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Abstract. Let (X( t ) ;  f E N') be a random sequence adopted to . 
a filtration (Ft) in (a, F, P) satisfying some natural assumption. If 
none of the events (X ( t  + 1) > X (t)),  (X (t + 1) < X (t)) can be predic- 
ted, i.e, none contains some A€%, P(A)  3 0, then (X(t), e) is a mar- 
tingale for some probability P* on $? It is a version of the 
"fundamental theorem of option pricing". 

1. Introduostion. Let X ( t ) ,  ~ E R ,  be a stochastic process. If X ( t )  = eM+""(') 
with w (t) being a Wiener process, then X(t) becomes a martingale with respect to 
P* being a probability equivalent to the original one P. This theory, initiated by 
Girsanov, has been very tempting and widely researched for the last 30 years (we 
only mention monographs [4] and [Ill-[13]). As one of the most famous 
applications of the theory one should mention the Black-Scholes model 
describing a replication strategy for European options (see [I], [8], [lo] 
and [12]). 

In the so-called financial mathematics, many efforts were also devoted to the 
formulation of the so-called "no free lunch" condition which, in more general 
situations, guarantees the existence of a martingale measure P* equivalent to the 
original probability P. The notion of free lunch is defined (in a non-effective way) 
by the use of some space of strategies 8 ( t )  being stochastic processes predfctable 
for some filtration (PJ. The construction of the martingale measure P* is 
obtained by some development of the Banach-Mazur theory of the separating of 
convex sets (cf. [3], [7]-[lo] and [12]). Free lunch conditions look simpler for 
processes indexed by discrete finite times (cf. [2] and [6]). 

In the paper we use one scalar stochastic process X ( t )  which corresponds 
to the simplest case of one security. The strategy is described by our position 
8 (t) in the security. We assume that all our outcomes and incomes are cumu- 
lated in a riskless bond. 
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We propose a simple condition (analogous to that of Dalang-Morton-Willin- 
ger with zero interest rate [2]) which assures the existence of a martingale measure. 
This condition, later referred to as the change of sign property, states that . 

for any A E ~ ~ ,  s < t. Our arguments are rather classical. The required martin- 
gale measure P* is obtained by the Kolmogorov extension theorem (see [4] 
and [13]). The main result is contained in Theorem 3.3. 

2. Elempmtmy examples, To explain the possibilities and restrictions appearing 
in cons&cting a martingale measure, let us consider some elementary examples. 

2.1. EXAMPLE. Suppose we are tossing a symmetric coin. Assume that 
o = ( E ~ ,  E ~ ,  . . .) is a sequence of outcomes, E~ = 0 or 1 depending on the result 
of the i-th toss. Let So = (0, Q), = . . ., 8;) (i.e., a v-field generated by 
random variables el, . . . , EJ and P = a (8, , E,, . . .). Let X (t) = ==, (% -/I) for 
some fl E (0, 1). Then X (t) is a martingale with respect to the sequence (Fn) for 
B = *+ For # $, X ( t )  becomes a martingale if the original probability 
P ( ~ ~ = 0 ) = P ( ~ ~ = l ) = ~ i ~ r e p l a c e d b y ~ * ( ~ ~ = I ) = f l = I - P * ( ~ ~ = O ) , w h i c h  
corresponds to an asymmetric coin. Moreover, P* is uniquely determined. 
Thus each martingale measure P* satisfies 

by the strong law of large numbers, while 

1 
P w; lim -(cl+ ... ({ .-mn 

Thus P and P* are singular for fl + 4. 
When X(t) is indexed by an infinite set of t's, it is impossible to obtain 

a martingale measure P* equivalent to P. 

2.2. EXAMPLE. AS previously, we toss a coin obtaining outcomes 
o = ( E ~ ,  E ~ ,  ...). Let us put 

- 

... + E , ) = -  (then P (a0) = I), 

F0 = {AnQO; A E ~  = G ( E ~ ,  c2, ...)I, - XO(t) =X(t)lna. 

Since P (Go) = 1, the finite-dimensional distributions of the processes X O  (t)  and 
X(t) are identical. 

Suppose that there exists a martingale measure P$ on (a0, F O )  for the 
process X0 (t). Then Pg ( E ~  = 1) = f l =  1 - Pg (ci = 0) and, by the strong law of 
large numbers, 

1 
P$(QO) = P: w; Iim -I&,+ ... + E ~ )  { n-m. 

which is a contradiction. 
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It is worth noting that - Po is not a closed set in the Tikhonov topology in 
0 = (0, l jN*  (namely, fiO = a). We shall show that the closure of the set of 
trajectories of the process is a natural support of a martingale measure P*. 

3. Main results. Let Y (t), t E N f ,  be a stochastic process on a probability 
space (9, 9, P). By Y(t) we also denote its canonical representation on the 
space (P', c (%), P ~ ) .  Thus 

lo Y(t)(w) = E, for w = ( E ~ ,  E ~ ,  ...) €RAT+; 
2" %' = Umlv+Vn; 
3O y,, -- {Q, {A'"'); (A?') E B E N )  ; 
4" %',,(A&)) = { ( E ,  , e,, , . .) E RN + ; ( E ~ ,  . . ., E,) E A(")), A(") E Bpn (i.e., a-fields 

of Bore1 sets in R"); 
5" P,(Wn (A'"))) = pn(A(")) for a finite-dimensional distribution 

Pn (A'")) = P ((Y (I), . . . , Y (n)) E A(")) 

for  EN'. Obviously, the image Y [a] can be treated as a subspace of ItN' 
(proper, in general). 

We need some modification of the classical Kolmogorov theorem. To 
explain new elements precisely, we decided to formulate two self-interesting 
lemmas. The following exercise will be used. For any set T c X and any family 
W c 2X, we have 

a ( 8  n T )  = a ( 8 )  n T. 

Obviously, W n T means {R n T; R E 92). 

3.1. LEMMA. I f ,  in the introduced notation 2"-4", T is any set closed in R ~ +  
in the Tikhonou topology, P, is a probability distribution on %', n T, n EN+, 
satisfying 

then there exists a uniquely defined probability measure P on a('% n T )  
= T n a (W) such that 

Pn = P l ~ , n ~ -  - 

Proof.  Let F, = TnV, ,  9 = U,(TnW,) = T n  W. For B E Y ,  taking 
any representation 3 in the form J3 = T n V,  (A,), we can uniquely define the 
function 

Q(B)  = P,(TnW,(A,)) 

which is finitely-additive and normed on F. It remains only to prove 'con- 
tinuity'. Let B ,  3 3, 3 . . ., Q (B,) > E > 0. To use the classical Kolmogorov 
construction (see [4] and [13]), one has to show that n Bi # O .  We consider 

@,, (C,) = P, (T n C,) for C, E gn, 

obtaining a consistent system of distributions on W,'s, 
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From the Kolmogorov lemma we infer that if C, 3 C, 3 C, 3 ... and 
fin (C,) 3 E > 0, then there exists w E n. Ci. 

We put C, = %fn (An n T,) for projections 

assuming that B, = Wn(A,). 
Let w be as in the Kolmogorov lemma. Since T is closed, we have o E T 

and - - - . - 

b w f T n V , ( A , )  = 0 B,. 
n 

The lemma is proved. 
3.2. LEMMA, IJ in t h  introduced notation, S = s (Y (I), Y (2), . . .) and 

Y[D] i s  closed in W' in the Tikhonov topology, and if P$IqR P,Iqn 
for some probability measure P$ on a(%), then there exists a uniquely defined 
probability measure P* on 9 satigying 

Proof.  We put T = Y [a] and define P, (C, n T )  = P$ (C,) for C, E %,. 
Distributions P, are well defined: if C, n T = Cb n T, then 

it follows that P, (C,, A  Cn) = 0, so P% (C,, ACn) = 0. 
The condition of consistency (c) in Lemma 3.1 is obvious from the defini- 

tion of Pn7s. The probability measure P  on T n a(%) exists by Lemma 3.1, and 
Pn = P I ~ , n ~ -  

The measure P* that is being looked for can be defined by the 
formula 

P * ( Y - ' ( A ) ) = P ( A n Y [ Q ] )  for Afa(%') .  

The measure P on cr (@ n T corresponds to a measure P!*-(A) = P(A n 7') 
on a (%). But from P, = PIqmnT we get P f  * (C,) = P$ (Cn) for en E %'. The 
uniqueness of the extension of a countable additive function completes the 
proof (cf. [5]). 

Remark.  Obviously, to prove Lemma 3.2, it is enough to show that 
Pf = 0 for any A E  a(%') disjoint from Y [a], or that A u Y [a] # &3 when 
P f  (A) = e > 0. It seems natural to repeat Kolmogorov's arguments for de- 
creasing cylinders C, 2 C, 3 . . . defined by projections of A, 

An element w E r),C,, satisfies w E Y [O] but it may happen that o $ A. 
Lemma 3.2 cannot be obtained in such a way. 
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For a sequence of bounded random variables ( X ( t ) ,  t~lbT+) on a proba- 
bility space (62, 9, P), let 

(2) X[0] = ( X ( t ) ( w ) ;  W E Q )  is a closed set in the Tikhonov topology 
in R ~ ' .  

Let us write = a(X(O), . . ., ~ ( t ) ) ,  t~ N. 

33. THEOREM. Under assumption (2) the following conditions are equivalent: 
(i) ~ ( ~ ~ ( k ( t + l ) > x ( t ) ) )  > ~ o ~ ( ~ n ( ~ ( t + l )  < x ( ~ ) ) ) > o  for any 

t E IV, A E Yr (the change of sign property); 
(ii) there exists a measure P* on 9 for which ( ~ ( t ) )  is a niartingnle with 

respect to (e), and P*!,, -- PI,,,  EN. 

Proof. It is enough to prove that (i) implies (ii). Let us put 
Y ( t )  = X (t) - X (t - 1), t = 1, 2, . . . To use Lemma 3.1, we discuss, at first, a ca- 
nonical representation (RN, D I%), Fy) for the process Y (t). There exists a mea- 
sure P$ on a (W) [cf. notation 3" and 2" at the beginning of Section 3) satisfying 

I 

(3) E;kY(t+l)  = 0 
(for conditional expectation with respect to a a-field V, and a probability P;) ,  

To show this, we define by induction a sequence of probabilities P(t)  on a(%') 
satisfying 

(5 )  P(t+ 1)1,, = P(t)l,*, 

(6) E : ~ ~ , Y ( ~ + I ) = o ,   EN. 

Let P(0) = P,. Define ql (a) = 1 if P , ( Y ( ~ )  > 0) = 0 ;  otherwise 

x(w)  for Y ( l ) ( o ) > O ,  

for Y (1) (o) = 0 ,  
- 

y (w) for Y (1) (a) < 0 

with x ,  y uniquely determined by 

x (w) EF; Y (1)' -Y (o) E:; Y (1)- = 0 ,  

x (4 E:; 1(,(,) P O )  + Y (4 E 2  ~ ( Y ( I ,  40) = E 2  l(Y(l)* 0 )  

with V, = (0, R ~ ' ) ,  and l(y(l),o, (a) = 0 or 1 when w $(Y  (1) > 0) or 
w E (Y(1) > 0). Then 

fYO)Ivo = f ' ( l ) l w o ,  

EFtl, Y(1) = 0 for dP(l)/dPy = q1 . 
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Assume that P (Q),  . . . , P In) are defined so that (5) and (6) are satisfied for 
t  = 0 ,  ..., n-1. Let cp,+l(w)= 1 if ~ ( n ) ( ~ ( n + 1 ) > 0 ) = O ;  otherwise 

x(w)  for Y ( n + l ) ( m ) > O ,  

for Y (n+ 1) (o) = 0 ,  

y(o) for Y ( n + l ) ( w ) < Q ,  

where x(w)  and y(w) are uniquely determined almost everywhere on a set 
(Y(n-t-1) # 0) by -- 

h 

x ( w > E $ & ) Y ( n + l ) + - y ( w ) E ~ ~ )  Y ( n + l ) -  = 0, 

Then we obtain (5) and (6) with t  = n for P(n+ 1) defined by 

By the Kolmogorov extension theorem, the measure PC, P$[,(,) 
= P(n)lv(,,, is uniquely defined on G(%), and conditions (3) and (4) are satisfied. 

Let us return to the space W. For bounded random variables Y  (t) ,  assump- 
tion (2) implies that Y [a] is closed in RN. Then formula (1) defines a probabili- 
ty P* on 9 = a (Y(l), Y  (2), . . .) by virtue of Lemma 3.2. Equivalence (4) implies 
P* I,, - Pi,, for = o (Y  (0), . . ., Y(t)) as & = Y-I (VJ. The equality 
E g  Y  (t  + 1) = 0  is a consequence of (3) by elementary changes of variables 
in integrals. 

Obviously, (X (t)) = (X (0) + Y(1) + . . . + Y (t)) is a martingale with respect 
to P*, and a-fields a (X (0), . . . , X (t)) = a (Y( l ) ,  . . ., Y(t.)). 
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