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Abstract. Stochastic processes are considered within the frame- 
work of Holder spaces H: as paths spaces. Using Ciesielski's isomor- 
phisms between H: and sequences spaces via the Faber Schauder tnan- 
gular functions allows us to express our basic assumptions in terms of 
second dillerences of the processes, gving more flexibility. We obtain 
general conditions for the existence of a version with paths in H: and 
the tightness of sequences of random elements in these spaces. Central 
limit theorems in Hf are established and convergence rates are given 
with respect to Prohorov and bounded Lipschitz metrics. As an ap- 
plication, we study the weak HGider convergence of the characteristic 
empirical process. 

0. Introduction. The space V[O, 11 of continuous functions is a classical 
framework for many limit theorems in the theory of stochastic processes. The 
%? [0, 11-weak convergence of a sequence of stochastic processes 5,  gives useful 
results about the convergence in distribution of continuous functionals of the 
paths. In many situations, the processes 5, are known to have almost surely 
paths with at least some Holder regularity and the same happens for the 
limiting process 5 (see, for instance, invariance principles for random polygonal 
lines, perturbed empirical processes, empirical characteristic functions). Look- 
ing for limit theorems with respect to some weak Holder convergence instead 
of the %'LO, 11 convergence is then a natural question. One important interest 
of this new functional framework is to provide more continuous functionals of 
the paths (see Hamadouche [8], [9] for a list of examples). Moreover, when 
a process 5 is known by its finite-dimensional distributions, the question of the 
existence of a version with almost all paths of some given Holder regularity has 
its own interest. 

The first result in this direction goes back to the Kolmogorov sufficient 
condition for the existence of a version of 5 with continuous paths, namely: 

where c, 6 > 0 and y > 1 are constants. In fact, the same condition gives a ver- 
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sion of { with a-Holder regularity for any 0 < u < 6 / y .  Ciesielski [4] gave 
suficient conditions for a Gaussian process to have a version with Holderian 
paths. Lamperti 1121 proved for the polygonal line interpolating the Donsker 
Prohorov partial sums process an a-Holder invariance principle for any a < 112 
(in the most favorable case). This result was derived again by Kerkyacharian 
and Roynette [ll] by another method using Ciesielski's analysis [3] of Holder 
spaces by triangular functions. The problem of the existence of a version with 
HSlderian paths was studied by Ibragimov [lo] and by Nobelis 1151. Recently, 
Hamadouche [9] extended Lamperti's invariance principle to dependent varia- 
bles, ~Eiiadouche [8] proved the weak a-Holder convergence of the polygonal 
uniform empirical process to the Brownian bridge for any 0 < a < 1/4 and the 
optimality of this bound. 

AII these results rely on some control of the first differences 

In this paper, we propose to use instead the second differences: 

The usefulness of A: { ( t )  in the problem of sample paths differentiability is 
known (see CramCr and Leadbetter [5]). From an analytical point of view, 
there is no loss in working with A: f to study the Holder regularity of a func- 
tion f. This observation goes back to Zygrnund [22] who investigating smooth 
functions noticed that a necessary and sufficient condition that a continuous 
and periodic function f (x) should satisfy a Holder condition of order a, 
0 c a c 1, is that 

A , Z f ( x ) = O ( h ?  as h + + O ,  

uniformly in x. The role of A: is now well understood in the more general 
context of Besov spaces (see Peetre 1181). 
. This fact stimulated us to study the central limit theorem for processes in 
Holder spaces in terms of second difFerences. It turns out that the second 
difference allows us to recognize more processes, which admits a version with 
almost all paths in Holder space. In particular, as a special case of-our Theo- 
rem 1.2, we obtain the following version of the Kolmogorov theorem: if there 
exists 6 > 0, y > 1 and a constant c > 0 such that for all t, t h E [0, 11 

then there exists a version of 5 with sample paths in Hz [0, 11, where 0 < a 
c min (1, 6/y). To get a feeling of the advantage of condition (2) over condition (I), 
let us test both of them on the following crude bench-mark (more interesting 
examples will be given in Section 1). Let g be a deterministic function with first 
derivative of Holder regularity z (0 < z c I), g (1) = 1 and consider the process 
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where X = 5 (1) is a random variable with finite variance (as we are interested 
in processes satisfying the central limit theorem, this is a natural assumption). 
We have then the obvious estimates: 

B(lAL t(t)] > A )  g EXZ JAf g(t))2 1-', i = 1 ,  2. 

Now Id; g(t)J < Ilg'll, lhl and Id: g(t)l 6 [Ig'll, lhll +', so condition (1) cor- 
responds only to a Hiilder regularity cx < 1/2 for (, whereas condition (2) 
corresponds to a < rnin (z + l/2, 1). 

The paper is organized as follows. In the preliminary section we collected 
necessary facts about HBlder spaces with the main references to Ciesielski [3]. 
The main auxiliary result which gives an estimate for the Holder modulus of 
continuity of a process in terms of a second difference is also. stated in Sec- 
tion 1. This estimate yields several sufficient conditions that a process 
5 = ( [ i t ) ,  t ~ [ 0 ,  11) should have almost all paths in Holder space. In Sec- 
tion 2 we study the embedding of Hiilder spaces. We prove in particular that if 
1 3 p > a + 1/p ,  then the embedding Hp [O, 11 4 Ha [O, 11 is p-absolutely sum- 
ming. Section 3 is devoted to the central limit theorem for random processes 
with paths in Holder spaces. In particular we prove that the random process 

= (5  (t), t  E LO, 13) satisfies the central limit theorem in the space H: [0, 11, 
0 < a < 1, provided the following conditions are satisfied: 

(i) for each t E [0, I], E5: (t)  = 0, Et2 (t) < co ; 
(ii) there exists a positive random variable A4 such that EMz < c~ and, for 

all t, h~ [0, 11 such that t  f h~ [0, 11, 

l A i  { (t)[ < Mh" lnPp (l/h), where P > 312. 

The central limit theorem is supplied with convergence rate estimates with 
respect to Prohorov and bounded Lipschitz metrics. 

The last section is devoted to the central limit theorem for the empirical 
characteristic process (e.ch.p.) in Holder spaces. For the relevance of this pro- 
cess in many statistical problems, we refer to the introduction in Feuerverger 
and Mureika [7]. The study of the e.ch.p. in the functional framework of 
%? [- 1/2, 1/21 was achieved in Marcus [I41 and Csorgo 161. Our Holderian 
CLT for the e.ch.p. is a first step in the investigation of the convergence of 
e.ch.p. with a stronger topology than %[- 1/2, 1/21 one. 

1. Preliminaries. Throughout T = LO, 11 and 0 < a < 1. Denote by Ha 
the set of reaI-valued continuous functions x: T + R such that w, (x, 1) < a, 
where 

w,(x, 6)  = sup Ix(t)-x(s)l 
r,a~T,O<lt-sl<6 ' 

The set Ha is a Banach space when endowed with the norm Ilxt], 
= Ix(O)l+w,(x, 1). Set 

H,O = {x EH,: lim w,(x, 6) = 0). 
6 - 4  
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Then H: is a closed subspace of Ha. 
Let 

if 0 < t  < 112, 

(0 otherwise. 

For n=2j+k, O < k < 2 j ,  j = 0 ,  1 , . . . , s e t  

Define mbreover A- , (t) = X L ~ , ~ ~  (t) and A, (t) = A-  ,,, (t) = t. Then the family 
{A,, n 3 - 1) is a Schauder basis on the space H,O: each function x E H: 
admits the series representation 

m 

(3) x ( t ) = x ( O ) +  C n,(x)A,tt), t ~ C O , f l ,  
n=O 

with A - 1 ( x ) = R - 2 , 0 ( ~ ) = ~ ( 0 ) ,  ~ O ( ~ ) = j l - l , O ( ~ ) = ~ ( l ) - ~ ( 0 ) ,  and for 
n = 2 j + k ,  j20, 0 < k < 2 j :  

By Ciesielski [3], the norm Ilxll, is equivalent to the sequence norm 

For j 2 0, let us write Ej x for the polygonal line interpolating x between the 
dyadic points k 2 - j  (0 < k < 29. We clearly have 

whence 

Ilx - Ej xllrq = sup max \AJ7, (x)1. 
i ~ j  O < k < 2 J  

The following estimates are easily obtained : - 

For our purpose, the norm IlxllFq is more tractable than Ilxll,. Ciesielski proved 
that a continuous function x belongs to Hz if and only if lirn,,, naA,(x) = 0. 
We give here a more quantitative version of this result for further use. 
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PROPOSI~ON 1.1.  We have the foIIuwing estimate: for XEN: and j 2 0 

where we can choose for f any function N -, N such that f (n) < n and the se- 
quences f (n) a d  n -f (n) are non-decreasing with limit in3nity. 

-- 
~ r o o f y g e t -  

and c j =  max ]cjkt. 
O S k C Z J  

Fix s and t in T. From (3) we get 

Now observe that for fixed s and t there are at most two non-vanishing 
terms in the block indexed by j in the series above. Moreover, as the maximal 
slope of Ajk is 2 j + I ,  we have 

[Ajk@)-Ajlr(s)I < min(1; 2jf11t-4). 

Let j ,  be the integer defined by 2-j0-' < . It-sl < 2-j0 and j ,  = f (j,). The 
splitting 

after some elementary computations leads to 

8 sup cj+- 2 
SUP Cj  

+2'(2-24 j1<j<j0 2"-1 J>JO . . 

and finally to 

8 +( 2 " ( 2 - 2 P a - 1  +q j,jl sup cj. 
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Let 6 = 2 -J .  By our assumptions on f ,  taking the supremum over 
0 < It-sl < 6 on the left-hand side of (11) and over j, 3 J on the right-hand 
side gives the desired bound for w,(x, 6). 

As a special case of the previous computation we obtain for J = 0: 

16 
sup max 2(jt '1" (x)l. 

dk<2j 

Recall that a Young function # is a convex increasing function on R+ such 
that #(O) = 0 and limt,,4(t) = a. I f  Z is a random variable such that 
E#(JZrc) < '& for &me c > 0, then we set 

11Z114 = inf (c  > 0 :  EI$ (IZl/c) < 1) .  

Throughout u will denote an increasing function on T such that (0) = 0. For 
the sake of convenience, we recall here the basic inequalities used throughout 
the paper to handle the maxima of random variables. The first of them is 
Lemma 11.3 (p. 303) in Ledoux and Talagrand [13]. 

LEMMA 1.1. Let (Xi) be positive random variables on some probability space 
(62, P) such that for all 16 i < n and all A E P  

where 4 is some Young function and ci is a constant. Then, for every set A E F ,  

1 max X,dP<cP(A)#- I  with c = max ci. 
A l < i < n  1 <i<n 

The following two lemmas provide practical conditions to satisfy (13). 

LEMMA 1.2. Let (Xi)  be positive random variables on some probability space 
(8, 9, P) and # some Young function. Xhen Xi satisfies (13) with ci = llXi119. In 
particular, 

E max Xi < # - I  (n) max IIXille. 
1 < i < n  I <i<n 

- 
Proof.  By convexity of # and Jensen's inequality, for any b > IIXill+ we 

have 
XidP = bP(A) j #- '6 (Xi /b )P- ' (A)dP 

A A 

< bP(A) 4-' (P- ( A )  E+ (XJb))  < bP(A) # - I  (P-  (A)).  

Taking the infimum over b > JJXiJJ9 ,  we see that (13) is satisfied and we can 
apply Lemma 1.1. 

LEMMA 1.3. Let ( X i )  be positive random variables on some probability space 
( J Z ,  9, P) satisfying for some constant 1 < p < oo and each i = 1 ,  . . . , n 

ai = sup tPIIP(Xi > t )  < KC 

1> 0 
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Then Xi satisfies ( 1 3 )  with ci = qa,, where q = p / ( p -  1 ) .  i n  particular, putting 
a =  ma^^^^^^ aj ,  we get 

E max Xi < qanlIP. 
l d i d n  

Proof.  Integrating by parts we have 

. . .< p l - " ( ~ )  2- sup tP1"(Xi  > t}. . -. 
h P-1 t>Q 

So we can apply Lemma 1.1 with $(t) = tp. 

THEOREM 1.1.. Assume the process 5 = ( l ( t ) ,  t E f l  is defined on the probu- 
bility space (12, 9, P) and satisfies: for each set A ES and ail t ,  t + h E T 

Then for each A E F, and integers K > J 3 0, 

1 " 3 4-1 (m) du. (15) j [IEK t - E j  51[Eq dP < 2"" B(A) J 
A 2 - ~  lda+l 

Proof.  Set 

I j  = 5 max ( I j k  (c)l dP, j 2 0. 
A ~ d k < 2 j  

By the condition (14), for each measurable set A  we obtain 

1 l A j k ( { ) ~ d B ~  ~ ~ ( 2 - j - ' ) P ( A ) 4 - ' ( 2 )  
A P (A) 

Now Lemma 1.1 yields 

Putting together (4) and (16) we get 

The result follows by comparing series and integral. 

Theorem 1.1 yields several sufficient conditions that the process 
< = (I:(t),  t~ T )  should have a version with paths in Holder space Ha. The 
following result is a version of the Kolmogorov theorem, whereas Theorem 1.3 
gives a version of the corresponding Ibragimov result. 
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THEOREM 1.2. Let p > 1. Assume that the process { = (l,, t E T )  is continu- 
ous in probability and satisfies the condition: for each t~ T, h 3 0 such that 
t k h ~ T ,  

then radmits a version with almost aII paths in the space H t .  
Proof.  By Lemma 1.3, the inequahty (18) yields 

and from Theorem 1.1 it is easily seen that { E j  5) is ass, a Cauchy sequence in 
Hz, and therefore limJ,, E, { exists a.s. If this limit is denoted by then it is 
easy to see that 

which is the version of < with paths in Hz. 

Combining the bound (17) with Proposition 1.1 we get 

COROLLARY 1.1. If the random element in % [0, 11 satisfes (18) and (19), 
then for each j 2 0: 

where C, is a constant depending only on a, f is as in Proposition 1.1, and 

a 

0 

u ( U )  du. = l t p + l + l , p  

THEOREM 1.3. Let 4 be a Young function. Assume that the process 
' -5 = (St, t~ T) is continuous in probability and satisfies the condition: for each 
~ E T ,  h>O such that t f h ~ T ,  

then the process t admits a version with almost aII paths in the space Hz. 

Proof .  One has to note (see Lemma 1.2) that the condition (20) yields 
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for all measurable sets A. The proof can be completed by the same arguments 
as above. 

COROLLARY 1.2. If the random element [ in % [0,  11 satisjies (20) and (21), 
then for each j 3 0: 

Ew,([, 2-9 < 2 - j [ 1 - m l ~ l [ ( 1 ) - [ ( ~ ) ~ + ~ a 2 [ f ~ ) - j ~ ( 1 - u ) ~ ( l ) + ~  1~(2 - f ( j ) ) ,  

where C, is a constant depending only on E, f is as in Proposition 1.1, and 

EXAMPLE' 1. Consider a continuous in probability symmetric p-stable pro- 
cess ( X ( t ) ,  t E T), 1 < p < 2 ,  with the stochastic integral representation 

(xw, ~ E T )  2 ((Sf ( t ,  x ) M ( d x ) ,  t E  q'), 
E 

where ( E ,  $) is a measurable space, M is a symmetric p-stable random measure 
with n-fdte spectral measure rn, and 2 denotes equality in distribution (see 
Samorodnitsky and Taqqu [20]). Define 

uP(h) =SUP J If(t+h, x )+f ( t -h ,  x)-2f ( t ,  x)IPm(dx). 
[ET E 

COROLLARY 1.3. Let ac(0, 1).  If a is an increasing function such that 

then ( X ( t ) ,  t~ T) admits a version with almost all paths in the space H:. 

Proof.  It is well known (see Sarnorodnitsky and Taqqu [20]) that 

The result now follows by Theorem 1.2. 

The necessary and sdlicient conditions for the stable process with index 
p E (0, 1) to have a version with a.s. paths in H,  are found by Nolan [la. Let us also 
remark that by Theorem 1.3 the condition (22) yields that the function f (t),  t E T, 
considered as a process defined on (E, 8, m) has a version with a.s. paths in H z .  

EXAMPLE 2. Let ( X ( t ) ,  t E T) be a continuous in probability centered 
Gaussian process. Under which conditions on its covariance structure is the 
process Holderian? 

COROLLARY 1.4. Let 
g2 (h) = SUP ~ l d ; x ( t ) 1 ~ .  

tET 

If a is an increasing function such that 

then ( X ( t ) ,  t~ T) admits a version with aimost all paths in the space H t .  
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Px o of. Apply Theorem 1.3 with the function 4, = exp ( tZ)  - 1, t E R, not- 
ing that 

We end this section with some tightness conditions related to the above 
results. 

THEOREM 1.4. The sequence (5,) of random glements in the Holder space 
H,O is tight if and only if the following two conditions are satisfied: 

(i) limb+, sup,P {lL',(O)l > b )  = 0; 
(iil for = each E ->. 0, lim,, , sup, P {w, (c,, 6)  > E )  = 0. 

Prbof .  The estimates (6) and (8) enable us to use the flat concentration 
criterion (see Lemma 2.2, p. 40, in Ledoux and Talagrand-[13]) to derive the 
tightness of (5,) from (i) and (ii). 

The necessity of (i) for the tightness of (I,) is obvious. For the necessity of (ii), 
we use the following lemma, the proof of which can be found in Suquet [21]. 

LEMMA 1.4. Let X be a compact family Vor the topology of weak conver- 
gence) ofprobability measures on the separsrble metric space H .  Let (Fj ,  j 2 1) be 
a sequence of cbsed subsets of H decreasing to 0. Define the functions 
uj:  X + [0, 11, uj ('ji) = p ( F j ) .  Khen the sequence (uj) uniformly converges to 
zero on sf. 

Since the functionals w,(., 6) are continuous and decreasing to zero in 
6 on H:, the choice of the closed sets 

shows the necessity of (ii) for the tightness of (c,). 
Combining Theorem 1.4 with Corollaries 1.1 and 1.2, we obtain the foI- 

lowing sufficient conditions: 

COROLLARY 1.5. f i e  sequence (5,) of random elements in the Holder space 
Hz is tight if: 

(i) l imb,,~~pNP{l~N(k)l > b)  =O, k = o ,  1; 
(ii) for each t E T, h > 0 such that t f h E T, - 

sup P {Id: G(t)l  > 2)  < 5 ap(h),  
NB 1 

where p > 1 and the function a satisfies (19). 

COROLLARY 1.6. The sequence (5,) of random elements in the Holder space 
H,O is tight $: 

(i) limb,, ~up,P(15~(k)l > b) = 0, k = 0, 1; 
(ii) for some Young function # and each t~ T, h > 0 such that t k h ~  T, 

sup 114; c~(t)ll& d c ~ ( h ) ,  
N B 1  

where the functions a and # satisfy (21). 
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Remark.  In all the results of this section 0 was supposed increasing. In 
fact, this hypothesis was used only in the comparison between series and inte- 
grals starting from (17). If we drop the assumption of monotonicity, all the 
results remain valid provided the conditions involving integrals of a (hke (19), 
(21), (22)) are replaced by the corresponding ones involving series. 

2. Embedding maps between Holder spaces. In this section we prove some 
useful properties of embedding operator between Holder spaces. Set 

T-R: Ilxll,= Ix(O)l+sup Ix ( t )  -x (811 < 
,+f a(lt-sl) 

and 
1 

x E Hu: lim sup 
6-0 1.-tic* a(lt-sl) 

Recall that a continuous linear operator u: E 4 F between Banach spaces 
E and F is of type p, 1 < p < 2, if there exists a constant c > 0 such that, for 
any finite sequence (xJ c E, 

where ( E ~ )  means a Rademacher sequence. 

LEMMA 2.1. Let 1 < p < 2 and q =p/(p-I). If 

then the embedding map H ,  + H! is of type p. 

Proof.  It is more convenient to use here the sequential norm. Fix the 
finite sequence (xi)€H, and let [ci) be a Rademacher sequence. Let 
#J,(x) = exp(x4)- 1. It is known (see Lemma 4.3, p. 93, in Ledoux and Talag- 
rand [13]) that there exists a constant cp > 0 such that for each finite sequence 
(a,) of real numbers 

IIC i 'iaillzq d cP lailp. - 

Observe that Ill-,,o(x)l = Ix(O)l < Ilxll, and, for j 2 -1, we have IrZjk(x)I 
< g(2-jP1) 11x11,. Let us start with the special case j = -2. Using the elemen- 
tary inequality E]XI < 4-l (l)llXl14 between L1 and Orlicz norms and (24) 
we get 

Now for j 2 - 1 and 0 < k < 2j we have 

(26) 114 (x ei xi)lb, < c:Ip (z lljk (xi)lp)'" < c;lp s(2-j-') a ~lx~ll:)~". 
i i i 
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Lemma 1.2 gives then 

E max lhjk(C ei x31 < c i i p  a ( 2 - j - l  
l Q i d n  I i 

Finally, since 

the conclusion follows from (23), (25) and (27). 
Recall that an operator u: E -t F is said to be p-absoluteiy summing if there 

exists ;,constant c > O such that for any finite sequence (xi) c E 

As usual, E* denotes the topological dual of E. 

LEMMA 2.2. Let p > I. I f  1 3 8 > a+ l/p, then the embedding operator 
Hg + IfGI is p - a b ~ o l ~ t e l y  summing. 

P r o  of. Working with the sequential norms in Hg and Ha, we shall use the 
well-known Pietsch theorem [19]. Consider for j 2 -2, 0 < j < 2j the linear 
functionals 15: Hg + R defined by 

Obviously, Kg = {AX; j 2 - 2, 0 < j < 2j)  is a norming set, that is 

lixllrq = SUP lf(x)l. 
f EKB 

Define the measure 
w 

~ ( a  - P1.i 
j =  -2  

C a,,, ' = '  o < k < 2 j  

-where 6,  is Dirac measure. It is a bounded measure supported by K g  since the 
series xj2("-P)")j converges. NOW we have 

Hence the embedding map is p-absolutely summing by the Pietsch theorem. 

Remark. From the last step of the proof of Lemma 2.2 with p = 2 it is 
easily seen that the embedding IBa: Hg -+ H ,  factorizes through the Hilbert 
space 

m z j - 1  
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If we denote the corresponding factorization by I , ] # ,  where I p :  EfB -+ H 
and I,: H 4 Ha, then the operator I ,  is y-radonifying in the sense that ~f v de- 
notes the canonical Gaussian measure on H, then v lL1  is a Gaussian Radon 
measure on H E .  

3. CET in Hlllder spaces. For a random element (E Hz we denote by 
r,, ..., t ,  independent copies of t and 

N 

Recall thara  rahdom element t, satisfies the central limit theorem (we write 
~ECLT(W:)) if the sequence ([,) converges in distribution in H:. 

THEOREM 3.1. Assume that the random element < in satisfies the fol- 
lowing conditions: 

(i) E{( t )  = 0 and E12(t)  < m for all t~ T;  
(ii) there exists a positive random variable M and an increasing function a: 

R +  4 R ,  a(0) = 0 such that EM' < co and 

lA:t(t)l<Ma(h) for all t , t + h ~ T ,  
where 

Then ~ECLT(H;)  and EII(11: < co. 
Proof.  Consider the Rademacher sequence ( E , )  which is independent of 

I<,). It may be thought as constructed on another probability space 62'. By 
Theorem 10.14 in Ledoux and Talagrand [I31 it suffices to prove that, for 
almost every o of the probability space i2 supporting the t , ,  the sequence of 
random elements f~ of Hz defined on SZ' by 

converges in distribution. - 

For the convergence of finite-dimensional distributions, fix t ,  < . . . < t ,  
in T and note that for any scalars a,, . . ., am 

Using ti) and the strong law of large numbers we see that the factor of ai aj in 
the above formula converges to Eg (5 (ti) 5 (tj)) for almost every w E SZ. Hence the 
convergence of finite-dimensional distributions of holds for almost every 
w by the finite-dimensional CLT. To check the tightness, we use Corollary 1.6 
whose condition (i) is a simple by-product of the case m = 1 above. Using (24) 

10 - PAMS 19.1 



146 A. RaEkauskas and Ch. Suquet 

with p = q = 2, we get 

where MI,  . . ., M ,  are independent copies of the random variable M. By the 
strong law of large numbers, for almost every o E Q sup,, , N 1  zr='=, M; (w) is 
finite, and so r; satisfies condition (ii) of Corollary 1.6, which completes the 
proof. 

THEOREM 3.2. Let n: R+ -+ R be an increasing function with a (0) = 0 .  Let 
p 2 2. Asmtrne that the process { = ({,, t E T )  satisfies the following conditions: 

(i) E( ( t )  = 0 and El2  ( t )  < co for all t E T ;  
(ii) for each ~ E T ,  h > O  such that t + h ~ T  

Then < E CLT (H:). 

Proof.  From condition (i) we obtain the convergence of finite-dimen- 
sional distributions of (5,) and condition (i) of Corollary 1.5. To complete the 
proof of the tightness, observe that, by the Rosenthal Lfinequality, 

from which condition (ii) of Corollary 1.5 is obtained. 

We supplement the central limit theorem in Holder spaces with results on 
a convergence rate. Recall that the Prohorov metric on the space of probability 
measures on the Banach space B is defined by 

7~ (p ,  v) = inf { E  > 0: p (F)  < v (FE) + E for all closed sets F c B )  , 

where FE = {x E B:  inf,,, Ilx-yll < E }  . The bounded Lipschitz metric is defined 
by 

where 2l (B)  denotes the set of functions f :  B -, R that satisfy the condition 

Let na and diL denote the Prohorov and bounded Lipschitz metrics in the 
space of probability measures on Ha,  respectively. 

THE~REM 3.3. Assme that the process 5 = (5  ( t ) ,  t E T )  satisfies the follow- 
ing conditions: 
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{i) E( ( t )  = 0 and Et2  ( t )  i co for aII t E T ;  
(ii) there exist a positive random variable M and an increasing function 

a: R ,  + R ,  ~ ( 0 )  = 0, such that Ehf3 < a~ and 

(A,24:(t)lGMc(h) for all t , t k h e T .  

than for c a h  0 <. < fi  - 1/2 

where pN is the distribution of 5,  whereas p is the distribution-of the limiting 
Gaussian process <. 

Proof.  The Remark after the proof of Lemma 2.2 and results in Bentkus 
and Rackauskas [2] (see also Paulauskas and RaEkauskas [17]) yield 

where the constant C depends only on the covariance operator of the Gaussian 
random element 5. Evidently, condition (ii) and Ciesielski [3] yield 

E11511; < CE sup 23@j max ]&j(c)13 < CEM3 
i O b k < 2 1  

By Theorem 1.1 and tail behavior of Gaussian random elements, 

According to condition (i), EA.j.(C) = E;l;k(c). Finally, since E1[[11; 
< C(EllCl\p)3, using (ii) we obtain Ell[llz < CEM3. 

Let L denote the Lkvy metric in the space of distribution functions. We 
shall write L ( t ,  7) for L(F5, Fq), where Ft denotes the distribution function 
of 5 .  Recall that - 

L(5, ?I) = inf(& > 0: Ft(x) < F&+E)+E and 

F , ( x )  < FC(x+&)+& for all XER}. 

THEOREM 3.4. Assum that the conditions of meorem 3.3 are satisfied and 
0 < a < p-1/2. Let F: Hz + R  satisfy 

Then 
L (F (C,), F (5)) < C (E M3)'l4 N -  l t8  
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Proof.  This is a direct corollary to Lemma 2.2 and Theorem 5.3.6 and 
Proposition 5.3.3 in Paulauskas and Rackauskas [17] (see pp. 124 and 123, 
respectively). 

The function F ( x )  equal to the q-variation norm, where q 2 l/a, is of 
a particular interest. 

4. CLT for an empirical characteristic process. Let X, XI, X,, . . . be in- 
dependent identically distributed random variables with probability distribu- 
tion function F (x) and characteristic function - . - 

02 
b 

c ( t )  = I ei txdF(x) .  
m 

Let F ,  (x) denote the empirical distribution function based on the first N obser- 
vations XI, . . ., X,, i.e. 

where 1, is the indicator function of the set A .  The empirical characteristic 
function corresponding to F, is 

cN (t) = 1 eSx dF,  (x)  = C exp (it X,) 
- m  N ,=I 

and an empirical characteristic process is 

It is well known that cN(t) converges to c(t) uniformly on each finite interval 
(more strong convergence is proved in Csorgo [6]). Marcus [I41 has found 
necessary and sufficient conditions that the process (Y, (t), t E [- 1/2, 1/21) con- 
verges in distribution in the space % [- 1/2, 1/21 of continuous complex func- 
tions on [- 1/2, 1/21 endowed with usual supremum norm. Given the experi- 
ence of the Holderian central limit theorem it seems natural_ to assert that 
Y,, 3 Y in a complex space H,O . 

From now on, Ha and H,D are the spaces of complex-valued continuous 
functions x: T+ C such that u, (x, 1) < co and lim,,, w,(x, 6) = 0, respec- 
tively. Both spaces are endowed with the norm 11-11,. 

Evidently, Y, (t) = N -  zr= St (t), where 

Hence YN is a random element in H: if and only if the deterministic function 
c(t) is itself in H : .  

An elementary computation gives 

(28) A: < (t) = - 4eitx sin2 (hX/2) + 4E (eitX sin2 ( h ~ / 2 ) )  . 
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This leads us to express our hypotheses in terms of the moments of sin2 (hX/2) ,  
introducing the functions 

This choice avoids putting the conditions on the moments of the X i .  
By the multidimensional central limit theorem, the f~te-dimensional dis- 

tributions of (Y,) converge to those of a complex Gaussian process .Y with 
E Y  ( t )  = 0 and covariance EY (t) = c (t -s)- c (t) c (-s), s, t E I". The pro- 
cess Y cari-be represented in the form 

where W(t )  is a standard Wiener process. 

THEOREM 4.1. Let 0 < a < 1.  If 

then (Y,) conzrerges in distribution in the space H,O. 

Proof.  Let us observe first that 

so using the sequential norm, it is clear from (29) that c belongs to Hz and (Y,) 
can be considered as a sequence of random elements in H z .  

We use the same randomization method (and the same notation) as in the 
proof of Theorem 3.1, the only difference being in the fulfilment of condition (ii) 
of Corollary 1.6. Write 

By the series version of Corollary 1.6 (see the  ema ark-at the end of Section I), it 
suffices to check that, for almost every w, 

Using (28), we obtain with absolute constants a and b 
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Using (29) and T, 4 T:/~, to treat the contribution of E2 sin2 (XI 2-j-')  reduces 
the problem to prove that, for almost every w, 

1 " "  X l ( d  < * 

sup- P ~ a d s i n 4  (F) 
N N  1 = 1  j = l  

Write Z,(o) for the sum of the series indexed by j in (30) and observe that, 
by (2917 

Hence (30) follows from the strong law of large numbers for the i.i.d. sequence 
(2,) and the proof is complete. 

The following result supplements Corollary 1 in Csorgo [6]. 

COROLLARY 4.1. Assume that the distribution Jirnction F has a non-empty 
monotonicity interval. Let 

1 I 1 

F 1  = Ix(t)12dt7 F2 (x) = ( % ~ ( t ) ) ~  dt, F 3 ( x )  = j ( 3 ~ ( t ) ) ~  dt. 
0 0 0 

Then there exists a constant C > 0 such that 

supIP{F,(Y,) < r)-P{Fi(Y) < r)l < C N - I  
r 2 O  

holds for each i =  1, 2 ,  3 .  

Proof.  The result follows easily from Bentkus and Gotze [I]. We have to 
check that the limiting random element Y considered in the space L, (0, 1) is at 
least of dimension d 2 9. By the representation (20) it is enough to show that 
the random element Yo = : eitx d W (F (x)) is at least of dimension d 3 9. 
This is ensured by monotonicity of the distribution function F in a certain 
non-empty interval. Indeed, assume that F is monotone on the interval (a, b) 
and consider functionsf,, . . ., f, (0, 1) such that g, , . . . , g, havenon-inter- 
secting supports on (a, b), where 

Then the random variables 

are independent. This yields that Y is at least M-dimensional in L2(0, 1). 
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Consider the following functionals on the space H t :  

COROLLARY 4.2. Assume that the distribution function F has a non-empty 
monotonicity interval and 

- -- 
1 1  

7hen there exists a constaat C > 0 such that 

sup IP(Fi(YN) < r } - P { F i ( Y )  < r)l < CN-I 
r & O  

holds for each i = 4, 5, 6 .  

The proof is similar to that to Corollary 4.1. 
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