PROBABILITY

AND MATHEMATICAL STATISTICS Vol. 19, Fasc. 1 (1999), pp. 203–209

ON MARTINGALE MEASURES FOR STOCHASTIC PROCESSES WITH DISCRETE TIME

BY

EWA CZKWIANIANC AND ADAM PASZKIEWICZ* (Łódź)

Abstract. Let $(X(t); t \in N^+)$ be a random sequence adopted to a filtration (\mathscr{F}_i) in (Ω, \mathscr{F}, P) satisfying some natural assumption. If none of the events (X(t+1) > X(t)), (X(t+1) < X(t)) can be predicted, i.e. none contains some $A \in \mathscr{F}_i, P(A) > 0$, then $(X(t), \mathscr{F}_i)$ is a martingale for some probability P^* on \mathscr{F} . It is a version of the "fundamental theorem of option pricing".

1. Introduction. Let X(t), $t \in \mathbf{R}$, be a stochastic process. If $X(t) = e^{mt + \sigma w(t)}$ with w(t) being a Wiener process, then X(t) becomes a martingale with respect to P^* being a probability equivalent to the original one P. This theory, initiated by Girsanov, has been very tempting and widely researched for the last 30 years (we only mention monographs [4] and [11]–[13]). As one of the most famous applications of the theory one should mention the Black-Scholes model describing a replication strategy for European options (see [1], [8], [10] and [12]).

In the so-called financial mathematics, many efforts were also devoted to the formulation of the so-called "no free lunch" condition which, in more general situations, guarantees the existence of a martingale measure P^* equivalent to the original probability P. The notion of free lunch is defined (in a non-effective way) by the use of some space of strategies $\Theta(t)$ being stochastic processes predictable for some filtration (\mathscr{F}_t). The construction of the martingale measure P^* is obtained by some development of the Banach-Mazur theory of the separating of convex sets (cf. [3], [7]–[10] and [12]). Free lunch conditions look simpler for processes indexed by discrete finite times (cf. [2] and [6]).

In the paper we use one scalar stochastic process X(t) which corresponds to the simplest case of one security. The strategy is described by our position $\Theta(t)$ in the security. We assume that all our outcomes and incomes are cumulated in a riskless bond.

^{*} Ewa Czkwianianc, Łódź Technical University, Institute of Mathematics. Adam Paszkiewicz, Department of Mathematics, Łódź University. The author was supported by KBN grant 2PO3A 023 15.

We propose a simple condition (analogous to that of Dalang-Morton-Willinger with zero interest rate [2]) which assures the existence of a martingale measure. This condition, later referred to as the *change of sign property*, states that

$$P((X(t) > X(s)) \cap A) > 0 \Leftrightarrow P((X(t) < X(s)) \cap A) > 0$$

for any $A \in \mathcal{F}_s$, s < t. Our arguments are rather classical. The required martingale measure P^* is obtained by the Kolmogorov extension theorem (see [4] and [13]). The main result is contained in Theorem 3.3.

2. Elementary examples. To explain the possibilities and restrictions appearing in constructing a martingale measure, let us consider some elementary examples.

2.1. EXAMPLE. Suppose we are tossing a symmetric coin. Assume that $\omega = (\varepsilon_1, \varepsilon_2, ...)$ is a sequence of outcomes, $\varepsilon_i = 0$ or 1 depending on the result of the *i*-th toss. Let $\mathscr{F}_0 = \{\emptyset, \Omega\}$, $\mathscr{F}_i = \sigma(\varepsilon_1, ..., \varepsilon_i)$ (i.e., a σ -field generated by random variables $\varepsilon_1, ..., \varepsilon_i$) and $\mathscr{F} = \sigma(\varepsilon_1, \varepsilon_2, ...)$. Let $X(t) = \sum_{i=1}^t (\varepsilon_i - \beta)$ for some $\beta \in (0, 1)$. Then X(t) is a martingale with respect to the sequence (\mathscr{F}_n) for $\beta = \frac{1}{2}$. For $\beta \neq \frac{1}{2}$, X(t) becomes a martingale if the original probability $P(\varepsilon_i = 0) = P(\varepsilon_i = 1) = \frac{1}{2}$ is replaced by $P^*(\varepsilon_i = 1) = \beta = 1 - P^*(\varepsilon_i = 0)$, which corresponds to an asymmetric coin. Moreover, P^* is uniquely determined. Thus each martingale measure P^* satisfies

$$P^*\left(\left\{\omega; \lim_{n\to\infty}\frac{1}{n}\left(\varepsilon_1+\ldots+\varepsilon_n\right)=\beta\right\}\right)=1$$

by the strong law of large numbers, while

$$P\left(\left\{\omega; \lim_{n\to\infty}\frac{1}{n}\left(\varepsilon_1+\ldots+\varepsilon_n\right)=\frac{1}{2}\right\}\right)=1.$$

Thus P and P* are singular for $\beta \neq \frac{1}{2}$.

When X(t) is indexed by an infinite set of t's, it is impossible to obtain a martingale measure P^* equivalent to P.

2.2. EXAMPLE. As previously, we toss a coin obtaining outcomes $\omega = (\varepsilon_1, \varepsilon_2, \ldots)$. Let us put

$$\Omega^{0} = \left\{ \omega; \lim_{n \to \infty} \frac{1}{n} (\varepsilon_{1} + \dots + \varepsilon_{n}) = \frac{1}{2} \right\} \quad (\text{then } P(\Omega^{0}) = 1),$$

$$\mathscr{F}^{0} = \left\{ A \cap \Omega^{0}; A \in \mathscr{F} = \sigma(\varepsilon_{1}, \varepsilon_{2}, \dots) \right\}, \quad X^{0}(t) = X(t)|_{\Omega^{0}}.$$

Since $P(\Omega^0) = 1$, the finite-dimensional distributions of the processes $X^0(t)$ and X(t) are identical.

Suppose that there exists a martingale measure P_0^* on $(\Omega^0, \mathscr{F}^0)$ for the process $X^0(t)$. Then $P_0^*(\varepsilon_i = 1) = \beta = 1 - P_0^*(\varepsilon_i = 0)$ and, by the strong law of large numbers,

$$P_0^*(\Omega^0) = P_0^*\left\{\omega; \lim_{n\to\infty} \frac{1}{n} (\varepsilon_1 + \ldots + \varepsilon_n) = \frac{1}{2} \neq \beta\right\} = 0,$$

which is a contradiction.

It is worth noting that Ω^0 is not a closed set in the Tikhonov topology in $\Omega = \{0, 1\}^{N^+}$ (namely, $\overline{\Omega^0} = \Omega$). We shall show that the closure of the set of trajectories of the process is a natural support of a martingale measure P^* .

3. Main results. Let Y(t), $t \in N^+$, be a stochastic process on a probability space (Ω, \mathcal{F}, P) . By Y(t) we also denote its canonical representation on the space $(\mathbb{R}^{N^+}, \sigma(\mathscr{C}), P_Y)$. Thus

1° $Y(t)(\omega) = \varepsilon_t$ for $\omega = (\varepsilon_1, \varepsilon_2, \ldots) \in \mathbb{R}^{N^+}$;

 $2^{\circ} \mathscr{C} = \bigcup_{n \in \mathbb{N}^+} \mathscr{C}_n;$

3° $\mathscr{C}_n = \{\mathscr{C}_n(A^{(n)}); (A^{(n)}) \in B_{\mathbf{R}^N}\};$

4° $\mathscr{C}_n(A^{(n)}) = \{(\varepsilon_1, \varepsilon_2, \ldots) \in \mathbb{R}^{N^+}; (\varepsilon_1, \ldots, \varepsilon_n) \in A^{(n)}\}, A^{(n)} \in B_{\mathbb{R}^n} \text{ (i.e., } \sigma\text{-fields of Borel sets in } \mathbb{R}^n\};$

5° $P_{\chi}(\mathscr{C}_n(A^{(n)})) = P_n(A^{(n)})$ for a finite-dimensional distribution

 $P_n(A^{(n)}) = P((Y(1), ..., Y(n)) \in A^{(n)})$

for $n \in N^+$. Obviously, the image $Y[\Omega]$ can be treated as a subspace of \mathbb{R}^{N^+} (proper, in general).

We need some modification of the classical Kolmogorov theorem. To explain new elements precisely, we decided to formulate two self-interesting lemmas. The following exercise will be used. For any set $T \subset X$ and any family $\Re \subset 2^{X}$, we have

$$\sigma(\mathscr{R} \cap T) = \sigma(\mathscr{R}) \cap T.$$

Obviously, $\mathscr{R} \cap T$ means $\{R \cap T; R \in \mathscr{R}\}$.

3.1. LEMMA. If, in the introduced notation 2°-4°, T is any set closed in \mathbb{R}^{N^+} in the Tikhonov topology, P_n is a probability distribution on $\mathcal{C}_n \cap T$, $n \in N^+$, satisfying

(c)
$$P_{n+1}(\mathscr{C}_{n+1}(A_n \times R) \cap T) = P_n(\mathscr{C}_n(A_n) \cap T)$$

then there exists a uniquely defined probability measure P on $\sigma(\mathscr{C} \cap T)$ = $T \cap \sigma(\mathscr{C})$ such that

$$P_n = P|_{\mathscr{C}_n \cap T}.$$

Proof. Let $\mathscr{T}_n = T \cap \mathscr{C}_n$, $\mathscr{T} = \bigcup_n (T \cap \mathscr{C}_n) = T \cap \mathscr{C}$. For $B \in \mathscr{T}$, taking any representation B in the form $B = T \cap \mathscr{C}_n(A_n)$, we can uniquely define the function

$$Q(B) = P_n(T \cap \mathscr{C}_n(A_n))$$

which is finitely-additive and normed on \mathscr{T} . It remains only to prove 'continuity'. Let $B_1 \supset B_2 \supset \ldots, Q(B_i) \ge \varepsilon > 0$. To use the classical Kolmogorov construction (see [4] and [13]), one has to show that $\bigcap B_i \ne \emptyset$. We consider

$$\tilde{p}_n(C_n) = P_n(T \cap C_n) \quad \text{for } C_n \in \mathscr{C}_n,$$

obtaining a consistent system of distributions on \mathscr{C}_n 's.

205

From the Kolmogorov lemma we infer that if $C_1 \supset C_2 \supset C_3 \supset \ldots$ and $\tilde{p}_n(C_n) \ge \varepsilon > 0$, then there exists $\omega \in \bigcap_i C_i$.

We put $C_n = \mathscr{C}_n(A_n \cap T_n)$ for projections

$$l_n = \{(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n); (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n, \eta_{n+1}, \eta_{n+2}, \dots) \in T\}$$

for some $\eta_{n+1}, \eta_{n+2}, ...\},\$

assuming that $B_n = \mathscr{C}_n(A_n)$.

Let ω be as in the Kolmogorov lemma. Since T is closed, we have $\omega \in T$ and

$$\omega \in T \cap \mathscr{C}_n(A_n) = \bigcap B_n.$$

The lemma is proved.

3.2. LEMMA. If, in the introduced notation, $\mathscr{F} = \sigma(Y(1), Y(2), ...)$ and $Y[\Omega]$ is closed in \mathbb{R}^{N^+} in the Tikhonov topology, and if $P_Y^*|_{\mathscr{C}_n} \sim P_Y|_{\mathscr{C}_n}$ for some probability measure P_Y^* on $\sigma(\mathscr{C})$, then there exists a uniquely defined probability measure P^* on \mathscr{F} satisfying

(1)
$$P_Y^*(A) = P^*(Y^{-1}[A]), \quad A \in \sigma(\mathscr{C}).$$

Proof. We put $T = Y[\Omega]$ and define $P_n(C_n \cap T) = P_Y^*(C_n)$ for $C_n \in \mathscr{C}_n$. Distributions P_n are well defined: if $C_n \cap T = C'_n \cap T$, then

 $(C_n \Delta C_n) \cap T = \emptyset;$

it follows that $P_Y(C_n \Delta C'_n) = 0$, so $P_n^*(C_n \Delta C'_n) = 0$.

The condition of consistency (c) in Lemma 3.1 is obvious from the definition of P_n 's. The probability measure P on $T \cap \sigma(\mathscr{C})$ exists by Lemma 3.1, and $P_n = P|_{\mathscr{C}_n \cap T}$.

The measure P^* that is being looked for can be defined by the formula

$$P^*(Y^{-1}(A)) = P(A \cap Y[\Omega]) \quad \text{for } A \in \sigma(\mathscr{C}).$$

The measure P on $\sigma(\mathscr{C}) \cap T$ corresponds to a measure $P_Y^{**}(A) = P(A \cap T)$ on $\sigma(\mathscr{C})$. But from $P_n = P|_{\mathscr{C}_n \cap T}$ we get $P_Y^{**}(C_n) = P_Y^*(C_n)$ for $C_n \in \mathscr{C}$. The uniqueness of the extension of a countable additive function completes the proof (cf. [5]).

Remark. Obviously, to prove Lemma 3.2, it is enough to show that $P_Y^* = 0$ for any $A \in \sigma(\mathscr{C})$ disjoint from $Y[\Omega]$, or that $A \cup Y[\Omega] \neq \emptyset$ when $P_Y^*(A) = \varepsilon > 0$. It seems natural to repeat Kolmogorov's arguments for decreasing cylinders $C_1 \supset C_2 \supset \ldots$ defined by projections of A,

$$C_n = \{(\varepsilon_1, \varepsilon_2, \ldots); (\varepsilon_1, \ldots, \varepsilon_n, \eta_{n+1}, \ldots) \in A \text{ for some } \eta_{n+1}, \eta_{n+2}, \ldots\}.$$

An element $\omega \in \bigcap_n C_n$ satisfies $\omega \in Y[\Omega]$ but it may happen that $\omega \notin A$. Lemma 3.2 cannot be obtained in such a way.

206

For a sequence of bounded random variables $(X(t), t \in N^+)$ on a probability space (Ω, \mathcal{F}, P) , let

$$\mathscr{F} = \sigma(X(0), X(1), \ldots), \quad X(0) = 0,$$

(2)

 $X[\Omega] = \{X(t)(\omega); \omega \in \Omega\}$ is a closed set in the Tikhonov topology in \mathbb{R}^{N^+} .

Let us write $\mathscr{F}_t = \sigma(X(0), ..., X(t)), t \in N$.

3.3. THEOREM. Under assumption (2) the following conditions are equivalent: (i) $P(A \cap (X(t+1) > X(t))) > 0 \Leftrightarrow P(A \cap (X(t+1) < X(t))) > 0$ for any $t \in \mathbb{N}$, $A \in \mathcal{F}_t$ (the change of sign property);

(ii) there exists a measure P^* on \mathcal{F} for which (X(t)) is a martingale with respect to (\mathcal{F}_t) , and $P^*|_{\mathcal{F}_t} \sim P|_{\mathcal{F}_t}$, $t \in N$.

Proof. It is enough to prove that (i) implies (ii). Let us put Y(t) = X(t) - X(t-1), t = 1, 2, ... To use Lemma 3.1, we discuss, at first, a canonical representation $(\mathbb{R}^N, \sigma(\mathscr{C}), P_Y)$ for the process Y(t). There exists a measure P_Y^* on $\sigma(\mathscr{C})$ (cf. notation 3° and 2° at the beginning of Section 3) satisfying

(3)
$$E_{P_{\pm}}^{\mathscr{C}} Y(t+1) = 0$$

(for conditional expectation with respect to a σ -field \mathscr{C}_t and a probability P_Y^*),

(4) $P_Y^*|_{\mathscr{C}_t} \sim P_Y|_{\mathscr{C}_t}, \quad t \in N.$

To show this, we define by induction a sequence of probabilities P(t) on $\sigma(\mathscr{C})$ satisfying

(5) $P(t+1)|_{\mathscr{C}_t} = P(t)|_{\mathscr{C}_t},$

(6)
$$E_{P(t)}^{\mathscr{C}_t} Y(t+1) = 0, \quad t \in \mathbb{N}.$$

Let $P(0) = P_Y$. Define $\varphi_1(\omega) \equiv 1$ if $P_Y(Y(1) > 0) = 0$; otherwise

$$\varphi_{1}(\omega) = \begin{cases} x(\omega) & \text{for } Y(1)(\omega) > 0, \\ 1 & \text{for } Y(1)(\omega) = 0, \\ y(\omega) & \text{for } Y(1)(\omega) < 0 \end{cases}$$

with x, y uniquely determined by

$$x(\omega) E_{P_Y}^{\mathscr{G}_0} Y(1)^+ - y(\omega) E_{P_Y}^{\mathscr{G}_0} Y(1)^- = 0, c(\omega) E_{P_Y}^{\mathscr{G}_0} 1_{(Y(1)>0)} + y(\omega) E_{P_Y}^{\mathscr{G}_0} 1_{(Y(1)<0)} = E_{P_Y}^{\mathscr{G}_0} 1_{(Y(1)\neq 0)}$$

with $\mathscr{C}_0 = \{\emptyset, \mathbb{R}^{N^+}\}$, and $1_{(Y(1)>0)}(\omega) = 0$ or 1 when $\omega \notin (Y(1)>0)$ or $\omega \in (Y(1)>0)$. Then

$$P(0)|_{\mathscr{C}_{0}} = P(1)|_{\mathscr{C}_{0}},$$

$$E_{P(1)}^{\mathscr{C}_{0}} Y(1) = 0 \quad \text{for } dP(1)/dP_{y} = \varphi_{1}.$$

Assume that $P(0), \ldots, P(n)$ are defined so that (5) and (6) are satisfied for $t = 0, \ldots, n-1$. Let $\varphi_{n+1}(\omega) \equiv 1$ if P(n)(Y(n+1) > 0) = 0; otherwise

$$\varphi_{n+1}(\omega) = \begin{cases} x(\omega) & \text{for } Y(n+1)(\omega) > 0, \\ 1 & \text{for } Y(n+1)(\omega) = 0, \\ y(\omega) & \text{for } Y(n+1)(\omega) < 0, \end{cases}$$

where $x(\omega)$ and $y(\omega)$ are uniquely determined almost everywhere on a set $(Y(n+1) \neq 0)$ by

$$x(\omega) E_{P(n)}^{\mathscr{C}_n} Y(n+1)^+ - y(\omega) E_{P(n)}^{\mathscr{C}_n} Y(n+1)^- = 0,$$

$$x(\omega) E_{P(n)}^{\mathscr{C}_n} 1_{(Y(n+1)>0)} + y(\omega) E_{P(n)}^{\mathscr{C}_n} 1_{(Y(n+1)<0)} = E_{P(n)}^{\mathscr{C}_n} 1_{(Y(n+1)\neq 0)}.$$

Then we obtain (5) and (6) with t = n for P(n+1) defined by

$$dP(n+1)/dP_{\mathbf{v}} = \varphi_{n+1}$$

By the Kolmogorov extension theorem, the measure P_Y^* , $P_Y^*|_{\mathscr{C}(t)} = P(n)|_{\mathscr{C}(t)}$, is uniquely defined on $\sigma(\mathscr{C})$, and conditions (3) and (4) are satisfied.

Let us return to the space Ω . For bounded random variables Y(t), assumption (2) implies that $Y[\Omega]$ is closed in \mathbb{R}^N . Then formula (1) defines a probability P^* on $\mathscr{F} = \sigma(Y(1), Y(2), \ldots)$ by virtue of Lemma 3.2. Equivalence (4) implies $P^*|_{\mathscr{F}_t} \sim P|_{\mathscr{F}_t}$ for $\mathscr{F}_t = \sigma(Y(0), \ldots, Y(t))$ as $\mathscr{F}_t = Y^{-1}(\mathscr{C}_t)$. The equality $E_{\mathbb{P}^4}^{\mathscr{F}_t} Y(t+1) = 0$ is a consequence of (3) by elementary changes of variables in integrals.

Obviously, (X(t)) = (X(0) + Y(1) + ... + Y(t)) is a martingale with respect to P^* , and σ -fields $\sigma(X(0), ..., X(t)) = \sigma(Y(1), ..., Y(t))$.

REFERENCES

- [1] F. Black and M. Scholes, *The pricing of options and corporate liabilities*; J. Political Economy 3 (1973), pp. 637–659.
- [2] R. C. Dalang, A. Morton and W. Willinger, Equivalent martingale measures and no-arbitrage in stochastic securities market models, Stochastics and Stochastic Reports 29 (1990), pp. 185-201.
- [3] F. Delbean and W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann. 300 (1994), pp. 463-520.
- [4] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer, Berlin 1972.
- [5] Theory of Stochastic Processes, Vol. 1, Springer, New York-Berlin 1974-1979.
- [6] J. M. Harrison and D. M. Kreps, Martingales and arbitrage in multiperiod security markets, J. Econom. Theory 20 (1979), pp. 381-408.
- [7] J. M. Harrison and S. R. Pliska, A stochastic calculus modes of continuous trading: complete markets, Stochastic Process. Appl. 15 (1983), pp. 313-316.
- [8] Martingales and stochastic arbitrage in multiperiod security markets, J. Econom. Theory 20 (1979), pp. 381–408.

Martingale measures

- [9] E. Jouini, Market imperfections, equilibrium and arbitrage, in: B. Biais et al., Financial Mathematics, Lecture Notes in Math. 1656 (1997), pp. 247-307.
- [10] I. Karatzas, Lectures on the Mathematics and Finance, Centre de Recherches Mathématiques Université de Montréal, Amer. Math. Soc., CRM Monograph Series 8 (1997).
- [11] and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd edition, Springer, New York 1991.
- [12] M. Musiela and M. Rutkowski, Martingale Methods in Financial Modelling, Springer, 1997.
- [13] M. M. Rao, Stochastic Processes: General Theory, Kluwer Acad. Publ., Math. Appl. 342 (1995).

Łódź Technical University, Institute of Mathematics Żwirki 36, 90-924 Łódź, Poland Department of Mathematics Łódź University Banacha 22, 90-238 Łódź, Poland *E-mail:* adampasz@math.uni.lodz.pl

Received on 16.2.1998; revised version on 25.5.1998

