PROBABILITY AND MATHEMATICAL STATISTICS Vol. 19, Fasc. 1 (1999), pp. 181–201

PSEUDO-MARTINGALES

R. Jajte A. Paszkiewicz

Abstract: For a probability space (Ω, \mathcal{F}, P) and a filtration (\mathfrak{U}_n) in Q, we consider the sequences (X_n) of random variables satisfying the condition

$$E(X_{n+1} - X_n | \mathfrak{U}_n) = 0, \quad n = 1, 2, \dots$$

In general, the process (X_n) is not required to be (\mathfrak{U}_n) adapted and it is called a *pseudo-martingale*. We indicate simple and natural conditions implying a good asymptotic behaviour of pseudo-martingales. For example: let (X_n, \mathfrak{U}_n) be a uniformly integrable pseudo-martingale with $\mathfrak{U}_n \nearrow \mathcal{F}$. Then $X_n \to X$ weakly in L_1 where

$$X = \lim_{n \to \infty} E(X_n | \mathfrak{U}_n).$$

Some approximation results for σ -fields are obtained with implications to pseudomartingales. A number of examples is collected.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE