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LARGE DEVIATIONS FOR EXTREMES OF U-PROCESSES

BY

* PETER EICHELSBACHER (BIELEFELD)

Abstract. We prove a large deviations principle (LDP) for partial
sums U-processes indexed by the half line. The LDP can be formulated
on a suitable subset of the set of all absolutely continuous paths. We
endow the space with a topology, which is stronger than the usual
topology of uniform convergence on compact intervals. An LDP for
the maximum of the sample path of the U-processes is obtained as
a particular application.

1. Introduction, statement of the result and applications. A sequence of
probability measures {y,, ne N} on a topological space Z equipped with
o-field % is said to satisfy the large deviations principle (LDP) with speed 1/n
and good rate function I(-) if the level sets {x: I(x) < a} are compact for all
o < o0, and for all 'e# the lower bound

liminf —logu, (') = — inf I(x),

1
n-o N xeint(I)

and the upper bound
1
lim sup p log u, (I < — 1inf I(x)

xecl(I')
hold. Here int(I') and cl(I') denote the interior and closure of I', respectively.
Wesay that a sequence of random variables satisfies the LDP when the se-
quence of measures induced by these variables satisfies the LDP.
For a sequence of R%valued iid. random variables X, with a finite mo-
ment generating function Borovkov [2], Mogulskii [13] and Varadhan [15]
investigated the large deviation behaviour of the partial sums process

1 b
Sn(t) =; Z Xi: tE[O, 1]9
i=1

for different scalings. Denote by L ([0, 1], RY) the space of (equivalence
classes modulo equality a.e. of) bounded measurable functions on [0, 1], equip-
ped with the uniform topology. The large deviations principle for {S,(-), ne N}
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was established in L_ ([0, 1], RY) with good rate function I(-) defined by

(1.1) 1(¢) = | A*(P)dt

if e/ Cy([0, 1], RY and I(¢) = oo otherwise (cf. [4], Theorem 5.1). Here
A C,y ([0, 1], RY) denotes the subspace of absolutely continuous functions ¢ on
[0, 1] with ¢ (0) = 0 and A* denotes the convex dual (Fenchel-Legendre trans-
form) of

.. A(f)=log Eexp ({0, X,>),

that is e
A*(x): = sup {8, x> —A(6)}.

The result can easily be adapted to a time interval [0, T]. Applying Theorem
4.6.1 of [4], called the projective limit approach, for Te N yields an LDP for
{S,(), neN} in oCy(R,, R%, the subspace of absolutely continuous func-
tions ¢ on R, with ¢ (0) = 0, equipped with the topology of uniform conver-
gence on compact subsets of R, .

Once the LDP with a good rate function is established for a sequence
{u,, ne N}, the basic contraction principle (cf. [4], Theorem 4.2.1) yields the
LDP for {u,0f !, ne N}, where f is any continuous function. Applying this
principle to the function f: &/C,([0, 11, R — R%, defined by

flo():= ‘:[gg]d)(t),

we obtain the LDP for the sequence {Supo,.1;S,(t), ne N} with a good rate
function given by

J0) = inf{I@): f($() =y}, yeR

([4], Theorem 4.2.1), sometimes referred to as the drawback rate function.
However, the function f,: /Cy(R,, RY > R, defined by

is not continuous in the topology of uniform convergence on compact subsets
of R, on any supporting subspace. Dobrushin and Pechersky introduced in
[5] and [6] a finer topology (a gauge topology) which allows one to prove an
LDP via the contraction principle for typical quantities of interest in queueing
theory (the steady-state queue-length at a deterministic buffer with inputs given
by a real-valued stationary sequence). In their topology the restriction of the
mapping ¢ () > sup.g, (¢ (t)—1) to a subspace of non-decreasing paths ¢(-)
with lim,_, , ¢ (t)/t = u < 1 is continuous. In [14] O’Connell strengthened the
LDP for the polygonal approximation of {S,(-), ne N} to the following topolo-
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gy: Consider the set of paths

J
Y = ﬂ {tpe%’(R“ RY: 11m (f-lft) exists},

where ‘é(R+, R% is the space of continuous functions ¢ on RJr and
o = (¢, ..., ¢%. Let us equip % with the norm :
¢’( £)
t .
Note that % can be identified with the Polish space € (R% ;, R?) of continuous
functions on, the extended (and compactified) real line, egu1pped with the su-
premum norm, via the bijective mapping ¢ (£)— ¢ (£)/(1 +1). In particular, % is
a Polish space. O’Connell shows that the polygonal approximation of
{S,(*), ne N} satisfies the LDP in & with good rate function I(-). This result
provides a new tool for looking at large deviations for queueing systems in
equilibrium (see [14] and references therein). One of the main advantages of
O’Connell’s approach is that f, is a continuous function with respect to the
new topology.

The aim of this paper is to extend the LDP when going from linear
statistics to higher order statistics, namely the partial sums U-processes, that is

lell, = = Sup sup

U,,(t)=L > h(Xy,.... X)), tel0,1].
n\ ek o
m

Here the X, are iid. random variables and h is a measurable, symmetric
R’-valued function, called a kernel function, where ‘symmetric’ means that h is
invariant under all permutations of its arguments. Cy, with k, me N denotes the
set {(iy,...,i,): 1 <i; < ... <i, <k}. In Eichelsbacher and Léwe [11] the
LDP was proved for {U,(-), ne N}, when L_ ([0, 1], R% is equipped with the
uniform topology. By applying the projective limit approach ([4], Theorem
4.6.1) the LDP holds for {U,(:), ne N} in &/C,(R,, R%, equipped with the
topology of uniform convergence on compact subsets of R, . In [10] the LDP
for {U, (*), ne N} was proved in a topology, which is an extension—of the
uniform topology by Orlicz functionals. The aim of the paper is to: prove the
LDP for {U,("), neN} in ¥,

To this end we give a suitable representation of the rate function 1 (¢) for
the LDP of {U,(-), ne N} for any ¢ #C, (R, , R%). Moreover, we prove that
the convex dual of the so-called free energy of a U-statistics yields a nice lower
bound for I (-). In the main technique used to strengthen the LDP to the
topology induced by the norm ||-||, the inverse contraction principle ([4], Theo-

- rem 4.2.4 and Corollary 4.2.6) is applied, by which it suffices to prove exponen-

tial tightness in the space (#, ||*]|,). That is to check that for every a < oo there
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exists a compact set K, < % such that

(1.3) limsupilogP(ﬁ"(-)eK;) < —a,
where U,() is the polygonal approximation of U,(), defined in (1.5).
To formulate our main result we need some more definitions. Let {X,, ne N}
be a sequence of i.i.d. random variables on a probability space (22, ., P) with
Polish state space S and common law . Denote by & the Borel g-algebra in S.
We denote by # 7 (S) and .#,(S) the sets of Borel measures on S which are
positive and positive having total mass k, respectively. These spaces.are equip-
ped with the topology of weak convergence. Recall the definition of the relative
entropy H(v|u) of ve.# (S) with respect to ue.# (S):

' [flog fdu if v<u and f=dv/dp,

H(v|p:=15 _
+ o0 otherwise.

Denote by ||'|l a norm in R? Consider the following condition:

ConpiTiOoN 1.1 (the strong Cramér condition):
{ exp(@lr(x)|]) p™(dx) < o0 for all 6 >0,
sm
where y™ denotes the m-fold product measure. We define

(1.4) Iw(¢)=inf{°jo H@|p)dt, vesAConK,, and | hdv() = ¢ ()}

if peACy(R,, R%, and I_(§) = oo otherwise. Here

=]

" Kgi= U {v(): | HG|wdt < L},
0

L>0
and &/C, is defined to be the set of all maps v: R, — .#*(S) which are
absolutely continuous with respect to the variation norm |||, satisfy
v(@)—v(s)e M,_s(S) for all ¢t > s, while v(0) = 0, and the maps v have a weak
derivative for almost all ¢. The latter means that for almost every te R, the
expression {f, v(t+h)—v(t)>/h converges to a limit {f, v(t)) for every fe C,(S),

- ‘where (-, -) denotes the Euclidean scalar product and C, (S) denotes-the set of

bounded and continuous R’-valued functions on S (cf. [3]). Using the main
result of [11] we obtain

THEOREM 1.2. If Condition 1.1 is satisfied, the LDP holds for {U,(-), ne N}
in L (R, , R%), equipped with the topology of uniform convergence on compact
subsets of R, with good rate function I () defined in (1.4).

We consider the polygonal approximation of U,(-), that is

s U, @):= U,,(t)+(nt—[nt])% Y (Koo Koy K1)

nt
e

m
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Note that U, () is continuous. It carries the same information as U, (-).
Moreover, by [11], Lemma 3.2, {U, (), ne N} and {U, (), ne N} are exponen-
tially equivalent in L ([0, 1], R%), equipped with the uniform topology. Hence
the LDP behaviour is the same with respect to this topology. Analogously to
Theorem 1.2 we get: :

CoROLLARY 1.3. If Condition 1.1 is satisfied, the LDP holds for {U,()
neN} in L (R, R%, equipped with the topology of uniform convergence on
compact subsets of R, with good rate function I_(-) defined in (1.4)..

The main result iri“this paper is the following:

THEOREM 1.4. If Condition 1.1 is satisfied, then {U,(*), ne N} satisfies the
LDP in (@ [I-]l), with good rate function I (-) given by (1.4).

Remark 1.5 (V-processes). Notice that by similar arguments we get the
same result for a partial sums V-processes

V;,(t)=im z h(X;,...,X,), teR,.

1<it,enim<[nt]
We only have to assume in addition a weak Cramér condition for the diago-
nals: there exists at least one 0 > 0 such that

| exp(@llhon,])du™ < oo

Sm
for every map t: {1,...,m}— {1, ..., m}, where n;: S™ — S™ is defined by
T (5) = (S;a)s -+ +» Semy)  fOT €veEry s=(s,..., 5,)eS™
We omit the details.

To illustrate how Theorem 1.4 can be applied, we will continue to go
through the extremes of the sample path process: consider the function f,
defined by (1.2). If E(h) = u, then the LDP holds in the subspace

1+

@(p)'.:{cbe(g( +» RY: 11m U u}. T

Now, if u < 1, the restriction of f, to % (u) is finite and continuous. Hence
{sup.r., U,(1), neN} satisfies an LDP with good rate function given by

inf {I(¢): £, (6() =y}, yeR.

Let the kernel function k be given by h(x, y) = xy (the sample second moment)
and assume that p is an arbitrary probability distribution such that Condi-
tion 1.1 is fulfilled. Since for m = 1, by Corollary 2.7 in [11],

inf {TH(\'J | wdt, ve#CynK,, and | xdv() = ¢ ()} = c,jDA*((j’})dt,
0 5 0
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the partlal sums U-process with kemel h fulfills the LDP with rate function
I (¢) j A*( d)())dt if >0 and \/o()eACyH(R,, RY,

and I (¢) oo otherwise (it follows from the contraction principle). Hence

(1.6) mf{I (@): f+(¢()) v} = mf{jA*(m) fi(6() =}

ﬂ 1nf1nf{jA*(\/_) o(0) =y} = infm*<ﬂ>.

T

Slrmlar calculatlons have prevlously been demonstrated by several authors
(cf. [8], [14] and references therein). The calculations heavily depend on the
special Kernel function. For arbitrary kernel functions h such a nice represen-
tation of the rate function is, of course, out of reach.

2. Preliminaries. First we state a representation of the rate function I (*)
defined in (1.4) and deduce a lower bound for I (). For ke N and
0=ty <t <.. <t <0, set go=0 and define

)

for g:= (01,5 .- On) (M *(S)). Since H(v | p) = + oo for v¢ .4 (S), we may
concentrate on those sequences of measures ¢ with ¢,,(S) =1t;, 1 <j <k. The
next result follows from Lemma 2.2 in [10]:

| , \ °
@1 Hlw:=Y (ti_ti_l)H(Qn Q-4

i=1 Li—1i—1

LEMMA 2.1. Assuming that Condition 1.1 holds, we get the representation
22) I,(¢)=  sup inf {H(e|p): | hdel;= (),

0t <...<t<w
‘ 1<j<k, gekK, (t)}
where . ‘
Ko @):= | {ee(#*©): Hlg,/t; | W <L 1<j<k}

Lz0

and t=(ty,..., t).

Proof. For the sake of completeness we sketch the proof It is an easy
adaptatlon of the proof of Lemma 2.2 in [10]. Denote the right-hand side of
(2.2) by J (). Assume that J (¢) < co. We can ﬁnd a sequence @ = (g, ---» On)
such that

eek, (t)ﬂ{fhdgn o), 1<i<k} and Hyelp (@)

(to .see why, note -that H, (¢ | ) is increasing for a nested sequence
{(tys ---» t})- We may assume that the sequence {(t,, ..., t,)}, is increasing
(nested) and the sets {(t, ..., t;)}, become dense in R+. Note that

Hyelw=| HEO | )ds,
0

b

i
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where ¢ (-) denotes the polygonalization of ¢. There exists a subsequence v, of
these polygonalized measure-valued functions that converges in the topology
generated by the uniform (on compact sets) weak convergence on R, to some
measure-valued function v and

J () —hmlnf_[H(v | wds = TH(\J | wyds.

Therefore we get I (¢p) <J(¢) if we can show that v satisfies
~ = T {hav(®) =@, teR,.

Clearly, v(")e K. Foreach te ( J, {(t;, ..., t,)}, by truncating h at height L and
an application of Lusin’s theorem and Tietze’s extension theorem (and denot-
ing this map by h;) we get

f Ravm (&) — ()| < ||[ B dv™(&)— [ by dv™ (@)|| +||f Ay dv™ (&) — [ by dv ()| < 2e

by the weak convergence of the v, (t) to v(¢). For any other se R, we obtain for
teR,

(fRdv™($)— @ || < ||| hdv™(s)— [ By dv™(s)||+||§ b dv™ (5)— | by dv™ ()|
+[If e dvm(t)—thdv;,"(t)||+||§hLdv,,'"(t)—jhdv;,"(t)|| -
I hdr©—¢ O+ Ol

Therefore, first choosing ¢ in some set {(¢,, ..., t,)} close enough to s such that
the second term on the right-hand side is bounded by a given & >0 and
1o (&)— ¢ (s)|| < & (since v(t) weakly converges to v(s) on an appropriate com-
pact interval and ¢ is continuous) and then choosing L large enough bounds
the first and fourth terms on the right < e. Finally, choose n large enough so
that the third term is < ¢ and so that [hdv}(t) is equal to ¢(t). Putting this
together allows us to bound |[{Rdv™(s)—¢(s)]| by 6e. Note that, for any

(tl’ . tk) Wlth Q - (Qtla LERT ] th)

mf{Hk(Q | W) fholy=0@), 1<j<k, eeK ()} <H,(e|w) < [H@|pds
o

Therefore, I, (¢) = J (¢) holds in the case J{¢) < co. In the case J(¢) = oo, the
set on the right-hand side in (2.2) over which the infimum is taken must
be empty, for otherwise J(¢) < co. Therefore, (2.2) holds also in this case. m

A conclusion of the LDP result for U-statistics is the existence of the free
energy function of U, (1), defined by C,(x):= lim,.,Cy.(x), Where

Cyn(x):= % log E(exp(n<x, U, (1))))
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(cf. Corollary 5.8 in [9]). Moreover, using Theorem 4.5.10 in [4], we obtain
Cu(x) = sup {<x, y>—Tv,) 0))
for xeR?, where Iy, () denotes the LDP rate function of the U-statistic
U,(1). Set
C*(x)::g&g{(y, x>—Cy(y)}, xeR%.
Then _
C* () < Iy ()-

C* is called £hé aﬁ‘im_z regularization (cf. [9], Corollary 5.8). The-fbllowing
observation follows easily from Lemma 2.4 in [10] and our Lemma 2.1. We
omit the proof.

LEMMA 2.2. Assuming that Condition 1.1 holds, we get the following lower
bound for I_(-):

I,(4)> Ic* ($)dt.

The drawback rate function in the contraction principle has the following
property:

LeMMA 2.3. Let {u,, ne N} be a sequence of probability measures on a met-
ric space & satisfying the LDP with good rate function I(-). Let f: & - % be
a continuous map into another metric space %. Then the good rate function of the
sequence {p,0f ', ne N} defined by

J):=inf {I(x): f(x) =y}, ye¥,
has the following property: If I(x) =0 iff x = X, then
J()=0<sy=7y:=f().

~ Proof. The proof is a simple adaptation of the proof of Theorem 5.2 (ii)
in [7]. If I(x) = 0, it follows that J (y) = 0. Conversely, if J (y) = 0, there exists
a sequence {x,, ne N} in & such that f (x,) = y for each ne N and I(x,) — O for

- n.—.00. Hence the sequence {x,, ne NV} is in one of the level sets of L(-). Thus

there exists a subsequence {x,,, /€ N} such that lim,,, x,, = x and, by the
lower semicontinuity of I(-), we have I(x) = 0. Using the continuity of f
we obtain f(x) =y. But, by assumption, I(x)=0 iff x=x, and thus
y=fF=j. = '

Moreover, main ingredients in our proofs are the following results estab-
lished in [12], Section 5, and in [4], Corollary 4.2.6:

LemmA 2.4 (Hoeffding). For s >0

Ep(exp(sllU, () < Ep (exp (% IIhID> , Wwhere k:= [EJ.

m
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LEMMA 2.5(the inverse contraction principle). Let {u,, ne N} be an exponen-
tially tight sequence of probability measures on a topological space ¥ equipped with
the topology 7., that is, the sequence satisfies (1.3) for every a < co. If {u,, ne N}
satisfies an LDP with respect to a Hausdorff topology 1, on & that is coarser than
T, then the same LDP holds with respect to the topology 1,.

3. Proof of the results.

Proof of Theorem 1.2. By Theorem 4.6.1 in [4], the LDP follows
immediately. We only have to check the representation (1.4) of the good rate
function. Lemma 2.2 in-[10] yields that the rate function for the LDP of
{U,(),neNyin L ([0, T], RY) for T >0 fixed has the representation

oo, Sup _inf {Hy(e | 1): [hdely = ¢(t), 1 <j <k, 0K, ().
Hence applying (4.6.2) in [4] yields that the right-hand side of (2.2) is the rate
function for the LDP of {U,(-), ne N} in L (R, R, endowed with the pro-
jective limit topology. Now we apply Lemma 2.1 and the proof is given. =

Proof of Corollary 1.3. By Lemma 3.2 in [11], {U,(-), ne N} and
{U,(), neN} are exponentially equivalent in L_ ([0, 1], R%), equipped with
the uniform topology. The same proof works on L_ ([0, T], R? for a fixed
T> 0. Therefore applying Theorem 4.6.1 in [4] yields the LDP for
{U,(-), neN} in L (R, , R%, equipped with the topology of uniform conver-
gence on compact subsets R, . The rate function is the right-hand side of (2.2).
Hence ‘applying Lemma 2.1 gives the result. =

Proof of Theorem 1.4. Denote by 2 (I ):= {¢: I, (¢) < oo} the effec-
tive domain of I (‘). First we prove that 2(I ) < #%. By the definition of

% we can consider the R-valued case. Moreover, by considering

U,0)—E(U,) ~ U,()~t"E(h) we can, without loss of generality, assume
that E(h) = 0 (using the contraction principle). Let ¢ (-) be chosen such that
I, (¢) < . By convexity of C* we infer from the proof of Lemma 5.1.6, (5.1.11),
in [4] that

G1)° [ C*(dyde = sup S (ymts 1) C* <¢(t,-)—¢(ti_1))_
0

O0=tp<t1<f23<..<tp<w ;=1 ti_ti—l

holds. Therefore, applying Jensen’s inequality and Lemma 2.2 yields
tC*(p (1)) < | C*(P)dt <I,(¢)<a for each t> 0.
0

If Condition 1.1 is fulfilled, Cy(x) is finite for every xe R, and therefore we
observe that, for all xeR and all ¢ >0,

C*()> el sup {Cy ().
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Consequently,

t-’no

¢>( ) 1
0] 1 2.1 00
Applying Lemma 2.3 to the rate function Iy () for the sequence
{U,(1), neN} (see [9], Theorem 2 and its proof), we obtain Iy,,(E () =10
Thus Cy(x) < xE(h), and by our assumption we obtain Z(I,) = %.

Next we want to check that P(U, e®) = 1: this follows by using (1.5) and
the LIL for U-statistics (see, for example, [1], Corollary 3.5).

Naw, by the Dawson—Gértner theorem for projective limits and by Lem-
ma’4.1.3 in [4] it follows that {(7,,(-), ne N} satisfies the LDP in % when
equipped with the topology of uniform convergence on compact intervals. To
strengthen this to the topology induced by the norm ||-||,, we use the inverse
contraction principle, by which it suffices to prove exponential tightness in the
space (%, ||*]l,). For each t, denote by # ([0, t], R?) the projection of € (R, , RY)
onto the interval [0, ¢], equipped with the uniform topology, and by ¢ [0, £](-)
for e (R ., R% denote the restriction of ¢ to the interval [0, ¢]. Goodness of
the rate function I () implies that the sequence {U,[0, 1](), ne N} is ex-
ponentially tight in the uniform topology on .« C ([0, 1], R?). In other words,
for each a > 0 there exists a compact set K, in #/C([0, 1], R%) such that

lim sup —logP(U [0, 11(")¢K,) <

n— o

It follows that for each t >0
K,(0):={¢e%([0, 1], RY):{s— ¢ (st)} € K,}

is compact in € ([0, ], R%, and for each 0 <¢ <«
. 1 ~
(32) limsup —logP(|) {U,[0, 11()¢K, ®})

< limsup - : logP(U {Owl0, 1]( )¢ K, (1)})

n—+w

< limsup - log Z e” T L gt

n>ow N k>n

Since & is arbitrary, for each « > 0 we have

(3.3) lim sup % log P(| {U, [0, 1()#K.0}) < —

For a, t > 0, define

4.0 o2 for t<a
t) =
* t™Y2  for t> a2,
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and consider the sets
.d j
D,:= () {gbe@l: U
i=1
The exponential tightness of {U,(-), ne N} in (@, ||-||,) will be established by

the following two lemmas. The first one is exactly Lemma 1 in [14]. For the
sake of completeness we give the proof.

<d,(t) for all ¢, ¢[0, t](-)eK,(t) for all ¢ > 1}.

LemMA 3.1. For each o> 0, D, is compact in (¥, ||'|l,)-

Proof-Let ¢, be a sequence in D,. By Tychonoff's theorem, the set
(), Kz() i§ compact in ¥ when equipped with the topology of uniform
convergence on compact intervals, so there exists a subsequence (k) such that
Guay converges to some ¢ e () ., K, (?) in this topology. It follows that, for each
T > 0 and for each j,

t>1

Pl &0

i
o5 1+t 1+t

ko 45

Note that this implies, for each t and j,

¢’ (1)
1+¢

<4, (),

and so ¢ € D,. Now for each ¢ > 0 (sufficiently small), we have, for k sufficiently
large,

(34 lpngy— Pll, < su

t<1/e2

<e+2d,(1/6%) = 3e.

i@ $0

brw ® w 4 su
1+t 1+t

1+t 14t

t>1/g2

The set D, is therefore sequentially compact, and hence compact, in (%, ||-||,). =
"LEmMA 3.2. If the assumption of Theorem 1.4 is satisfied, then

1 ~ A
lim limsup — logP(U,,(-)géDa) ="—o00. B
Proof. The proof is an adaptation of the proof of Lemma 2 in [14].
Denote by Ui (-) the j-th coordinate function,je{1, ..., d}. For some 6 > 0 and
for each j we have

n—1 [«2]
@5 P(U (001> @+0) <P(U U (103 k+im) > 1 +0a%)

sn [i] C(0) exp(—0n(k+1)a?) < nC(0)(a* + 1) exp (— O na?).
k=0
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Here we have used Chebyshev’s inequality, Condition 1.1 as well as
Lemma 2.4:

(3.6)  P(Ukr:(D] > (1 +k)a?)

< exp(—On(k+1)a?) E(exp (On (k+ 1) |[Uke+: (1))

< exp(—On(k+1)oa?)E (exp(9m||h||))"’“ < CO"™exp(—On(k+1)a?).
It follows that

67 . hmsup—logP(U (0i@) > 1 +8)a2}) < — 002

t<a2
We also have, for each j and some 6 >0,

3.8) P(U {Ti® > 1+1)d,0®)})

t>a2

n—1 ]

P(UU U {Uik+i/m) > (1+k)d,k)})

i=0 k=[a?]
<n 3 CO™exp(—0n(1+k)d, (k) < nC(O)" Dexp(—bn./a?~172).
k=[x?]

Again we have used Chebyshev’s inequality, Condition 1.1 and Lemma 2.4.
Moreover, we have used the inequality

exp ( Q\/' Dexp(—o+/ko—1/2).
k >ko
It follows that

(3.9 hmsupllogP(U (030 > (L +1)d, (0}) < —0 /o> —1/2.

t>a2

The statement can now be obtained from (3.3), (3.7) and (3.9), via the principle

of the largest term. m 7 -
- This concludes the proof of Theorem 14: m o
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