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LARGE DEVIATIONS FOR EXTREMES OF U-PROCESSES 

m PETER EICHELSBACHER (BIELEFELD) 

Abstract. We prove a large deviations principle (LDP) for partial 
sums U-processes indexed by the half line. The LDP can be formulated 
on a suitable subset of the set of all absolutely continuous paths. We 
endow the space with a topology, which is stronger than the usual 
topology of uniform convergence on compact intervals. An LDP for 
the maximum of the sample path of the U-processes is obtained as 
a particular application. 

1. Introduction, statement of the result and applications. A sequence of 
probability measures (p,, n E N) on a topological space 9" equipped with 
a-field is said to satisfy the large deviations principle (LDP) with speed l/n 
and good rate function I (.) if the level sets (x: I (x) < a} are compact for all 
a < a, and for all T E B  the lower bound 

1 
lim inf - log pn (T) 2 - inf I (x), 

n+m n xsint(r) 

and the upper bound 
1 

lim sup - log p,, (r)  d - inf I (x) 
n + m  n X E C E ( ~ )  

hold. Here int (T) and cl(r) denote the interior and closure of T, respectively. 
We-say that a sequence of random variabIes satisJies the LDP when-the se- 
quence of measures induced by these variables satisfies the LDP. 

For a sequence of Rd-valued i.i.d. random variables Xi with a finite mo- 
ment generating function Borovkov [2], Mogulskii [I31 and Varadhan 1151 
investigated the large deviation behaviour of the partial sums process 

for different scaling~. Denote by L,([O, I], Rd) the space of (equivalence 
classes modulo equality a.e. of) bounded measurable functions on [0, 11, equip: 
ped with the uniform topology. The large deviations principle for { S ,  ( a ) ,  n E N }  
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was established in L, ( [ O ,  11, Rd) with good rate function I ( - )  defined by 
1 

(1.1) = j A*(&) dt 
0 

if 4 E d C ,  ([0, 11, Rd) and I ( # )  = oo otherwise (cf. [4], Theorem 5.1). Here 
dC,{[O, 11, Rd) denotes the subspace of absolutely continuous functions 4 on 
[0, 11 with # (0) = 0 and A* denotes the convex dual (Fenchel-Legendre trans- 
form) of 

- .. A(O)=logEexp((O,X,)), 

The result can easily be adapted to a time interval [ O ,  71. Applying Theorem 
4.6.1 of [4], called the projective limit approach, for TEN yields an LDP for 
{S ,  ( a ) ,  n E  N] in d C ,  (W+ , P), the subspace of absolutely continuous func- 
tions 4 on R, with 4 (0) = 0, equipped with the topology of uniform conver- 
gence on compact subsets of R , .  

Once the LDP with a good rate function is established for a sequence 
{p,, a EN), the basic contraction principle (cf. [4], Theorem 4.2.1) yields the 
LDP for {p,o f - I ,   EN}, where f is any continuous function. Applying this 
principle to the function f: d C o  ([0, 11, Rd) -+ Rd, defined by 

we obtain the LDP for the sequence {sup,,[,,l,S,(t),  EN] with a good rate 
function given by 

(141, Theorem 4.2.1), sometimes referred to as the drawback rate function. 
However, the function f+ : d C ,  (R + , Rd) + Rd, defined by 

is not continuous in the topology of uniform convergence on compact subsets 
of R ,  on any supporting subspace. Dobrushin and Pechersky introduced in 
[5] and [6] a finer topology (a gauge topology) which allows one to prove an 
LDP via the contraction principle for typical quantities of interest in queueing 
theory (the steady-state queue-length at a deterministic buffer with inputs given 
by a real-valued stationary sequence). In their topology the restriction of the 
mapping #J (.) H sup,,,, (# (t) - t )  to a subspace of non-decreasing paths # ( a )  

with lim,, ,4  (t)/t = p < 1 is continuous. In [I41 O'Connell strengthened the 
LDP for the polygonal approximation of ( S ,  (-), n E N )  to the following topolo- 
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gy: Consider the set of paths 

where % ( R + ,  Wd) is the space of continuous functions 4 on R+ and 
4 = (#I, . . ., Let us equip 5'l with the norm 

Note that 3 can be identified with the Polish space V ( B $ ,  Rd) of continuous 
functions 0% the extended (and compactified) real line, equipped with the su- 
premum norm, via the bijective mapping # ( t ) ~  # (t)/(l + t). In particular, J is 
a Polish space. O'Connell shows that the polygonal approximation of 
{ S , ( . ) ,  n f N )  satisfies the LDP in Y with good rate function I ( . ) .  This result 
provides a new tool for looking at large deviations for queueing systems in 
equilibrium (see [14] and references therein). One of the main advantages of 
O'Connell's approach is that f+ is a continuous function with respect to the 
new topology. 

The aim of this paper is to extend the LDP when going from linear 
statistics to higher order statistics, namely the partial sums U-processes, that is 

Here the Xi are i.i.d. random variables and h is a measurable, symmetric 
Rd-valued function, called a kernel function, where 'symmetric' means that h is 
invariant under all permutations of its arguments. Ck with k, rnE Ndenotes the 
set {(i,, . . ., id: 1 < i l  < . .. < im < k). In Eichelsbacher and Lowe [ l l ]  the 
LDP was proved for {U, ( w ) ,  n E N), when L,  ([0, I], Rd) is equipped with the 
uniform topology. By applying the projective limit approach ([4], Theorem 
4.6.1) the LDP holds for {U, ( a ) ,  n E N )  in d C O  ( R + ,  Rd), equipped with the 
topology of uniform convergence on compact subsets of R,. In 1101 the LDP 
for {U,(:),  EN) was proved in a topology, which is an extension-of the 
uniform topology by Orlicz functionals. The aim of the paper is to prove the 
LDP for (U,(-),  EN} in g.  

To this end we give a suitable representation of the rate function I, (4) for 
the LDP of {U, (-), n E 3 for any # E d C ,  (R, , Rd). Moreover, we prove that 
the convex dual of the so-calledfiee energy of a U-statistics yields a nice lower 
bound for I,(.). In the main technique used to strengthen the LDP to the 
topology induced by the norm 1 1 -  11, the inuerse contraction principle (1441, Theo- 
rem 4.2.4 and Corollary 4.2.6) is applied, by which it suffices to prove exponen- 
tial tightness in the space (g, I J . I ( , ) .  That is to check that for every u < there 
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exists a compact set K ,  c Y such that 

where 6,(-) is the polygonal approximation of Un(.), defined in (1.5). 
To formulate our main result we need some more definitions. Let {X,,  EN} 
be a sequence of i.i.d. random variables on a probability space (Q, d, P) with 
Polish state space S and common law p.  Denote by Y the Borel a-algebra in S. 
We denote by d'(S) and A,(S) the sets of Borel measures on S which are 
positiveand positive having total mass k, respectively. These spaces .are equip- 
ped with hhe topology of weak convergence. Recall the definition of the relative 
entropy H (v I p) of v E dl IS) with respect to p E A!1 ( S ) :  

[j f log f d p  if v 4 p and f = dv/dp,  
H ( v I p ) : =  s 

k+m otherwise. 
Denote by 1 1 . 1 1  a norm in Rd. Consider the following condition: 

C o m ~ n o ~  1.1 (the strong Cramer condition): 

j e x p ( B I l h ( ~ ) l l ) ~ ~ ( d x ) < m  for all 8>0, 
Sm 

where pm denotes the m-fold product measure. We define 
m 

(1.4) I ,  (4 )  = inf { 1 H ( 3  I p )dt ,  v ~ d C , n K ,  and j h d v m ( . )  = 4 (.)I 
0 sm 

if 4 E d C O  ( R +  , Rd), and I, (6) = oo otherwise. Here 
a3 

K,:= U ( v ( . ) :  j H ( 3 l p ) d t  < L ) ,  
L30 0 

and d C o  is defined to be the set of all maps v: R +  +Af  (S) which are 
absolutely continuous with respect to the variation norm I I . I I Y a r ,  satisfy 
u ( t )  - v (s)  E At -, ( S )  for all t >, s ,  while v (0) = 0, and the maps v have a weak 
derivative for almost all t .  The latter means that for almost every t E R ,  the 
expression (f, v (t + h) - v ( t ) ) /h  converges to a limit (f, 9 ( t ) )  for every f E C ,  ( f l ,  
where (., -) denotes the Euclidean scalar product and C,(S)  denotes-the set of 
bounded and continuous Rd-valued functions on S (cf. [3 ] ) .  Using the main 
result of [11] we obtain 

THEOREM 1.2. if Condition 1.1 is satisfied, the LDP holds for ( U n ( - ) ,   EN} 
in Lm ( R + ,  Rd) ,  equipped with the topology of uniform convergence on compact 
subsets of R , ,  with good rate function I , ( . )  defined in (1.4). 

We consider the polygonal approximation of U n ( - ) ,  that is 
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Note that on(.) is continuous. It carries the same information as U r n ( - ) .  
Moreover, by [I 11, Lemma 3.2, (U, I.), n F N )  and { U " ,  ( w ) ,  n E N) are exponen- 
tially equivalent in L,  ([0, 11, Rd), equipped with the uniform topology. Hence 
the LDP behaviour is the same with respect to this topology. Analogously to 
Theorem 1.2 we get: 

COROLLARY 1.3. I f  Condition 1.1 is satifled, the LDP holds for (on(.), 
n EN in L, (R, , Rd), equipped with the topology of uniform convergence on 
compact subsets of R,, with good rate function I,(.) dt.fined in (1.4). 

The ~ a i n  -result in this paper is the following: 

TI&R&I 1.4. If Condition 1.1 is satisfied, then {on ( n ) ,  n E ~ V )  satisjks the 
LDP in (g, II.II,), with good rate function 1, ( - 1  given by (1.4). 

Remark  1.5 (Vprocesses). Notice that by similar arguments we get the 
same result for a partial sums Vprocesses 

1 
K(t) = - ( X ,  . X), ~ E R + .  

llrn lsii, ..., i ,<[nt] 

We only have to assume in addition a weak Cramtr condition for the diago- 
nals: there exists at least one 8 > 0 such that 

for every map z: ( 1 ,  . . ., rn) + (1 ,  . . ., m), where x,: Sm -, Sm is defined by 

x,  (s)  = (s,(~), . . ., st(,]) for every s = (s,, . . ., s,) ES". 

We omit the details. 

To illustrate how Theorem 1.4 can be applied, we will continue to go 
through the extremes of the sample path process: consider the function f+ 
defined by (1.2). If E(h) = p, then the LDP holds in the subspace 

~ E V ( R , ,  R~): lim -- 
t+* l + t  -- 

Now, if p < 1 ,  the restriction off, to Y (p) iis'finite and continuous. Hence 
{suptER+ q ( t ) ,  n E N )  satisfies an LDP with good rate function given by 

Let the kernel function h be given by h ( x ,  y) = xy (the sample second moment) 
and assume that p is an arbitrary probability distribution such that Condi- 
tion 1.1 is fulfilled. Since for m = 1, by Corollary 2.7 in [ I l l ,  

m m 

inf ( J  H ( 3  ] pjdt, v ~ d C , n K ,  and 1 xdv(.)  = #(.)I = j ~ * ( # ) d t ,  
0 S 0 
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the partial sums U-process with kernel h fuIfil1s the LDP with rate function 

~ m ~ d ) = j ~ * ( , , 6 @ ) d t  o if#>Oand,/$@~d~,(~+,~d), 

and I, ($) = c~ otherwise (it follows from the contraction principle). Hence 

. = i d  inf {j~*(m): $(T) = y )  = ini TA* (e). 
s>O 0 

Similar calculations have previously been demonstrated by several authors 
(cf. [8], [14] and references therein). The calculations heavily depend on the 
special kernel function. For arbitrary kernel functions h such a nice represen- 
tation of the rate function is, of course, out of reach. 

2. Preliminaries. First we state a representation of the rate function I ,  (.) 
defined in (1.4) and deduce a lower bound for I , ( . ) .  For k ~ l V  and 
0 = to < t, < ... <t, < CQ, set e0 = O and define 

for Q : = (Q~, ,  . . . , 4,) E (A '(S))". Since H (v I p)  = + CKI for v # dl (s), we may 
concentrate on those sequences of measures Q with Q,, (S) = tj, 1 < j < k. The 
next result follows from Lemma 2.2 in [lo]: 

LEMMA 2.1. Assuming that Condition 1.1 holds, we get the representation 

where 

~ n d  t = (t,, . . ., t,). 
Proof.  For the sake of completeness we sketch the proof. It is an easy 

adaptation of the proof of Lemma 2.2 in [lo]. Denote the right-hand side of 
(2.2) by J (4).  Assume that J (4) < ao . We can find a sequence Q = (Q,, , . . . , Q,,) 
such that 

. @ ~ K , ( t ) n { ~ h d e ~ = $ ( t ~ ) ,  l < i < k )  and H , ( Q ~ ~ ) P J ( ~ )  
(to see why, note that HA(@ 1 p) is increasing for a nested sequence 
((t,, . . ., tk)Ik). We may assume that the sequence ((t,, . .., tJIk is increasing 
(nested) and the sets {(t,, . . ., t,)), become dense in R+ . Note that 
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where Q ( - )  denotes the polygonalization of g .  There exists a subsequence v, of 
these polygonalized measure-valued functions that converges in the topology 
generated by the uniform (on compact sets) weak convergence on R+ to some 
measure-valued function v and 

Therefore we get I , ( $ )  G J ( # )  if we can show that v satisfies , , 

- .  - -  [hdvm(t) = 4(t), t € R + .  
b 

Clearly, v (.) E K, . For each t E ((t , . . , tk)), by truncating h at height L and 
an application of Lusin's theorem and Tietze's extension theorem (and denot- 
ing this map by h,) we get 

by the weak convergence of the v, (t) to v (t). For any other s E R+ we obtain for 
~ E R +  

Therefore, first choosing t in some set ((t,, . . ., t,)) close enough to s such that 
the second term on the right-hand side is bounded by a given E > 0 and 
114 (t) - 4 (s)ll < E (since v (t) weakly converges to v (s) on an appropriate corn- 
pact interval and # is continuous) and then choosing L large enough bounds 
the first and fourth terms on the right < E .  Finally, choose n large enough so 
that the third term is d E and so that f h dvT(t) is equal to # (t). Putting this 
together allows us to bound [IS hdvm(s)- 4(s)ll by 6 ~ .  Note that, for any 
Itl, . . . , tk), with e = (el, , . . ., e,,), - 

m 

inf{H,(e I PI: She; = #(tj) ,  1 < j  < k, e ~ K , ( t ) )  < Hk(e I P )  < H(Q I p)ds .  
0 

Therefore, I, (4) = J (4) holds in the case Jf#) < co. In the case J ( 4 )  = co, the 
set on the right-hand side in (2.2) over which the infimum is taken must 
be empty, for otherwise J (4)  < co. Therefore, (2.2) holds also in this case. 

A conclusion of the LDP result for U-statistics is the existence of the free 
energy function of U ,  (I) ,  defined by C,(x) : = lim,, , Cu,, (x), where 

1 c,,, (x) : = - log Epn (exp (n (x, u, (1)))) 
n 
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(cf. Corollary 5.8 in [9]). Moreover, using Theorem 4.5.10 in [4], we obtain 

for x€lPd, where IrmI,)(.) denotes the LDP rate function of the U-statistic 
U,,[l). Set 

Then 

- .  . . C*(.) G I U " [ l ) ( . ) .  

C* is called the afine regularization (cf. [9], Corollary 5.8). The following 
observation follows easily from Lemma 2.4 in [lo] and our Lemma 2.1. We 
omit the proof. 

LEMMA 2.2. Assuming that Condition 1.1 holds, we get the following Iower 
bound for I ,  (-1: 

a, 

I ,  (4) 2 5 C* (#I dt- 
0 

The drawback rate function in the contraction principle has the following 
property: 

LEMMA 2.3. Let {p,, n E N} be a sequence of probability measures on a met- 
ric space X satisfying the LDP with good rate function I (-). Let f :  % + 9 be 
a continuous map into another metric space CY. Then the good rate function of the 
sequence  of - I ,  n E N }  defined by 

has the following property: If I(x) = 0 $f x = 2, then 

J(y) = O o y  = J : =  f(2). 

Proof.  The proof is a simple adaptation of the proof of Theorem 5.2 (ii) 
& [7]. If I(%) = 0, it follows that J ( j j )  = 0. Conversely, if J ( y )  = 0, there exists 
a sequence {x,, n EN} in E such that f (x,) = y for each n E  N  and I (x,) + 0 for 
n.-+ m.  Hence the sequence (x,, n EN] is in one of the level sets of I-( . ) .  Thus 
there exists a subsequence (x,,, 1 EN) such that lim,,, x,, = x and, by the 
Iower semicontinuity of I(.), we have I(x) = 0. Using the continuity off ,  
we obtain f (x) = y. But, by assumption, I ( x )  = 0 iff x = 2, and thus 
y = f [ Z ) = F .  . 

Moreover, main ingredients in our proofs are the following results estab- 
lished in [12], Section 5, and in [4], Corollary 4.2.6: 

LEMMA 2.4 (Hoeffding). For s > 0 

~ ~ ( e x p ( s l l ~ . ( 1 ) 1 1 ) ) 4 E ~  exp -llhll , where k : = 1 : 1 .  ( ( >>I 
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LEMMA 2.5 (the inverse contraction principle). Let (p,, n E be an exponen- 
tially tight sequence of probability measures on a topological space X equipped with 
the topology z, , that is, the sequence satisfies (1.3) for euery ol < co . If {p,, n E IV) 
satisfies can LDP with respect to a Hausdor-topology z, on 9" that is coarser than 
z,, then the same LDP holds with respect to the topology z,. 

3. Proof of the results. 
Proof  of Theorem 1.2. By Theorem 4.6.1 in [4], the LDP follows 

immediately. We only have to check the representation (1.4) of the good rate 
function. L-a 2.2 in-€101 yields that the rate function for the LDP of 
{U, (-1, n E A$ in L,  ( [ O ,  TI, Rd) for T > 0 fixed has the representation 

Hence applying (4.6.2) in [4] yields that the right-hand side of (2.2) is the rate 
function for the LDP of {Un(-), n~ N}  in L, ( R , ,  Rd), endowed with the pro- 
jective limit topology. Now we apply Lemma 2.1 and the proof is given. m 

P roo f  of Coro l l a ry  1.3. By Lemma 3.2 in [I l l ,  ( U , ( . ) ,   EN) and 
(0, (-), n E N )  are exponentially equivalent in L, ( [ O ,  11, Rd), equipped with 
the uniform topology. The same proof works on Lm ([O, q, Rd) for a fixed 
T> 0. Therefore applying Theorem 4.6.1 in [4] yields the LDP for 
{on(.), n EN} in L, ( R , ,  Rd), equipped with the topology of uniform conver- 
gence on compact subsets R,.  The rate function is the right-hand side of (2.2). 
Hence applying Lemma 2.1 gives the result. cl 

Proof  of Theorem 1.4. Denote by g(I,):= { I $ :  I, (4) < a) the effec- 
tive domain of I, (-). First we prove that 9(I,) c 9i. By the definition of 
g we can consider the R-valued case. Moreover, by considering 
0, (t) - E (0, (t)) x on (t) - t" E(h) we can, without loss of generality, assume 
that E(h) = 0 (using the contraction principle). Let q5(-) be chosen such that 
I, (I$) < GI. By convexity of C* we infer from the proof of Lemma 5.1.6, (5.1.11), 
in [4] that 

holds. Therefore, applying Jensen's inequality and Lemma 2.2 yields 

m 

tC* (4 (t)/t) < 5 C* (#) dt < I ,  (I$) < GI for each t > 0. 
0 

If Condition 1.1 is fidfilled, C,(x) is finite for every XER,  and therefore we 
observe that, for all X E R  and all Q > 0, 



Consequently, 
o l 1  

lim &@ ( t ) ~  lim -+- sup (C,(A)}. 
t+u Jl+j ,+a ~t A = .  

Applying Lemma 2.3 to the rate function ILm(,)(.) for the sequence 
{ U, (I), n E N )  (see [9], Theorem 2 and its proof), we obtain I,,,,,, (ECR)) = 0. 
Thus C,(x) < xE(h), and by our assumption we obtain 9 ( I , )  c g. 

Next we want to check that P @ , E ~ )  = 1: this follows by using (1.5) and 
the LIL for U-statistics (see, for example, [I], Corollary 3.5). 

Nnw, by -the Dawson-Gartner theorem for projective limits and by Lem- 
ma'4.1.5 in [4] it follows that (0, (-), n E N) satisfies the LDP in when 
equipped with the topology of uniform convergence on compact intervals. To 
strengthen this to the topology induced by the norm [I.II,, we use the inverse 
contraction principle, by which it suffices to prove exponential tightness in the 
space (Y, I1-IIU). For each t, denote by V([O, t], Rd) the projection of % (W + , Rd) 
onto the interval [0, t], equipped with the uniform topology, and by # 10, t] (-) 
for 4 E W ( R  + , Rd) denote the restriction of I$ to the interval [0,  t] . Goodness of 
the rate function I , ( . )  implies that the sequence {o,[O, I](-),  EN) is ex- 
ponentially tight in the uniform topology on .dC([O, 11, Rd). In other words, 
for each a > 0 there exists a compact set K, in d C ( [ O ,  11, Rd) such that 

1 
limsup - l og~(0 , [0 ,  1] ( . )$~ , )  < -a. 

n+m T I  

It follows that for each t > 0 

is compact in %(LO, t], Rd), and for each 0 < E < ct 

Since E is arbitrary, for each a > 0 we have 

1 
limsup - l o g P ( U  {O,[O, t ] ( . )$~,( t ) ))  d -a. 

n-+m Il t > l  

For a, t > 0, define 

for t < a2, 

for t > a2, 
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and consider the sets 

The exponential tightness of {on(-), n c N }  in W ,  1 1 . 1 1  J will be established by 
the following two lemmas. The first one is exactly Lemma 1 in 1141. For the 
sake of completeness we give the proof. 

LEMMA 3.1. For each ol > 0, D, is compact in (Y, tla11,). 

P r o  o E- Lety 4,  be i sequence in D,. By Tychonoffs theorem, .the set n,, , K; (t) ii compact in fY when equipped with the topology of uniform 
convergence on compact intervals, so there exists a subsequence -n (k) such that 
#n(k) converges to some 4 E nr,, K,(t)  in this topology. It  follows that, for each 
T > 0 and for each j, 

lim sup = 0. 

Note that this implies, for each t and j, 

and so # E D , .  Now for each E > 0 (sufficiently small), we have, for k sufficiently 
large, 

The set D, is therefore sequentially compact, and hence compact, in (Y, II.II , ) .  
-LEMMA 3.2. If the assumption of Theorem 1.4 is satisfied, then 

13-41 Il#n~k)-411U < SUP 
t < l j a 2  

1 
lim limsup - l o g ~ ( o n ( . ) $ ~ , )  = -m. - 
a+m n + m  n 

(t) 4' + SUP 1 4iCk) ( t)  # j  (t)l 
+ l + t  ,>I,~z l + t  l + t  

Proof.  The proof is an adaptation of the proof of Lemma 2 in 1141. 
Denote by U; (.) the j-th coordinate function, j E { l  , . . ., d )  . For some 8 > 0 and 
for each j we have 
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Here we have used Chebyshev's inequality, Condition 1.1 as well as 
Lemma 2.4: 

(3.6) P(Iuik+i (111 > (1 + k ) a 2 )  

< exp(-Hn(k+1)~1~)~(exp(0n(k+l)1~!~+~(1)1)) 
< exp(-~n(k+l)a2)~(exp(~m~lhll))n" < C(B~1mexp(-8n(k+l)rr2). 

It follows that 

We also have, for each j and some 0 > 0, 

m 

c n C c (0)nim exp (- On (1 + k )  d, (k))  c nC (o)"tm D exp ( - On J Z T / 2 ) .  
k = [a2] 

Again we have used Chebyshev's inequality, Condition 1.1 and Lemma 2.4. 
Moreover, we have used the inequality 

It follows that 

1 
(3.9) lirn sup - log P ( U {lo: (t)l > (1 + t) d ,  ( t ) ) )  < - 0 j m / 2 .  

n- tm t? t>a2 

The statement can now be obtained from (3.3), (3.7) and (3.9), via the principle 
of the largest term. rn 

This concludes the proof of Theorem 1.4. ra -- 
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