PROBABILITY
AND ’
MATHEMATICAL STATISTICS

Vol 19, Fasc. 1 (1999), pp. 203-209

ON MARTINGALE MEASURES FOR STOCHASTIC PROCESSES
WITH DISCRETE TIME

BY
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Abstract. Let (X (¢); te N*) be a random sequence adopted to
a filtration (%) in (2, &, P) satisfying some natural assumption. If
none of the events (X (t+1) > X (%)), (X (¢+1) < X (£)) can be predic-
ted, i.e. none contains some A€ %, P(4) > 0, then (X (t), &) is a mar-
tingale for some probability P* on & It is a version of the
“fundamental theorem of option pricing”.

1. Introduction. Let X (f), te R, be a stochastic process. If X (f) = e™+ow®
with w(¢) being a Wiener process, then X () becomes a martingale with respect to
P* being a probability equivalent to the original one P. This theory, initiated by
Girsanov, has been very tempting and widely researched for the last 30 years (we
only mention monographs [4] and [11]-[13]). As one of the most famous
applications of the theory one should mention the Black—Scholes model
describing a replication strategy for European options (see [1], [8], [10]
and [12]).

In the so-called financial mathematics, many efforts were also devoted to the
formulation of the so-called “no free lunch” condition which, in more general
situations, guarantees the existence of a martingale measure P* equivalent to the
original probability P. The notion of free lunch is defined (in a non-effective way)
by the use of some space of strategies @ () being stochastic processes predictable
for some filtration (&,). The construction of the martingale measure P* is
obtained by some development of the Banach—Mazur theory of the separating of
convex sets (cf. [3], [7]-[10] and [12]). Free lunch conditions look simpler for
processes indexed by discrete finite times (cf. [2] and [6]).

In the paper we use one scalar stochastic process X (t) which corresponds
to the simplest case of one security. The strategy is described by our position
O (¢) in the security. We assume that all our outcomes and incomes are cumu-
lated in a riskless bond.
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We propose a simple condition (analogous to that of Dalang-Morton-Willin- -

ger with zero interest rate [2]) which assures the existence of a martingale measure.
- This condition, later referred to as the change of sign property, states that .

P(Xt)>X($)nA)>0<=P(X®)<X(s))nA)>0

for any A € #,, s < t. Our arguments are rather classical. The required martin-
gale measure P* is obtained by the Kolmogorov extension theorem (see [4]
and [13]). The main result is contained in Theorem 3.3.

2. Elementary examples. To explain the possibilities and restrictions appearing
in constructing a martingale measure, let us consider some elementary examples.

2.1. ExaMPLE, Suppose we are tossing a symmetric coin. Assume that
® = (&, &,, ...) is a sequence of outcomes, &; = 0 or 1 depending on the result
of the i-th toss. Let #, = {@, Q}, # = a(e,, ..., &) (ie., a o-field generated by
random variables ¢,, ..., &) and F = o(g,, &,, ...). Let X () = Z, , (&;—p) for
some f&(0, 1). Then X (¢) is a martingale with respect to the sequence (%,) for

=1 For B+#4%, X(t) becomes a martingale if the original probability
P(g; = 0) = P(g; = 1) = } is replaced by P*(¢; = 1) = § = 1 — P*(g; = 0), which
corresponds to an asymmetric coin. Moreover, P* is uniquely determined.
Thus each martingale measure P* satisfies

_ P*<{a); lim ;11-(81+ +e,,)=ﬁ}> =1

by the strong law of large numbers, while

L1 1
P({w; '}gg ;(81+ +en)=§}> =1.

Thus P and P* are singular for B # 3. -
When X (¢) is indexed by an infinite set of ¢’s, it is impossible to obtain
a martingale measure P* equivalent to P.

2.2. ExaMPLE. As previously, we toss a coin obtammg outcomes
= (&, &,,...). Let us put

1 0N -
Q° = {a); lim . (&, + ... +&)= 5} (then P(Q% =1),
FO=[ANnQ% AeF =0, &5, .. )} - X°() = X (O)lgo-

Since P(Q°) = 1, the finite-dimensional distributions of the processes X° () and

X (t) are identical.

Suppose that there exists a martingale measure P} on (Q°, #°) for the
process X°(t). Then P (s, = 1) = p = 1— P (e, = 0) and, by the strong law of
large numbers,

1 j -
P3(90)=P3{(0; lim ,—1-(81+ +sn)=§;\/3}“=‘0

which is a contradiction.
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It is worth noting that Q° is not a closed set in the Tikhonov topology in
Q= {0, 1}¥" (namely, Q° = Q). We shall show that the closure of the set of
trajectories of the process is a natural support of a martingale measure P*.

3. Main results. Let Y (t), te N*, be a stochastic process on a probability
space (2, #, P). By Y (t) we also denote its canonical representation on the
space (RV", o(%), Py). Thus

1° Y(t)(w) =, for o = (g;, &, ...)€RN";

26. ¢ = UneN * (gﬂ;

3 4, = {4,(A"); (A")e Bp);

4@ (A"')) = {(e;» &5 .-V ERN"; (&4, ..., £)EA™}, A‘"’EBRn (ie., o-fields
of Borel sets in R"); -

5° Py(%,(A™)) = P,(A™) for a finite-dimensional distribution

P,(A™) =P((Y(1), ..., Y(n)eA™)

for ne N*. Obviously, the image Y [Q] can be treated as a subspace of RV"
(proper, in general)

We need some modification of the classical Kolmogorov theorem. To
explain new elements precisely, we decided to formulate two self-interesting
lemmas. The following exercise will be used. For any set T = X and any family
& < 2%, we have

RN =06(RNT.

Obviously, # n T means {Rn T; ReR#}.

3.1. LEMMA. If, in the introduced notation 2°-4°, T is any set closed in RN"
in the Tikhonov topology, P, is a probability distribution on €,n T, neN™,

satisfying
(C) Pn+1((gn+1(AnXR)nT)=Pn((gn(An)nT)a

then there exists a uniquely defined probability measure P on ¢(€nT)
=T no (%) such that

P = Plfe,.nT-

Proof. Let 7,=Tn%, I ={)(Tn¥,)=Tn%. For BeJ, taking

any representation B in the form B=Tn%¥ +(A,), we can uniquely define the
function :

Q(B)=P, (T N%,(4,)

which is finitely-additive and normed on & . It remains only to prove ‘con-
tinuity’. Let B, o B, > ..., Q(B;) = ¢ > 0. To use the classical Kolmogorov
construction (see [4] and [13]), one has to show that ) B; # &. We consider

p,(C)=P,(TnC,) for C,e%,,

obtaining a consistent system of distributions on %,’s.
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From the Kolmogorov lemma we infer that if C;, > C, > C; > ... and
Pa(C,) = &> 0, then there exists we (), C;.
We put C, =%,(4,n T,) for projections

7:: = {(515 €35 000y 8"); (Ela €25 0 &ps Mt 15 Mnt2s )E T
for some 7,41, fus2s .-}
assuming that B, = %,(4,).
Let w be as in the Kolmogorov lemma. Since Tis closed, we have we T

and _.
S weTNn%,(4,) =) B,

The lemma is proved.

3.2. LemMA. If, in the introduced notation, # =o(Y (1), Y(2),...) and
Y[Q] is closed in R¥" in the Tikhonov topology, and if P}le, ~ Pyle,
for some probability measure P§ on ¢(%), then there exists a uniquely defined
probability measure P* on F satisfying

1) Pj(4)=P*(Y"'[4]), Aeo(9¥).

Proof. We put T = Y [2] and define P,(C,n T) = P§(C,) for C,e%,.
Distributions P, are well defined: if C,n T = C,n T, then

(C,AC)N T = @;

it follows that P, (C,AC;) =0, so P¥(C,AC;) =
The condition of consistency (c) in Lemma 3. 1 is obvious from the defini-
tion of P,’s. The probability measure P on T N o (%) exists by Lemma 3.1, and
P P |€,.nT
The measure P* that is being looked for can be defined by the
formula
P*(Y '(4)=PANnY[Q]) for Aec(%).

The measure P on ¢ (%) n T corresponds to a measure P§*(4) = P(An T)

-.on -6 (¥). But from P,= Pl, .r we get P§*(C,) = P¥(C,) for C,e¥%. The

uniqueness of the extension of a countable additive function completes the
proof (cf. [5]).

Remark. Obviously, to prove Lemma 3.2, it is enough to show that
P§ =0 for any Aeo (%) disjoint from Y[Q], or that AU Y[Q] # & when
P$(A) =& > 0. It seems natural to repeat Kolmogorov’s arguments for de-
creasing cylinders C, > C, o ... defined by projections of A4,

C,={(ey, 82, -.); (15 s Egs Ms1, ... ) €A fOr some #,41, sz, ...}

An element we() C, satisfies we Y[Q] but it may happen that w¢A.

Lemma 3.2 cannot be obtained in such a way.
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For a sequence of bounded random variables (X (¢), te N*) on a proba-
bility space (2, &, P), let

F=06(X0),X(),..), X(©0)=0,

X[Q] ={X()(w); weR} is a closed set in the Tikhonov topology
in RV”.
Let us write %, = ¢(X(0), ..., X (1)), te V.
3.3. THEOREM. Under assumption (2) the following conditions are equivalent:
@) PAn(X(@+1)>X@®)>0=P(An(XE+1)<X®)>0 for any
teN, Ae %, (the change of sign property);

(ii) there exists a measure P* on & for which (X (?)) is a martingale with
respect to (%), and P*|g ~ P|gz,, teN.

Proof It is enough to prove that (i) implies (ii). Let us put
YO)=X({)—-X({—1),t=1,2,... Touse Lemma 3.1, we discuss, at first, a ca-
nonical representation (R, o (%), Py) for the process Y (t). There exists a mea-
sure P¥ on o (%) (cf. notation 3° and 2° at the beginning of Section 3) satisfying

@

(3) EZY(t+1)=0
(for conditional expectation with respect to a o-field %, and a probability P¥),
(4) * P#l%’:‘N Pl'l%'n IEN-

To show this, we define by induction a sequence of probabilities P (t) on ¢ (%)

satisfying

() P(t+1)lg, = P@le.,

6 ES, Y(t+1)=0, teN.

Let P(0) = Py. Define ¢, (w) =1 if Py(Y(1) > 0) = 0; otherwise
x(w) for Y(1)(w) >0,

p@)=<1 for Y(1)(w) = 0,

Y for Y(1)(@) <0

with x, y uniquely determined by

x(@)Efg Y (1) —y (@) EF; Y(1)™ =0, -
x(w) ng- lyy>0+y(®) E?:g. lyay<oy = Eﬁ;‘, 1(?(1} 0)

with %0 = {Q, RN+}, and 1(]!(1)>0)(CO) =0 or 1 when CD¢(Y(1) > 0) or
we(Y(1) > 0). Then

P(0)lg, = P(Vlg,
Efe, Y(1)=0 for dP(1)/dPy = ¢,.
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Assume that P(0), ..., P(n) are defined so that (5) and (6) are satisfied for
t=0,...,n—1. Let @,.;(0)=1 if P(n)(Y(n+1)>0)=0; otherwise

x(w) for Y(n+1)(w)>0,
Pn+1(@) =41 for Y(n+1)(w) = 0,
y(@ for Y(n+1)(w) <0,

where x(w) and y(w) are uniquely determined almost everywhere on a set
(Y(n+1) #0)by -

X()Effy Y (04 1)~y (@) Eff Y(n+1)" =0,
x(@) E¥gy Liyin+ 1> 0y + ¥ (@) EEgy L+ 1y<0) = Ebfny Lrm+ 1) 2 0)-
Then we obtain (5) and (6) with t = n for P(n+1) defined by
dP(n+1)/dPy = @p1.

By the Kolmogorov extension theorem, the measure P¥, P¥leq
= P (n)lg, is uniquely defined on ¢ (%), and conditions (3) and (4) are satisfied.

Let us return to the space Q. For bounded random variables Y (), assump-
tion (2) implies that Y [€] is closed in R. Then formula (1) defines a probabili-
ty P* on # = ¢(Y(1), Y(2), ...) by virtue of Lemma 3.2. Equivalence (4) implies
P¥|g, ~Plg, for #=0(Y(0),..., Y(t)) as % =Y 1(%). The equality
EZ%Y(t+1)=0 is a consequence of (3) by elementary changes of variables
in integrals. :

Obviously, (X (1)) = (X (0)+ Y(1)+...+ Y (2)) is a martingale with respect
to P*, and o-fields ¢(X(0), ..., X (¥)) = ¢(Y(1), ..., Y(2)).
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