ON MARTINGALE MEASURES FOR STOCHASTIC PROCESSES WITH DISCRETE TIME

BY
EWA CZKWIANIANC AND ADAM PASZKIEWICZ* (LODŻ)

Abstract

Let $\left(X(t) ; t \in N^{+}\right)$be a random sequence adopted to a filtration (\mathscr{F}) in (Ω, \mathscr{F}, P) satisfying some natural assumption. If none of the events $(X(t+1)>X(t)),(X(t+1)<X(t))$ can be predicted, i.e. none contains some $A \in \mathscr{F}_{t}, P(A)>0$, then $\left(X(t), \mathscr{F}_{t}\right)$ is a martingale for some probability P^{*} on \mathscr{F}. It is a version of the "fundamental theorem of option pricing".

1. Introduction. Let $X(t), t \in R$, be a stochastic process. If $X(t)=e^{m t+\sigma w(t)}$ with $w(t)$ being a Wiener process, then $X(t)$ becomes a martingale with respect to P^{*} being a probability equivalent to the original one P. This theory, initiated by Girsanov, has been very tempting and widely researched for the last 30 years (we only mention monographs [4] and [11]-[13]). As one of the most famous applications of the theory one should mention the Black-Scholes model describing a replication strategy for European options (see [1], [8], [10] and [12]).

In the so-called financial mathematics, many efforts were also devoted to the formulation of the so-called "no free lunch" condition which, in more general situations, guarantees the existence of a martingale measure P^{*} equivalent to the original probability P. The notion of free lunch is defined (in a non-effective way) by the use of some space of strategies $\Theta(t)$ being stochastic processes predictable for some filtration $\left(\mathscr{F}_{t}\right)$. The construction of the martingale measure P^{*} is obtained by some development of the Banach-Mazur theory of the separating of convex sets (cf. [3], [7]-[10] and [12]). Free lunch conditions look simpler for processes indexed by discrete finite times (cf. [2] and [6]).

In the paper we use one scalar stochastic process $X(t)$ which corresponds to the simplest case of one security. The strategy is described by our position $\Theta(t)$ in the security. We assume that all our outcomes and incomes are cumulated in a riskless bond.

[^0]We propose a simple condition (analogous to that of Dalang-Morton-Willinger with zero interest rate [2]) which assures the existence of a martingale measure. This condition, later referred to as the change of sign property, states that

$$
P((X(t)>X(s)) \cap A)>0 \Leftrightarrow P((X(t)<X(s)) \cap A)>0
$$

for any $A \in \mathscr{F}_{s}, s<t$. Our arguments are rather classical. The required martingale measure P^{*} is obtained by the Kolmogorov extension theorem (see [4] and [13]). The main result is contained in Theorem 3.3.
2. Elementary examples. To explain the possibilities and restrictions appearing in constructing a martingale measure, let us consider some elementary examples.
2.1. Example. Suppose we are tossing a symmetric coin. Assume that $\omega=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ is a sequence of outcomes, $\varepsilon_{i}=0$ or 1 depending on the result of the i-th toss. Let $\mathscr{F}_{0}=\{\emptyset, \Omega\}, \mathscr{F}_{i}=\sigma\left(\varepsilon_{1}, \ldots, \varepsilon_{i}\right)$ (i.e., a σ-field generated by random variables $\left.\varepsilon_{1}, \ldots, \varepsilon_{i}\right)$ and $\mathscr{F}=\sigma\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$. Let $X(t)=\sum_{i=1}^{t}\left(\varepsilon_{i}-\beta\right)$ for some $\beta \in(0,1)$. Then $X(t)$ is a martingale with respect to the sequence $\left(\mathscr{F}_{n}\right)$ for $\beta=\frac{1}{2}$. For $\beta \neq \frac{1}{2}, X(t)$ becomes a martingale if the original probability $P\left(\varepsilon_{i}=0\right)=P\left(\varepsilon_{i}=1\right)=\frac{1}{2}$ is replaced by $P^{*}\left(\varepsilon_{i}=1\right)=\beta=1-P^{*}\left(\varepsilon_{i}=0\right)$, which corresponds to an asymmetric coin. Moreover, P^{*} is uniquely determined. Thus each martingale measure P^{*} satisfies

$$
P^{*}\left(\left\{\omega ; \lim _{n \rightarrow \infty} \frac{1}{n}\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)=\beta\right\}\right)=1
$$

by the strong law of large numbers, while

$$
P\left(\left\{\omega ; \lim _{n \rightarrow \infty} \frac{1}{n}\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)=\frac{1}{2}\right\}\right)=1
$$

Thus P and P^{*} are singular for $\beta \neq \frac{1}{2}$.
When $X(t)$ is indexed by an infinite set of t 's, it is impossible to obtain a martingale measure P^{*} equivalent to P.
2.2. Example. As previously, we toss a coin obtaining outcomes $\omega=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$. Let us put

$$
\begin{aligned}
& \left.\Omega^{0}=\left\{\omega ; \lim _{n \rightarrow \infty} \frac{1}{n}\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)=\frac{1}{2}\right\} \quad \text { (then } P\left(\Omega^{0}\right)=1\right), \\
& \mathscr{F}^{0}=\left\{A \cap \Omega^{0} ; A \in \mathscr{F}=\sigma\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)\right\}, \quad \therefore X^{0}(t)=\left.X(t)\right|_{\Omega^{0}}
\end{aligned}
$$

Since $P\left(\Omega^{0}\right)=1$, the finite-dimensional distributions of the processes $X^{0}(t)$ and $X(t)$ are identical.

Suppose that there exists a martingale measure P_{0}^{*} on $\left(\Omega^{0}, \mathscr{F}^{0}\right)$ for the process $X^{0}(t)$. Then $P_{0}^{*}\left(\varepsilon_{i}=1\right)=\beta=1-P_{0}^{*}\left(\varepsilon_{i}=0\right)$ and, by the strong law of large numbers,

$$
P_{0}^{*}\left(\Omega^{0}\right)=P_{0}^{*}\left\{\omega ; \lim _{n \rightarrow \infty} \frac{1}{n}\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)=\frac{1}{2} \neq \beta\right\}=0,
$$

which is a contradiction.

It is worth noting that Ω^{0} is not a closed set in the Tikhonov topology in $\Omega=\{0,1\}^{N^{+}}$(namely, $\overline{\Omega^{0}}=\Omega$). We shall show that the closure of the set of trajectories of the process is a natural support of a martingale measure P^{*}.
3. Main results. Let $Y(t), t \in N^{+}$, be a stochastic process on a probability space (Ω, \mathscr{F}, P). By $Y(t)$ we also denote its canonical representation on the space $\left(\boldsymbol{R}^{\mathbf{N}^{+}}, \sigma(\mathscr{C}), P_{Y}\right)$. Thus
$1^{\circ} Y(t)(\omega)=\varepsilon_{t}$ for $\omega=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right) \in R^{N^{+}}$;
$2^{\mathbf{o}} \mathscr{C}=\bigcup_{n \in \mathbf{N}^{+}} \mathscr{C}_{n}$;
$3^{\circ} \mathscr{C}_{n}=\left\{\mathscr{C}_{n}\left(A^{(n)}\right) ;\left(A^{(n)}\right) \in B_{R^{n}}\right\} ;$
$4^{0} \mathscr{C}_{n}\left(A^{(n)}\right)=\left\{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right) \in \mathbb{R}^{N^{+}} ;\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in A^{(n)}\right\}, A^{(n)} \in B_{R^{n}}$ (i.e., σ-fields of Borel sets in \boldsymbol{R}^{n});
$5^{\circ} P_{Y}\left(\mathscr{C}_{n}\left(A^{(n)}\right)\right)=P_{n}\left(A^{(n)}\right)$ for a finite-dimensional distribution

$$
P_{n}\left(A^{(n)}\right)=P\left((Y(1), \ldots, Y(n)) \in A^{(n)}\right)
$$

for $n \in N^{+}$. Obviously, the image $Y[\Omega]$ can be treated as a subspace of $\boldsymbol{R}^{\boldsymbol{N}^{+}}$ (proper, in general).

We need some modification of the classical Kolmogorov theorem. To explain new elements precisely, we decided to formulate two self-interesting lemmas. The following exercise will be used. For any set $T \subset X$ and any family $\mathscr{R} \subset 2^{X}$, we have

$$
\sigma(\mathscr{R} \cap T)=\sigma(\mathscr{R}) \cap T .
$$

Obviously, $\mathscr{R} \cap T$ means $\{R \cap T ; R \in \mathscr{R}\}$.
3.1. Lemma. If, in the introduced notation $2^{\circ}-4^{\circ}, T$ is any set closed in $R^{\mathbf{N}^{+}}$ in the Tikhonov topology, P_{n} is a probability distribution on $\mathscr{C}_{n} \cap T, n \in N^{+}$, satisfying
(c)

$$
P_{n+1}\left(\mathscr{C}_{n+1}\left(A_{n} \times R\right) \cap T\right)=P_{n}\left(\mathscr{C}_{n}\left(A_{n}\right) \cap T\right)
$$

then there exists a uniquely defined probability measure P on $\sigma(\mathscr{C} \cap T)$ $=T \cap \sigma(\mathscr{C})$ such that

$$
P_{n}=\left.P\right|_{\mathscr{C}_{n \cap T} T}
$$

Proof. Let $\mathscr{T}_{n}=T \cap \mathscr{C}_{n}, \mathscr{T}=\bigcup_{n}\left(T \cap \mathscr{C}_{n}\right)=T \cap \mathscr{C}$. For $B \in \mathscr{T}$, taking any representation B in the form $B=\stackrel{n}{T} \cap \mathscr{C}_{n}\left(A_{n}\right)$, we can uniquely define the function

$$
Q(B)=P_{n}\left(T \cap \mathscr{C}_{n}\left(A_{n}\right)\right)
$$

which is finitely-additive and normed on \mathscr{T}. It remains only to prove 'continuity'. Let $B_{1} \supset B_{2} \supset \ldots, Q\left(B_{i}\right) \geqslant \varepsilon>0$. To use the classical Kolmogorov construction (see [4] and [13]), one has to show that $\bigcap B_{i} \neq \varnothing$. We consider

$$
\tilde{p}_{n}\left(C_{n}\right)=P_{n}\left(T \cap C_{n}\right) \quad \text { for } C_{n} \in \mathscr{C}_{n},
$$

obtaining a consistent system of distributions on \mathscr{C}_{n} 's.

From the Kolmogorov lemma we infer that if $C_{1} \supset C_{2} \supset C_{3} \supset \ldots$ and $\tilde{p}_{n}\left(C_{n}\right) \geqslant \varepsilon>0$, then there exists $\omega \in \bigcap_{i} C_{i}$.

We put $C_{n}=\mathscr{C}_{n}\left(A_{n} \cap T_{n}\right)$ for projections

$$
T_{n}=\left\{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right) ;\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}, \eta_{n+1}, \eta_{n+2}, \ldots\right) \in T\right.
$$

$$
\text { for some } \left.\eta_{n+1}, \eta_{n+2}, \ldots\right\} \text {, }
$$

assuming that $B_{n}=\mathscr{C}_{n}\left(A_{n}\right)$.
Let ω be as in the Kolmogorov lemma. Since T is closed, we have $\omega \in T$ and

$$
\omega \in T \cap \mathscr{C}_{n}\left(A_{n}\right)=\bigcap_{n} B_{n}
$$

The lemma is proved.
3.2. Lemma. If, in the introduced notation, $\mathscr{F}=\sigma(Y(1), Y(2), \ldots)$ and $Y[\Omega]$ is closed in $\mathbb{R}^{N^{+}}$in the Tikhonov topology, and if $\left.\left.P_{Y}^{*}\right|_{\mathscr{\varepsilon}_{n}} \sim P_{Y}\right|_{\varepsilon_{n}}$ for some probability measure $P_{\boldsymbol{Y}}^{*}$ on $\sigma(\mathscr{C})$, then there exists a uniquely defined probability measure P^{*} on \mathscr{F} satisfying

$$
\begin{equation*}
P_{Y}^{*}(A)=P^{*}\left(Y^{-1}[A]\right), \quad A \in \sigma(\mathscr{C}) . \tag{1}
\end{equation*}
$$

Proof. We put $T=Y[\Omega]$ and define $P_{n}\left(C_{n} \cap T\right)=P_{Y}^{*}\left(C_{n}\right)$ for $C_{n} \in \mathscr{C}_{n}$. Distributions P_{n} are well defined: if $C_{n} \cap T=C_{n}^{\prime} \cap T$, then

$$
\left(C_{n} \Delta C_{n}^{\prime}\right) \cap T=\varnothing
$$

it follows that $P_{Y}\left(C_{n} \Delta C_{n}^{\prime}\right)=0$, so $P_{n}^{*}\left(C_{n} \Delta C_{n}^{\prime}\right)=0$.
The condition of consistency (c) in Lemma 3.1 is obvious from the definition of P_{n} 's. The probability measure P on $T \cap \sigma(\mathscr{C})$ exists by Lemma 3.1, and $P_{n}=\left.P\right|_{\mathscr{C}_{n} \cap T}$.

The measure P^{*} that is being looked for can be defined by the formula

$$
P^{*}\left(Y^{-1}(A)\right)=P(A \cap Y[\Omega]) \quad \text { for } A \in \sigma(\mathscr{C})
$$

The measure P on $\sigma(\mathscr{C}) \cap T$ corresponds to a measure $P_{Y}^{* *}(A)=P(A \cap T)$ on $\sigma(\mathscr{C})$. But from $P_{n}=\left.P\right|_{\mathscr{C}_{n} \cap T}$ we get $P_{Y}^{* *}\left(C_{n}\right)=P_{Y}^{*}\left(C_{n}\right)$ for $C_{n} \in \mathscr{C}$. The uniqueness of the extension of a countable additive function completes the proof (cf. [5]).

Remark. Obviously, to prove Lemma 3.2, it is enough to show that $P_{Y}^{*}=0$ for any $A \in \sigma(\mathscr{C})$ disjoint from $Y[\Omega]$, or that $A \cup Y[\Omega] \neq \varnothing$ when $P_{Y}^{*}(A)=\varepsilon>0$. It seems natural to repeat Kolmogorov's arguments for decreasing cylinders $C_{1} \supset C_{2} \supset \ldots$ defined by projections of A,

$$
C_{n}=\left\{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right) ;\left(\varepsilon_{1}, \ldots, \varepsilon_{n}, \eta_{n+1}, \ldots\right) \in A \text { for some } \eta_{n+1}, \eta_{n+2}, \ldots\right\}
$$

An element $\omega \in \bigcap_{n} C_{n}$ satisfies $\omega \in Y[\Omega]$ but it may happen that $\omega \notin A$. Lemma 3.2 cannot be obtained in such a way.

For a sequence of bounded random variables $\left(X(t), t \in N^{+}\right)$on a probability space (Ω, \mathscr{F}, P), let
(2)

$$
\mathscr{F}=\sigma(X(0), X(1), \ldots), \quad X(0)=0
$$

$X[\Omega]=\{X(t)(\omega) ; \omega \in \Omega\}$ is a closed set in the Tikhonov topology in $\boldsymbol{R}^{\mathbf{N}^{+}}$.

Let us write $\mathscr{F}_{t}=\sigma(X(0), \ldots, X(t)), t \in N$.
3.3. Theorem. Under assumption (2) the following conditions are equivalent:
(i) $P(\not \subset \cap(\dot{X}(t+1)>X(t)))>0 \Leftrightarrow P(A \cap(X(t+1)<X(t)))>0$ for any $t \in N, A \in \mathscr{F}_{t}$ (the change of sign property);
(ii) there exists a measure P^{*} on \mathscr{F} for which $(X(t))$ is a martingale with respect to $\left(\mathscr{F}_{t}\right)$, and $\left.\left.P^{*}\right|_{\mathscr{F}_{t}} \sim P\right|_{\mathscr{F}_{t}}, t \in N$.

Proof. It is enough to prove that (i) implies (ii). Let us put $Y(t)=X(t)-X(t-1), t=1,2, \ldots$ To use Lemma 3.1, we discuss, at first, a canonical representation $\left(\boldsymbol{R}^{N}, \sigma(\mathscr{C}), P_{Y}\right)$ for the process $Y(t)$. There exists a measure P_{Y}^{*} on $\sigma(\mathscr{C})$ (cf. notation 3° and 2° at the beginning of Section 3) satisfying

$$
\begin{equation*}
E_{P_{Y}}^{\mathscr{C}_{t}^{t}} Y(t+1)=0 \tag{3}
\end{equation*}
$$

(for conditional expectation with respect to a σ-field \mathscr{C}_{t} and a probability P_{Y}^{*}),

$$
\begin{equation*}
\left.\left.P_{Y}^{*}\right|_{\mathscr{E}_{t}} \sim P_{Y}\right|_{\mathscr{E}_{t}}, \quad t \in N \tag{4}
\end{equation*}
$$

To show this, we define by induction a sequence of probabilities $P(t)$ on $\sigma(\mathscr{C})$ satisfying

$$
\begin{gather*}
\left.P(t+1)\right|_{\mathscr{C}_{t}}=\left.P(t)\right|_{\mathscr{C}_{t}} \tag{5}\\
E_{P(t)}^{\mathscr{P}_{t}} Y(t+1)=0, \quad t \in N \tag{6}
\end{gather*}
$$

Let $P(0)=P_{Y}$. Define $\varphi_{1}(\omega) \equiv 1$ if $P_{Y}(Y(1)>0)=0$; otherwise

$$
\varphi_{1}(\omega)= \begin{cases}x(\omega) & \text { for } Y(1)(\omega)>0 \\ 1 & \text { for } Y(1)(\omega)=0 \\ y(\omega) & \text { for } Y(1)(\omega)<0\end{cases}
$$

with x, y uniquely determined by

$$
\begin{aligned}
x(\omega) E_{P_{Y}}^{\varphi_{0}} Y(1)^{+}-y(\omega) E_{P_{Y}}^{\mathscr{O}_{0}} Y(1)^{-} & =0, \\
x(\omega) E_{P_{Y}}^{\mathscr{P}_{0}} 1_{(Y(1)>0)}+y(\omega) E_{P_{Y}}^{\mathscr{C}_{0}} 1_{(Y(1)<0)} & =E_{P_{Y}}^{\mathscr{C}_{0}} 1_{(Y(1) \neq 0)}
\end{aligned}
$$

with $\mathscr{C}_{0}=\left\{\varnothing,{R^{N^{+}}}\right.$, and $1_{(Y(1)>0)}(\omega)=0$ or 1 when $\omega \notin(Y(1)>0)$ or $\omega \in(Y(1)>0)$. Then

$$
\begin{gathered}
\left.P(0)\right|_{\mathscr{C}_{0}}=\left.P(1)\right|_{\mathscr{C}_{0}} \\
E_{P(1)}^{\mathscr{\varphi}_{0}} Y(1)=0 \quad \text { for } d P(1) / d P_{Y}=\varphi_{1}
\end{gathered}
$$

Assume that $P(0), \ldots, P(n)$ are defined so that (5) and (6) are satisfied for $t=0, \ldots, n-1$. Let $\varphi_{n+1}(\omega) \equiv 1$ if $P(n)(Y(n+1)>0)=0$; otherwise

$$
\varphi_{n+1}(\omega)= \begin{cases}x(\omega) & \text { for } Y(n+1)(\omega)>0 \\ 1 & \text { for } Y(n+1)(\omega)=0 \\ y(\omega) & \text { for } Y(n+1)(\omega)<0\end{cases}
$$

where $x(\omega)$ and $y(\omega)$ are uniquely determined almost everywhere on a set $(Y(n+1) \neq 0)$ by

$$
\begin{aligned}
x(\omega) E_{P(n)}^{\varphi_{n}} Y(n+1)^{+}-y(\omega) E_{P(n)}^{\varphi_{n}} Y(n+1)^{-} & =0 \\
x(\omega) E_{P(n)}^{\varphi_{n}^{n}} 1_{(Y(n+1)>0)}+y(\omega) E_{P(n)}^{\varphi_{n}} 1_{(Y(n+1)<0)} & =E_{P(n)}^{\varphi_{n}} 1_{(Y(n+1) \neq 0)} .
\end{aligned}
$$

Then we obtain (5) and (6) with $t=n$ for $P(n+1)$ defined by

$$
d P(n+1) / d P_{Y}=\varphi_{n+1}
$$

By the Kolmogorov extension theorem, the measure $P_{Y}^{*},\left.P_{Y}^{*}\right|_{\mathscr{C}(t)}$ $=\left.P(n)\right|_{\mathscr{C}(t)}$, is uniquely defined on $\sigma(\mathscr{C})$, and conditions (3) and (4) are satisfied.

Let us return to the space Ω. For bounded random variables $Y(t)$, assumption (2) implies that $Y[\Omega]$ is closed in \boldsymbol{R}^{N}. Then formula (1) defines a probability P^{*} on $\mathscr{F}=\sigma(Y(1), Y(2), \ldots)$ by virtue of Lemma 3.2. Equivalence (4) implies $\left.\left.P^{*}\right|_{\mathscr{F}_{t}} \sim P\right|_{\mathscr{F}_{t}}$ for $\mathscr{F}_{t}=\sigma(Y(0), \ldots, Y(t))$ as $\mathscr{F}_{t}=Y^{-1}\left(\mathscr{C}_{t}\right)$. The equality $E_{P^{\text {F }}}^{\text {娄 }} Y(t+1)=0$ is a consequence of (3) by elementary changes of variables in integrals.

Obviously, $(X(t))=(X(0)+Y(1)+\ldots+Y(t))$ is a martingale with respect to P^{*}, and σ-fields $\sigma(X(0), \ldots, X(t))=\sigma(Y(1), \ldots, Y(t))$.

REFERENCES

[1] F. Black and M. Scholes, The pricing of options and corporate liabilities; J. Political Economy 3 (1973), pp. 637-659.
[2] R. C. Dalang, A. Morton and W. Willinger, Equivalent martingale measures and no-arbitrage in stochastic securities market models, Stochastics and Stochastic Reports 29 (1990), pp. 185-201.
[3] F. Delbean and W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann. 300 (1994), pp. 463-520.
[4] I. I. Gihman and A. V. Sk orohod, Stochastic Differential Equations, Springer, Berlin 1972.
[5] - Theory of Stochastic Processes, Vol. 1, Springer, New York-Berlin 1974-1979.
[6] J. M. Harris on and D. M. Kreps, Martingales and arbitrage in multiperiod security markets, J. Econom. Theory 20 (1979), pp. 381-408.
[7] J. M. Harris on and S. R. Pliska, A stochastic calculus modes of continuous trading: complete markets, Stochastic Process. Appl. 15 (1983), pp. 313-316.
[8] - Martingales and stochastic arbitrage in multiperiod security markets, J. Econom. Theory 20 (1979), pp. 381-408.
[9] E. Jouini, Market imperfections, equilibrium and arbitrage, in: B. Biais et al., Financial Mathematics, Lecture Notes in Math. 1656 (1997), pp. 247-307.
[10] I. Karatzas, Lectures on the Mathematics and Finance, Centre de Recherches Mathématiques Université de Montréal, Amer. Math. Soc., CRM Monograph Series 8 (1997).
[11] - and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd edition, Springer, New York 1991.
[12] M. Musiela and M. Rutkowski, Martingale Methods in Financial Modelling, Springer, 1997.
[13] M. M. Rao, Stochastic Processes: General Theory, Kluwer Acad. Publ., Math. Appl. 342 (1995).

Lódź Technical ${ }^{\text {T }}$ University, Institute of Mathematics
Żwirki 36, 90-924 Lódź, Polan̄̄

Department of Mathematics
Łódź University
Banacha 22, 90-238 Lódź, Poland
E-mail: adampasz@math.uni.lodz.pl

Received on 16.2.1998;
revised version on 25.5.1998
$-$

[^0]: * Ewa Czkwianianc, Łódź Technical University, Institute of Mathematics. Adam Paszkiewicz, Department of Mathematics, Lódź University. The author was supported by KBN grant 2PO3A 02315.

