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Abstract. We define and study the sign-symmetric Dirichlet-type 
and Liouville-type distributions on n-dimensional space. We give 
a complete stochastic representation for infinite sequences of random 
variables {X,: n E N} with the property that for every n e N  the random 
vector [X,, . . . , X,) has a sign-symmetric Liouville-type distribution. 

1. Introduction. In this paper we study a family of multivariate dis- 
tributions which contains as special cases many well-known classes of distri- 
butions, including the spherically symmetric distributions C33. The distribu- 
tions treated here may be obtained by the following construction. Let 
Z ,  , . . . , Z, be mutually independent, real-valued, random variables, where the 
probability density function of Zi is 

for z, E R and positive parameters ai and pi, i = 1, . . . , n. Further, define 

for i = 1, .. . , a. This construction is similar to a well-known procedure for 
constructing the Dirichlet distributions using gamma random variables [ll]. 
The distribution of the random vector (U, , . . . , Un) is called the sign-symmetric 
Dirichlet-type distribution. 

We shall also study the distribution of the random vector 

(1.3) (XI, . . . , X,) = (U, 01/=1, . . . , U,, O1lQn), 
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where O is a positive random variable independently distributed of 
(U,, . . ., U,). We call the distribution of the random vector (XI, .. ., XJ the 
sign-symmetric Liouville-type distribution. This construction is similar to 
a well-known procedure for constructing the multivariate LiouviIle distri- 
butions using Dirichlet random variables (cf. [5], [7] -[10], [18]). 

When ai 2, the distribution of (XI, . . . , X,) has been considered in [4]; 
in addition, when Pi = 1, this class reduces further to the spherically symmetric 
(or rotationally invariant) distributions, a family that is widely utiIized in 
probability and statistics both in finite-dimensional settings (cf. [3], [5], [lz], 
[17n and infinite-dimensional applications (cf. [13], [14], [17]). 

When mi = a and pi = 1, the distribution of (XI, . . . , X,)  reduces to the 
2,-isotropic distributions (cf. [I], [2], [15]), so-called because they have the nice 
property that the level curves of their densities are spheres in the 1,-norm on Rn. 
It has been shown recently [I61 that, within Bayesian analysis, the 1,-isotropic 
distributions satisfy certain robustness properties known to hold for indepen- 
dent, identically distributed data. 

To explain our choice of terminology, note that the distribution of the 
random vector (XI, . . . , X,) is sign-symmetric if it has the same distribution 
as @,XI, . .., r,X,), where r,, . . ., r, is the Rademacher sequence of indepen- 
dent (and independent of (XI, ,.., X,)) random variables with P(ri = 1) 
= P(r, = - 1) = 1/2. We use the terms "sign-symmetric Dirichlet-type dis- 
tribution" and "sign-symmetric Liouville-type distribution" to underline that 
our distributions differ from the Dirichlet and Liouville distributions not only 
by their sign-symmetry but that they also differ by the shape of their supports. 

In Section 2 we derive certain preliminary results for the sign-symmetric 
Dirichlet-type distribution. In Section 3 we give some basic properties of the 
sign-symmetric Liouville-type distribution, including marginal and conditional 
distributions, and formulas for moments and correlations. We also deduce the 
extent to which a sign-symmetric Liouville-type random vector (XI, . . . , X,) 
has a uniqe representation of the form (1.3) for some sign-symmetric Dirichlet- 
-type random vector (U, ,  . . ., Un) and positive random variable O. 

Section 4 contains the main results of this paper. We prove that an infinite 
sequence of sign-symmetric Dirichlet-type random variables exists if and only if 
Cz,  &/ai < co, and in that case we construct the sequence. In both cases, 
CZl &/mi < co or CrP"_, &/ai = a, we derive a stochastic representation for 
infinite sequences of sign-symmetric Liouville-type random variables. It turns 
out that in the former case, the sequence of sign-symmetric Liouville-type 
random variables is a scale mixture of a related sign-symmetric Dirichlet-type 
sequence; whiIe in the latter case, it is a scale mixture of a sequence of 
independent random variables each having density (1.1). This situation is 
completely unlike that of the exchangeable I,-isotropic sequences [I], [2], [15]; 
in that context it is not possible to obtain more than one type of stochastic 
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representation for exchangeable la-isotropic sequences of random variables, for 
then we have x:, , &/ai + as n -+ cu. 

Finally, it should be noted that all the techniques used in this paper also 
apply to the corresponding distributions on the positive orthant; that is, the 
distributions of the random vectors ( U , ,  . . . , Un) defined as in (1.2) but where 
the random variables Zi have densities 

for zi > 0, i = 1 ,  . . ;, n. Therefore all our results have natural analogues for the 
classical Oirichlet and Liouville random vectors as well as for the distributions 
considered in [19]. 

2. The sign-symrnetaic Dirichlet-type distributions. Throughout a,, . . . , a, 
1 and D l ,  . . . , &, are positive parameters. We use the notation pi = xj= Bj/aj for 

i = 1, . . . , n. We also let (a) + = a or 0 according as a > 0 or a < 0, respectively. 

2.1. LEMMA. We have 

Proof.  To prove this result, we use the symmetry of the integrand to 
reduce the domain of integration from Rnpl  to R",-l (where R+ = [O, a)) ;  
replace each ui by utiai; and then apply the classical Dirichlet integral 
CSJ, ~ 7 1 .  

2.2. DEFINITION. A random vector ( U , ,  . . . , U,) is said to have 
a sign-symmetric Dirichlet-type distribution with parameters a,, ..., an and 
81, ..., fin if 

(i) Un is a symmetric random variable; 
(ii) z=, IUilai = 1 almost surely; and 

(iii) the joint density function of ( U , ,  .. ., Urn- , )  is 

Whenever Definition 2.2 holds we write 

If a, = 1, then the distribution of ( U , ,  ..., U,) may be called the sign- 
-symmetric Dirichlet distribution. If ai = 2 and Pi = 1, then the random vector 

2 ( U , ,  . . ., U,) is uniformly distributed on the unit sphere ( (x , ,  . . . , x,): x1 + . . . 
. . . + x i  = 1) in R" (see [3] and [12]). If mi = a and #I = 1, then (U,, . . . , UJ is 
1,-isotropic 111, 121, 1151. 
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We now collect some basic properties of the distributions 999 (a , ,  . . . , un; 
P I ,  , . . , #I,). We will first deal with the properties of the marginal distributions. 

2.3. PROPOSITION. Suppose that ( U , ,  . . . , Un)  - Y g ( a , ,  ..., or,; / I 1 ,  .. ., 83 
and 1 6 k < n. 

(i) The marginal density function of ( U ,  , . . . , U,) is 

{ii) Let.  E be a random uariabie taking ualues + 1 each with probability 1/2, 
and independent of ( U , ,  .. ., U,). Then for any a > 0 

Proof.  (if The marginal density function of (U, , . . . , U3 is 

The desired result can be obtained by substituting 

for j = k + 1 ,  . . . , n - 1, and then using Lemma 2.1. 
(ii) It is not difiicuIt to see that the conditions (i) and (ii) of Definition 2.2 

are satisfied. As for the third condition, this foIlows from the formula obtained 
above for the marginal distribution of ( U , ,  . .. , U,). BA 

2.4. Remark. As a simple application of (2.2) we obtain the following 
result. Suppose that a and f l  are positive numbers. Also suppose that the (k+ 1)- 
-dimensional random vector (V, , . . . , b$ + ,) 99 (a,, . . . , u,, a ;  P I ,  . . . , Pk,  B). 
If 

B/a = P , - P ~ ,  

then it follows from (2.2) that the vectors ( U , ,  . . . , U,) and (V,, . . . , G) have the 
same distribution. 

2.5. PROPOSITION. Suppose that ( U ,  , . . . , U,) - 99 ( o l ,  , . . . , a,; f l , ,  . . . , Bn) 
and 1 < k < n. Then the conditional density function of ( U , ,  . . . , Uh- , )  given 
{ U k + ,  = u ~ + ~ ,  ..., Un = u,) is 

Proof.  This is obtained in the standard way by dividing the joint density 
function of (U,, . . . , U h - l ,  U k + , ,  . . . , Un)  by the marginal density function of 
(U,'+lY . * - ,  Un). 
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2.6. Remark. By rewriting the conditional density function of 
(U1, ..., Uk-, ) ,  given {Ukfl = uki l l  ..., Urn = uR) in (2.3), in the form 

k - 1  - 1  where R = 1 -z+ ,. I UiIa: and A, = -z., a, , we see that (2.4) or (2.3) is also 
the conditional denslty function of the random vector (u,R~/"' ,  . . ., U k- 1 R""L-' b 
given R, where 

- 
( U 1 ,  .-., u k ? - 9 g ( a 1 7  --., ak; P I ,  a m . ,  @k) .  

2.7. PROPOSITION. (i) For h , ,  . . . , h, > 0, 

(ii) For i, j = 1, ..., nl i # j ,  

EIUJ = CovIU,, Uj) = 0 and Var(Ui) = 
r I pn) r (Bi/ai + 2/04 
r ( p n  + 2 / ~ i I r ( B i / a J m  

(iii) For i = 1, ..., k and h > 0, 

Pro  of. These formulas follow immediately from Lemma 2.1. is 

2.8. Remark.  In the Introduction it was implied that if Z 1 ,  . . ., 2, are 
independent random variables with density function (1 .1 ) ,  and U , ,  . . . , Un are 
defined as in (1.2), then 

This claim can be verified by observing that U ,  is a symmetric random 
variable; that z=, (liiIai = 1 with probability 1 ;  and that the joint density 
function of ( U , ,  ..., U,- , ) ,  which is calculated from the joint density of 
Z ,  , . . . , Z,, is of the form (2.1). 

3. The sign-symmetric Liouville-type distributions. 
3.1. DEFINITION. A random vector (XI, . . . , X,) is said to have 

a sign-symmetric Liouville-type distribution if there exist a sign-symmetric 
Dirichlet-type random vector ( U , ,  . . . , U,) - 993 (a,, . . . , a,; fl,, . . . , fin) and 
a nonnegative random variable O, independent of (U, , . . . , U,), such that 

3 - PAMS 16.1 
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Whenever Definition 3.1 holds we will use the notation 

3.2. PROPOSITION. Suppose that (XI, . . . , XA - YLf'(a,, . . . , a,,; PI, . . . , b,; 0) 
and B is absolutely continuous with probability density function g. Than the joint 
density function of (X,, . .. , X,) is 

where x , , . . . , x, E R . 
Proof.  Since x:=, JUilmi = 1 almost surely, it follows from Definition 3.1 

that @ = x;=, IXilaL almost surely. Then the result is obtained using the 
standard method of transformations. s 

3.3. EXAMPLES. (i) Let a, = 2 and Pi 1. Then the random vector 

(X,, ..., X,) - Y9(a1, " ' 7  01,; 81, B n ;  0) 

has a spherically symmetric distribution [3], {12]. 

(ii) If a, = 1, then (X,, ..., X,) may be viewed as a sign-symmetric 
Liouville distribution. 

(iii) If ai = u > 0 and pi = 1, then (X,, . . ., X,) has an 1,-isotropic dis- 
tribution [15]. In the case where (X,, . . ., X,) is absolutely continuous, the 
density function is constant on the la-spheres {(x, , . . . , x,) E Rn: xy=, lxila = c), 
c constant. 

(iv) Suppose that O has a beta distribution with parameters p, and B/a, 
where a ,  > 0. Applying Proposition 3.2 and Proposition 2.3 (i) we deduce 
that the distribution of (Xi, ..., X,) is the same as the distribution of 
(Y,, .. . , Y,), where (Y,, .. ., Y,) is a subvector of the vector 

(Y,, ..., Yg(a , ,  ..., a,, a; PI ,  ..., P,, 8)- 
Note. that the distribution of (X, , . . . , X,) dep.ends on a and only through the 
ratio P/a; cf. Remark 2.4. 

(v) Similarly to the independence properties of the Liouville distributions 
[7], the random variables X,, . . . , X, are mutudly independent if and only if 
each Xi has density function 

In that case, O has density function 

bPn 
,.p, - 1 - br 

u p 3  
for r > 0. 
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The marginal distributions of (XI, . . ., XJ - SPY (ol,, . . ., a,; f i , ,  . .. , j,; 0) 
are given in the following result. 

3.4. PROPOSITION. Suppose that (X,, . . . , X,,) - 9'9 (a1, . . . , cts; fll , , , . , 
8,; @) and 1 < k < n. Then 

where 

Moreover, 8, is absoIukly continuous (with respect to Lebesgue measure) and the 
density function g, of O, is 

for r > 0, where A is the distribution function of O. 

P r o  of. By Definition 3.1 we have 

Letting R, = 1 - ~ ~ = , + ,  JUiJ"' and U: = UiRLIIa*, i = 1, .. . , k, then we obtain 

l/ar . OR,=@, and (XI, ... ,x,)=(u\(R,@) lial,.. . ,&(Rk@) ) 

Moreover, by applying the techniques used to establish Proposition 2.3 we 
deduce that R, has a beta distribution with parameters pk and p,-p,. 

Next, it follows from the definition of the sign-symmetric Dirichlet-type 
distributions that (U;, . . . , U;) - 99 (a,, . . . , a,; PI, . . . , and is indepen- 
dent of R, 8 = Bk.  Finally, the density function of 0, is calculated directly 
using the representation Ok = R, 0 and the known distribution of R,. 

We now 'study the uniqueness of the representation 99 (a, , . . . , an; 
PI, . . . , 8,; 0 )  for the sign-symmetric Liouville-type distributions. 

3.5. PROPOSITION. The representation (X,, . . . , Xh - 9'9 (al, . . . , a,; 
PI, .. ., f in; G) ofa sign-symmetric Lioutlille-type random vector (X,, . .. , X,) is 
unique if 

(i) n = 2 and O has a continuous density function, or 
(ii) n >, 3. 

Proof,  We will only prove (ii) since the proof of (i) is similar. Thus 
suppose that 
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and also that 

Now consider the random vector (X,, . . . , Xn- l ) .  By Proposition 3.4 there 
w 

exist positive random variables 0,-, and such that 

and 

. . 

Moreover, 0,_, and dm-1 are absolutely continuous with continuous density 
functions, say, g , - ,  and respectively. Applying Proposition 3.2 with - 
On-, and 0,-, we obtain two representations for the density function of 
(Xi, . . ., X,-,). Setting 

, r ) = r l - l g n l ( r  and r ) = r l p - l ( r  f o r r > O ,  

and then comparing the two representations for the density of (X,, . . ., X,- ,) 
we obtain the identity 

where c, is a constant. 
Now suppose that there exists j < n such that Pj # pj, and without loss of 

generality assume that Pi > P[i; by renumbering the variables in (3.2) we can 
even assume that j = 1. Then (3.2) reduces to 

As lxll -+ 0, the left-hand side of (3.3) tends to zero for every fixed x,, . . . , xn-I . 
This implies that the right-hand side of (3.3) is identically zero, which 
eventually leads to the conclusion Jn- - 0. This is clearly a contradiction. 
Therefore Pl < 8;. If P1 < P;, then a similar argument leads to the conclusion 
gn-, = 0, again a contradiction. Therefore f i l  = P;. By considering the random 
vector (X,, . . ., X,) instead of (XI, . . . , Xn-,) and foIlowing the above proce- 
dure, we eventually obtain Pj = b[i for all j = 1, . . ., n. 

Applying this conclusion to (3.3), we are now faced with the identity 

where c ,  is a constant. By equating the level curves of both sides of this identity 
we find that for any r  > 0 
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where the constant c, is possibly dependent on r.  It is well known that this last 
identity holds if and only if mi = a; for a11 i = 1, . . . , n-  1. As before, we also 
deduce that a, = a: by working with the random vector (X, ,  . . . , X,). 

In conclusion, the parameters ai and bi are uniquely determined by the 
distribution of (X,, . . . , Xu). In turn, the distribution of O is also uniquely 
determined by the constraint O = C;=, JXilal almost surely. s 

We now turn to the behavior of the conditional distributions of sign- 
-symmetric Liouville-type random vectors. 

3.6. PROPOSITION. Suppose that ( X I ,  . . . , X,) - YY (mi, . . . , a,; B1, . . . , 8,; 0) 
where 8 is'csbsohtely continuous with densityfinction g, mrd 1 & k < n. Then the 
conditional distribution of (XI, . .., X& given {Xk+l, -. ., Xn) is YLF(ix,, ... , mk; 
jl, . . . , P I ;  QJ, where Qc is the conditional random uariable z:= =, IX,]" given 

C+ IXilai- 
Proof.  Since 8 is absolutely continuous, the joint density function of 

(XI, . . . , X,) is given by Proposition 3.2. Also the marginal density function of 
(Xk + ,, . . . , X,) is obtained from Proposition 3.4. Dividing the joint density by 
the marginal density, we find that the conditional density of (Xi, . . . , Xk) given 
(Xk+ = xk+ . . . , Xa = x,) may be written as 

where g, is defined in Proposition 3.4. 
Noting the general expression for the density given in Proposition 3.2, we 

see that the above expression for the conditional density is the same as the joint 
density of YdiP(a,, ..., a,; j?,, ..., P,; O,), where 0, has the density 

and r = z;=,+, IxilQi. It is straightforward to verify that this last expression is 
the density of the random variable z:=, IXiIUi given z:+, JXilai = r. rn 

In ending this section, we note that the calculation of the moments of 
a sign-symmetric Liouville-type random vector (XI, . . . , X3 proceeds directly 
from Definition 3.1 and the formulas for the moments of the sign-symmetric 
Dirichlet-type random variables. In particular, if E (02kf l) < a, then, for any 
 EN, E(X;k+l) = 0, i = 1, ..., n. 

I Infinite sequences with sign-symmetric Liouville-type distributions. In this 
section we treat the properties of infinite sequences of random variables 
for which every finite subsequence follows a sign-symmetric Liouville-type 
distributions. 
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4.1. DEFINITION. An infinite sequence of random variables (Ui:  EN) is 
said to have a sign-symmetric Dirichlet-type distribution if for every n E N 
there exists a symmetric random variable W, such that the random 'vector 
(U,, . . ., U,, W,) has a sign-symmetric Dirichlet-type distribution. 

4.2. PROPOSITION. Suppose that the sequence (Ui:  EN) has a sign-syrn- 
metric Dirichlet-type distribution. Then there exist seqkences of positive numbers 
ai, Pi, y i  and 4, i E N ,  such that for every n E N the random vector (U,, . . . , U,, 
K) 99(m1,  . .. , a,,, 7,; PI, . . ., p,, 6,). Moreover, the sequences q, 8, and 
Si/yi Qre uniquely determined by the distribution of {Ui). 

. . 
Proof.  Choose an n E N. By an application of Proposition 2.3 (i) we find 

that the density function of (U,, ,,., U,,) exists and is proportional to 

Since n is arbitrary, this also establishes the existence of the sequences ori,  
pi, yi and 6,. Moreover, the uniqueness of these sequences follows from 
Proposition 3.5. H 

4.3. DEFINITION. An infinite sequence of random variables (Xi:  EN) 
is said to have a sign-symmetric Liouville-type distribution if for every  EN 
the random vector (XI, . . . , X,) has a sign-symmetric Liouville-type distri- 
bution. 

4.4. PROPOSITION. Suppose that {Xi: i E N )  has a sign-symmetric Liouville- 
-type distribution. Then there exist sequences of positive numbers ai and pi, i~ N ,  
and an increasing sequence of random variables O1 < 0, < . .. such that, for 
every  EN, 

Proof.  The existence of the sequences ai and pi, i E N, follows as in 
Proposition 4.2. 

Next, again choose  EN. By the definition of the sign-symmetric 
Liouville-type vector, there exists a sign-symmetric Dirichlet-type vector 
(U1, . . . , Un) - 99 (al, . . . , a,; j l ,  . . . , p,,) and a nonnegative random variable 
On such that 

Moreover, this representation also holds for (XI, . . . , X,+ ,), so that there exists 
a sign-symmetric Dirichlet-type random vector (U; , . . . , Ub+ ,), with distri- 
bution 99 (a;, . . . , ah+ ; P; , . . . , k+ ,), and a nonnegative random variable 
On+l such that 
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Now we calculate the marginal distribution of (X, , . . . , X,,) starting from (4.1). 
Then we obtain 

where R = (1 -IU~+ll"Lti) and Vi = R-l/"; U:, i = 1, . . . , n. Then it is evident 
that 

(V1, ..., K) - 99(u;, ..., u;; PI, ..., El. 

Next, it follows from Proppsition 3.5 that ori = a: and Pi = Pi, i = 1, . . . , n, and 
also that .On-= (l-IUb+,la~+l)Qn+l < ~s 

We will use the notation {Xi:  EN) Y 9 ( { a i ) ;  {oil; {Oi) )  whenever 
a sequence of random variables X I ,  X,, . . . has a sign-symmetric Liouville- 
-type distribution as described in Definition 4.3. If the associated random 
variables 8, each has a beta distribution with parameters pi and ai/yi, 
i = 1, 2, . .., then it follows as in the proof of Proposition 4.4 that the 
distribution of the sequence {Xi] reduces to a sign-symmetric Dirichlet-type 
distribution, which will be written as {Xi:  EN) .v Sa9({01i); (Pi)). 

4.5. THEOREM. Suppose that {Xi:  EN) is a sequence of random variables 
such that 

where {a,} and {pi) satisfy C,"O,, &/ai = m. Then there exists a probability 
measure A on R+ such that, for all n~ N ,  the joint density function of the random 
vector (X , ,  ..., X,) is 

Equivalently, there exists a nonnegative random variable O and a sequence of 
mutually independent random variables {Y,: i E N ) ,  all independent of O, where 
each Y ,  has density function (1.1), and such that 

(XI,  . . . , Xn) = {Yl O1/uf, . . . , Yn Olian) for all n E N .  

Proof.  The method of proof will be similar to the one used in Theorem 2 
of [15]. Thus, choose k E N. Then for any n > k we may regard the distribution 
of (XI, .. . , X 3  as a k-dimensional marginal distribution of {XI,  . . . , X,); this 
defines the random variable 0, for any n > k. By Proposition 3.4, 

hence 8, is absolutely continuous and with a continuous density function g,. 
Furthermore, the density function g, of O, is given in Proposition 3.4. 



Letting fi (r )  E r l P p i  gi (r), i E N ,  we can write the formula for f, as 

By [20] it follows that the functionf, is (p,-pk)-monotone. Letting n-, c~ and 
noting that pn -p, = C,,tl &/ai - m, it also follows that f, is completely 
monotone. That is, there exists a positive measure A, on R +  such thatf, is the 
Laplace transform of 4, 

for r > 0. Now choose n = k + 1 in (4.2), substitute (4.3) into the right-hand side 
of the resulting formula, and interchange the order of integration. Then we 
obtain 

Comparing (4.4) with (4.3) and applying the uniqueness of the Laplace 
transform, we get 

Using this recurrence relation we obtain 

Since g1 (r) = rp'-l fl (r) ,  r > 0, is the density function of IXIJal, we have 

proving that the measure A defined by A(ds) = r ( p , ) ~ - ~ ~ A , ( d s ) ,  s > 0, is 
a probability measure. 

Now we express 1, in terms of 1, and then, by (4.3), we obtain 

This completes the proof of the first part of the theorem. 
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I 
I To see that the second statement in the theorem implies the first one, it is 

enough to notice that the desired measure R is the distribution of O. The 
converse follows by defining a random variable 8 independent of (Yi:  I' E N )  
and with distribution A. E 

4.6. COROLLARY. I f  the ai and Pi sati#y xz, &/ai = CQ, then there exists no 
infmite sequence { U , :   EN) Y 3 ( { u i ) ;  {bi)),  a sign-symmetric DirichIet-type 
sequence. In particular, there exists no exchangeable in$nite sequence of positive 
random variables such that every Jinite subsequence has a Dirichlet distribution. 

P roof. Assume that such a sequence exists. Then from Proposition 4.2 we 
obtain a formula for the marginal density of U, . Equating this formula for the 
marginal density of U 1  with the one obtained from Theorem 4.5, we have 

I 
for some probability measure J1 on R , .  But the left-hand side of this 

I 

last formula is a density function with support in the interval [- 2 ,  11, while 
, the right-hand side has unbounded support on R,. Therefore we have 
l 

a contradiction. 
Finally, the second statement is proved by choosing ui = a  and Pi = P for 

a ,  B > 0 .  rn 

Now we turn to the case where the infinite sequences oli and Bi satisfy 
x E 1 ~ i / a i  = p < a. That is, p,+p < co as n+co. 

4.7. R ema r k. Suppose that p, -t p < oo as n -+ a. Define a consistent 
family of measures {p,:  EN) such that p, on R{~.....") has density function 

By Kolmogorov's extension theorem ( [6 ] ,  p. 121) there exists a sequence of 
random variables U,, U,, . . . such that for every n E N the measure p,, is the 
distribution of the random vector ( U , ,  . . . , U,). Then there exists an infinite 
sequence of random variables with a sign-symmetric Dirichlet-type distri- 
bution. 

Consider now the sequence of random variables R ,  = zy=, IUiIai. Then it 
follows from (4.5) that E (R,) = p,/p + 1 and 

var  (R,) = P ~ ( P - P ~ ) + o  as n+m, 
p 2 ( p + l )  
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Therefore R, + 1 in probability and also in distribution. Since the sequence R, 
is increasing, we also have Rn -t 1 almost surely. 

Define the infinite sequence of random variables (Xi: i~ N )  = ( u ~ O ' ~ " :  
i E N ) ,  where {Ui: i~ N )  is a sequence of sign-symmetric Dirichlet-type random 
variables, 0 is a positive random variable with distribution A, and O is 
independent of (U,: i E N ) .  Then for each n s N the joint density function of the 
random vector ( X I ,  . . . , XJ is 

 PI f, m 
mi 

n 

x i i  J ( x i ) p 1  s 1-P A (as). 
~ ' ( P - P J -  1 2r(f l i /ai)  o i = l  

This proves that the sequence ( X i :  i E N) .Y 9'9 ({ai); ( / I i ) ;  {Oi l ) .  Moreover, 
as n + co, 8, = xl=, IXilai = RnB 4 @ almost surely. 

Note also that ( U , ,  ..., U,) - Y 9 ( a , ,  ..., an; P I ,  ..., B,; R,), with the 
random variable R, = Cy=, I Uilai = 1 - z:, I Uilai almost surely. 

The following result provides a converse to the construction of the 
sign-symmetric Liouville-type distributions given in the previous example. 

4.8. THEOREM. Suppose that (Xi: i f  N )  is a sequence of random variables 
such that 

{x,: 'EN) - y T ( ( a i ] ;  {B i ) ;  (@i)), 

where {a i )  and (Pi) satisfy p, +p < CQ as n + CQ. Then there exist a sign- 
-symmetric Dirichlet-type sequence (U , :  i E N )  - 9'9 ( {a , ) ;  {Pi}) and a non- 
negative random variable O, independent of {U,:  EN), such that ( X i :   EN) 
= {UiO1lai:    EN}. 

Proof.  From Definition 4.3 we infer that for every  EN there exists 
a sign-symmetric Dirichlet-type random vector 

and a positive random variable On independent of (W',,, . . ., Wn,d such that 

( X I ¶  .. . , X,) = (wl ,nO:/a l ,  . . m y  wn,n@:/an). 

Consider now the sign-symmetric Dirichlet-type sequence of random 
variables constructed as in Remark 4.7. For this sequence, we know that for 
each n~ N 

Now, for i = 1 ,  .. ., n, we choose 
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Therefore, for each  EN 

almost surely. Writing out (4.6) for two positive integers n and k, k < n, we 
have 

almost surely: Next, we let n + oc, with k fixed, and apply the result (in 
Remark 4.7) that z;=, 1 UiIui + 1 almost surely. Then the right-hand side of (4.6) 
converges almost surely. Therefore there exists a random variable 8 such that 
B, converges to O almost surely. Then (4.7) implies 

almost surely. Consequently, it follows from (4.6) (with n replaced by k) that 

almost surely. 
It remains to prove that B is independent of {U,:  EN). TO see this, 

consider (Xi, . . . , X 3  as a k-dimensional marginal subvector of the random 
vector 

(XI, .. ., X,) - YY(a, ,  .. ., a,; /I1, . .., /In; 0 3 ,  k < n. 

By Proposition 3.4, the density function of 0, is 

Pn A, (ds) for r > 0, 
0 

where 1, is the distribution function of 8,. Letting n -, c ~ ,  since (9, j 8, we get 
1, + A ,  where ,I is the distribution function of B. Since p,, j p ,  letting n + CQ in 
the above forhula for g,, we obtain - - 

for r > 0. Then the joint density function of ( X I ,  . . . , Xk) is 

for x,, ... , x,ER; and by Remark 4.7 this is also the marginal density of 
( U ,  8 1 / u ' ,  .. ., Uk O1lQk), where O is independent of {U,:  EN). Since k was 
chosen arbitrarily, the proof is complete. rs 



44 R. D. G u p t a  et al. 

REFERENCES 

[I] S. M. Berm an, Second order randomjields over I ,  with homogeneous and isotropic increments, 
2. Wahrsch. verw. Gebiete 12 (1969), pp. 107-126. 

121 - Stationarity, isotropy and sphericity in l,, ibidem 54 (19801, pp. 21-23. 
[3] M. A. Chmielewski, Elliptically symmetric distributions: A review and bibliography, 

Internat. Statist. Rev. 49 (1981), pp. 67-74. 
[4] K.-T. Fang  and B.-Q. Fang, Generalized symmetrized Dirichlet distributions, Acta Math. 

Appl. Sinica 4 (1988), pp. 316-322. 
[5] K.-T. Fang, S. Kotz  and K. W. Ng, Symmetric Multivariate and Related Distributions, 

Chapman & Hall, London 1990. 
[6] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 11, WiIey, New 

York 1966. 
[7] R. D. G u p t a  and D. St. P. Richards, Multiuariate Liouuille distributions, J. Multivariate 

Anal. 23 (1987), pp. 233-256. 
[el - The Dirichlet distributions and polynomial regression, ibidem 32 (1990), pp. 95-102. 
[9] - Multiuariate Liouville distributions, 11, Probab. Math. Statist. 12 (1991), pp. 291-309. 

[lo] - Multivariate Liouuille distributions, I I I ,  J. Multivariate Anal. 43 (19921, pp. 29-57. 
[ll] N. L. Johnson  and S. Kotz, Distributions in Statistics: Continuous Multiirariate Distri- 

butions, WiIey, New York 1972. 
[I21 D. Kelker, Distribution theory 05 spherical distributions and a location-scale parameter 

generalization, Sankhyl, Ser. A, 32 (1970), pp. 419430. 
1131 J. K. Misiewicz, Elliptically contoured measures on R", Bull. Acad. Polon. Scl. Math. 30 

(1982), pp. 283-290. 
[14] - Characterization of the elliptically contoured measures on infinite-dimensional Banach 

spaces, Probab. Math. Statist. 4 (1984), pp. 47-56. 
[15] - and R. Cooke, idinvariant probability measures, Report 88-91, Faculty of Technical 

Mathematics and Informatics, Delft University of Technology, 1988. 
[16] J. Osiewalski  and M. F. J. Steel, Robust Bayesian inlerence in 1,-spherical models, 

Biometrika 80 (1993), pp. 456-460. 
El71 I. J. Schoenberg,  Metric spaces and completely monotonic functions, Ann. of  Math. 38 

(1938), pp. 81 1-841. 
[18] B. D. Sivazlian, A class of rnultiuariate distributions, Austral. J. Statist. 23 (1981), 

pp. 251-254. 
[19] - On a multivmiate extension of the gamma and beta distributions, SIAM J .  Appl. Math. 41 

(19811, pp. 20S209. 
[20] R. E. Williamson, Multiply monotonefinctions and their Laplace transforms, Duke Math. J .  

23 (1956), pp. 189-207. 

Rameshwar D. Gupta Jolanta K. Misiewicz 
Department of Mathematics Institute of Mathematics 
Statistics & Computer Science Technical University of Wrochw 
University of New Brunswick, St. John 50-370 Wroclaw, Poland 
New Brunswick, Canada E2L 4L5 

Donald St. P. Richards 
Division of Statistics, University of Virginia 

Charlottesville, Virginia 22903, U.S.A. 

Receiued on 7.6.1994 


