. However, when V satisfies the assumption (3.1) 
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and when 4, ( P )  = I (- c d fi  < c)  for c sufficiently small, then $, is inad- 
missible when p,  = -p, is also sufficiently small. 

THEOREM 3.1. In the linear regression model (1.11, (1.21, (3.1) for given 
a2 > 0, p 2 3, there exist p, = -p,, and an estimator p such that for the hy- 
pothesis (2.4) and a given /I # 0, we have 

Ep,p 41 (Fi) > E,,p $ 0  (PI for PI < P < Pz, 
where $, (fl = I ( -c*  < fi  < c*), and c* is chosen such that the test has the same 
size as #?, - .  " = Egl $0 (PI = E,, $0 ( f i l m  

- ~ r < o f .  Note that E (Y 1 V )  = p + VP, and Pis conditionally independent 
of @ and S given and V is independent of and S.  Thus, by (3.2), 

- - P a , B ( - ~ - ~  < . f i - f l  < c-p) 

= Ep,flPp,p(-~-P < b-P < C-P I b, S ,  v 
= E,,flP,,fl(-c-p d T-E(PI v)-V@-p) d c-p I p, S ,  

= E~ 7 [@(~~~-fl~~t+&(c-~))-@(~~F-fl~~t-&(c+~))lf(t)dt 
- m 

= EB ~(llP"-Pll, PI, 
where 

00 

G(x,p)= j [ @ ( x t + & ( e - p ) ) - @ ( x t - & ( c + p ) ) ] f ( t ) d t ,  ~ 2 0 ,  
- 0 0  

and @ (x) and f (x) are a standard normal cumulative distribution function and 
.a density function, respectively. 

Let us define 

L ( P )  = E~ C~(118"-fl11~ PI] - ~ p  CG(11fi-811, P)I- 
We will show first the following two steps: Step (i) A(0) > 0 and step (ii) 2 (p) is 
a decreasing function of ,u for sufficiently small p > 0. 

S t e p  (i). Let L(x) = 2 @ ( f i c ) -  1 - G(x, 0). The function w(P-P) 
= L ( I I ~ - P I I )  can be thought of as a loss function for estimating B if we can 
show that L(x) is an increasing function of x 2 0. Let 

d 
G(x ,  p) = G(x, P I #  

Note that 
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and L(0) = 0; then L(x) is strictly increasing in x for x 2 0. Furthermore, L.(x) 
is bounded above by 2cP (&c) - 1. Note that L(x) is not a convex function, so 
Theorem 3.3.1 of Brown [I] will be applied. 

Since fi I S - N ,  (B, a2 S -  '1, conditional on S, we want to find an estimator 
p= d(B, S) such that 

E, CW(P-P)I s3 < q? C W ( ~ - # I  XI, 
By Theorem 3.3.1 of Brown [I], let 

where I is an identity matrix, a is a sufficiently large number, and 
1 

(3.4) A = -[EXW'(X)]-l, X .- N,(O, a2S-I); b 

here x = (x,, . . ., xJr, and 

Since 

XW' (X) = 
- G;(llxllY 0) xx t  

IlXll 
is a positive definite matrix, we know that A is positive definite. Therefore, 
Theorem 3.3.1 of Brown [I] can be applied. This completes the proof of Step (i). 

Step (ii). Since 

Ah) = E~ CG (IIB-PII P)I - E~ CG(IIB-PII. 
from the result of Step (i) we know that R(0) > 0. 

Let 
a 

Gfp(x, PI = - G(x, PI. 
We- have 

aP 

Therefore, G, (x, 0) = 0, and G, (x, p) < 0 for p > 0. 
Since G,(x, 0) = 0, we have d'(0) = 0. To prove Step (ii), it is sufficient to 

show that A"(0) < 0 for suffciently small p > 0. 
Let us show that A"(0) < 0. We will define a suitable loss function and 

apply Theorem 3.3.1 of Brown [I] again. Let 



then 

Defining W, (p-#?) = U (I@'- PII, 0) as a loss function for estimating P, we obtain 

-Zf(0) = E~ ~ ~ ( f i - f l - ~ ~  w1(/T-0). 
Using results of [I], p. 1131, we have 

where a, b and A are defined in (3.3) and (3.4). To show that A"(0) < 0, it is 
sufficient to prove that b E ( W 1 ( X )  AX) > q > 0, where q is a positive constant. 
Note that for small constant c we have 

Since 

K'(X) = ut~llxll, o)xt/llxlt, 
we have 

If we let q equal the above number, we prove that L"(0) < 0. 
Since G(x, p) is continuous in c, G(x, -p) = G ( x ,  p), and G(x, p)  is 

decreasing in p for p > 0, we can choose 0 < c* < c such that 
(ti) = I (-c* < ji Q c*) has size a. Then for p, < ,u < p2 we obtain 

which completes the proof. H 
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