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Abstract. Corrcsponding to the definitions of positive dermite 
functions there are vanous approaches to defining negative defmite 
functions on hypergroups. These range from the obvious "pointwise" 
definition to axiomatization via the Schoenberg duality. Researcherv in 
this area have used definitions bcst suited to their imrnediate purposes. 
In this paper we present a comprehensive treatment of negative 
definite functions on commutative hypergroups, leading to çonvolu- 
tion semigroups of probability rneasures and their Lévy-Khintchine 
representation within the framework of commutative hypergroups on 
subsets of Euclidean space. 

Throughout this paper the analysis wil l  be carried out on a commutative 
hypergroup K for which our fundamental reference is [17]. In general, we 
follow Jewett's notation except that the point measure at x E K will be denoted 
by E,, and o,, nK will denote respectively Haar measure on K and its 
associated Plancherel measure. For an overview of probability theory on 
a hypergroup the reader is referred to [15]. Important to our treatment will be 
the knowledge of the different spaces of positive definite functions which were 
considered in. detail in [SI, and which we introduce in Section 1. Negative 
definite functions on K and K A  are the subjects of Sections 2 and 3 respectively, 
and in Sections 4 and 5 we present a range of examples to support the theory. 

1. POSITIVE DEFINITENESS ON HYPERGROUPS A M )  THEIR DUALS 

Since negative defmite functions are in each framework defmed in duality 
to positive definite functions, we shall briefly report on the various concepts of 
positive definiteness which in the case of commutative hypergroups have been 
compared in [8]. 

* This article was prepared in part while the first-named author held an Alexander von 
Humboldt fellowship at  the University of Tübingen. 
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By analogy with the group case we introduce, for any hypergroup K, 
positive de$nite functions as cornplex-valued functions f on K that are 
measurable, locally bounded and satisfy 

whenever a,, a,, . . . , a, E C and x, , x,, . . . , xn E K. Clearly, every semicharacter 
of K is positive definite. It can be easily seen that positive definite functions on 
K need be neither bounded nor continuous. On the other hand, continuity of 
a positive definite function on K at e implies continuity everywhere. By P ( K )  
and Pb (K) we denote the sets of continuous positive definite and bounded 
continuous positive definite functions on K, respectively. In the sequel we shali 
apply among other properties the fact that the set P,(K) is closed in the 
topology of compact convergence, and that Bochner's theorem holds in the 
form of the equality (in fact, a homeomorphism) 

There are three other types of positive deîïniteness appearing in the 
literature. Let S be a subspace of Mb(K). A locaiiy bounded measurable 
function f on K is said to be S-positive definite if 

for al1  ES, and f is said to be S-strongly positive de$nite if 

whenever  ES with @ 2 O.  In addition we shall consider strongly positive 
definite functions f on K in the sense that f = 6 for some LTE Mb, (KA). 

We use the suggestive notation P, (K), P t )  (K) and PB (K) for the bounded 
continuous elements in the three classes defined above. 

Prominent choices of S are S,, the space of finitely supported measures, 
and SI = Ma (K), the space of o,-absolutely continuous -measUres. Further 
choices proposed in 1131, [26] and [18] are 

S, : = ( P E  M ~ ( K ) :  p = c ~ , + g o ,  with C E C  and B E  C,(K)), 

and S, : = Mb (K), respectively. The following results are straightforward once 
Bochner's theorem is known. 

1.1. THEOREM. For i = 0,  1, 2, 3 ,4  the sets Psi (K) coincide. 

1.2. THEOREM. For i = 0, 1, 2,  3 ,4 ,  
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Next we shall introduce positive definiteness for functions on the dual 
space K A  of a commutative hypergroup K. 

For any subspace T of Mb(KA) containing E ,  (where 1 is the unit 
character) a locally bounded measurable function f on K is called T-strongly 
positive de$nite if for every p~ T with f i  2 O we have 

S f d p  20, 
K A  

and f is caDed strongly positive definite if there exists a measure p E Mb, (K) such 
that f i  =f: The colleetions of bounded continuous T-strongly positive definite 
and strongly positive definite functions on K A  will be abbreviated by P $ ) ( K A )  
and P,(K " ) ,  respectively. Again we present the prominent choices T, of finitely 
supported measures on K  ̂ ,  Tl : = Mb ( K  A )  and 

T,:= ( ~ E M ' ( K " ) :  p = c&,+gng with CEC, Q E C , ( K " ) ) .  

The latter two classes have been introduced in [18] and [27], respectively. 
Concerning the relationship between these classes of positive definite 

functions on K A  we quote the following results. 

1.3. THEOREM. PB (K " )  c P$i (K A )  c P$i (KA), where eqetulity holds $ 
supp (TL,) = K ^. 

1.4. THEOREM. K is strong we have 

and in the case where K is compact, equality holds ifand oniy $ K  is Pontryagin. 

2. NEGATIVE DEFINITE FUNCTIONS ON HYPERGROUPS 

2.1. DEFINITION. A complex-valued function f on K will be called negative 
deJinite if it is measurable, locally bounded and satisfies f (e)  2 O, f  - =x and 

for every n E N, every choice of a , ,  a,, . . . , an E C satisfying C:= , ai = 0 ,  and 
every choice of x,, x,, . . . , X ,  E K .  

Negative definite functions need be neither bounded nor continuous. The 
set of negative definite functions on K will be denoted by N ( K ) .  Clearly, each 
constant function c l  E N (K) for all c 2 0. 

It is quite standard to show that a locally bounded measurable function 
f is negative definite if and only if 
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for al1 choices of  EN, a,., a,, , , , , a, E C, and x , ,  x,, . . . , x, E K ;  sec for 
example [ 6 ] ,  Chapter 4, Proposition 1.9. 

For the following two results we do not assume K to be commutative. 

2.2. PROPOSITION. Let f G N (K). For al1 x, y E K 
(a) f (x* x - ) E R .  
(b) f (x*x- l+f (Y*y-)<  ZRe(f(x-*y)). 
(cl f ' ( x * x - ~ + f ( e )  a f ~ + f ( x - ) .  
(d) f ( x * x - 1 2 0  - if and only if Re(f)>O. - 
(4 If (4+f ( ~ ) - f ( x * ~ - l l ~  G (f (x)+f(X)-f  (x*x-l)(f  (~14-f (Y) 

-f (Y * Y - ) ) .  
(f) f -f ( 4  E (a- 
(g) If Re(f) is bounded below, then Re (f) > f (e) > O. 
Ch) If Re (f) 2 0, then If (x * y)1112 < I f  (x)I'/~ + I f  (y)lliZ. 
If g€P(K), then g(e)-g€N(K). 

P r o  of. The proofs of (ak(d), Cf) and the last statement can be shown 
directly. To prove (e) take x, = x and x, = y in (2.1.1), which implies that the 
matrix 

fb)+,f  -f(x*x-) f f x ) + f 3 - f ( x * ~ )  

f (~)+f(x)-f (Y *x-1 .f (~)+~-cu>-f (Y * Y - )  

is positive definite, and hence has nonnegative determinant as required. For (g) 
we first note that [20], Proposition 1.3, gives the result when Re (f) 2 O is 
assumed. In general, if we only know that Re (f) 2 c, then f- c satisfies 
Re (f -c) 2 O. We also observe that f-c = f - f (e) + f (e) - c E N (K) using (f), 
and applying the first part we see that Re (f) - c = Re (f - c) 2 f (e) - c, and 
again Re (f) 2 f (e). For (h) see [20], Proposition 1.4. Finaiiy, we just appeal to 
Definition 2.1 to complete the proof of the theorem. i 

It is of independent interest that the continuit y of negative definite 
functions is determined by their continuity at e. This can be proved using 
Proposition 2.2 (e); see [9], Theorem 1.10. 

2.3. THEOREM. A negative deJinite function f that is continuous at e is 
continuous everywhere. 

It is convenient to note that (M;(K),") is an Abelian semigroup with 
neutral element E, and involution " in which K can be naturally embedded via 
the mapping x -+ E,. Then each continuous negative definite function f has 
a natural extension to a negative definite function F on M,1 (K) given by 
F (p) : = jx f dp for al1 p E MC (K). Using this technique many results on negative 
definite functions on semigroups can be transferred to hypergroups. For 
example, it can easily be shown that for every bounded continuous negative 
definite function f there exists c E R such that C-f is positive definite. For 
details of the method see [9]. 



2.4 DEFINITION. Let S be a subspace of Mb(K) .  A locally bounded 
measurable function f is called S-weakly negative deJinite if f (e) 3 0, ,f- =f, 
and [,,du < O for al1 v ES with V 2 O and Y (1) = O. 

We denote by Nkw) (K) the space of continuous S-weakly negative definite 
functions on K. 

2.5. DEFINITION. Let S be a subspace of Mb(K). A locally bounded 
rneasurable function f i s  called S-weakly' negatiue definite if f (e) 2 O, f - =f, 
and J,fd(v*v") G O for al1 V E S  with Y(1) = O. 

We denote by N ~ ' ) ( K )  the space of continuous S-weakly' negative definite 
functions on K. Note that Nk;')(K) = N(K)nC(K), where S ,  is the subspace of 
Mb(K) consisting of al1 Finitely supported measures. 

2.6. DEFINITION. Let S be a subspace of Mb(K). A locally bounded 
measurable function f is called S-negative definite if f (e) 2 O and exp(- i f )  

E Ps (K) for ail t-> O, and f is called S-strongly negative definite if f(e) 2 O and 
exp ( - tf) E Pgl (K) for al1 t > O.  

We denote by N,(K)  (respectively, NF1(K)) the space of continuous 
S- (respectively, S-strongly) negative definite functions on K. Clearly, if S c S' 
then 

Np) (K) c NSW) (K) , IVg" (K) c NLW" (K) , 

Ns* (K) c Ns (K) and NF (K) c Nt) (K). 

It  is also easy to see that 

NF) (K) c Ns (K) and Niw' (K) c NSw" (K) . 
Note that for both S-negative definite and S-strongly negative definite 
functions f i t  is part of the definition that exp(-tf) be bounded, which is 
equivalent to Re (f) being bounded below. 

2.7. LEMMA. if S * Cc (K) w, c S' , then N'Y) (K) c NSw) (K) and Nb?"' (K) 
c N?') (KI. 

Proof .  We deal only with the first of the two inclusions as the Proof of the 
second is similar. Choose (k,) in C,f (K), a bounded approximate unit for fi (K) 
with k, 2 O. Then for v E S satisfying $(l) = O and $ 2  O it is the case that 
v,: = (v * k,) coK E S' (by assumption) with v", (1) = O and $, 2 O. Hence for 
f E NS?) (K) 

so that f €Nbw)@). i 

Lasser's pointwise definition of negative definiteness (see [19] and [20]) is 
just S,-weak negative definiteness together with continuity. Other choices of 

I I  - PAMS 16.1 
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S treated in the literature correspond to those given for positive definiteness in 
Section 1. 

S-negative definiteness and S-strong negative definiteness have been 
introduced via an axiomatization of the Schoenberg duality. A particularly 
interesting choice in the latter case is when exp (- tf) E PB (K) (cf. [7], Definition 
2.1). We denote by Ng)(K)  the corresponding space of continuous negative 
definite functions. 

We have the following general properties of negative definite functions. 

2.8. PROPOSITION. (a) For f E N&(K), 

R e { f )  > f ( e ) >  0. 

(b) If f, g E N p )  ( K )  (respectiuely, NF') (K) ,  N t )  (K)),  c > 0, then 

fi cf? j' + g , Re f f )  E N P )  ( K )  (respectively, IV$"') (K),  N ~ I  ( K ) )  . 

(c) I f  f E N & ~ ) ( K )  (respectively, N ~ ' ) ( K ) ,  iVg)(E*)), then 

f - f (e) E Nbw) ( K )  (respec tivsIy, N(sW'i (KI, Ng) (K)) . 

(d) If f E p f i ( K )  (respectively, P,fK)), then 

f (e) -f E ~ b ~ '  (K) (respec tively, NF') (K)).  

{ef I f ( f , )  in N S ' ( K )  (respectively, Nkw')(K), N$)(K))  converges tsniformly on 
compact subsets of K to f, then 

f E NLWi ( K )  (respectively, N p ' )  (K),  NB) (K))  . 

P r O of. (a) Fix x E K and consider p : = 28, - E, - E ,  - E So . We have for al1 
X E K "  - 

f i ( ~ ) = 2 - ~ ( x ) - x ( x ) > , O  and P(1)=0. 

Thus J, fdp < 0, and since f - =x we have 

The proofs of (bHe) are straightfonvard. i 

2.9. PROPOSITION. Let f E Ni;) ( K )  and R > O. Then RA : = (A + f ) -  l E PB (K). 

Proof.  The function RA is continuous and, by Proposition 2.8 {a), 
bounded. In view of Theorem 1.2 we need only show that R, E PSI (K). Consider 
p : = gw, E S, ( g  E Cc ( K ) )  with f i  2 O. Using (p") A = ( f i ) -  = fi  and the unique- 
ness of the Fourier transform we have p = p", and hence g = g-. Note that 
since f and R, satisfy f = f- and RA = R",espectively, al1 the integrals 
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that appear in the remaining part of this proof are real-valued. Also in view of 
Proposition 2.8 (c) we can assume that f (e) = O.  

Suppose that 1, R, d p  < O. Now RA p E S ,  and 

Since by Our assumption h ( l )  < O, there exists X, € K A  such that the real- 
-valued function h takes its minimum on K A  at xo .  Define V E S ~  by 
v := hkof E , ~ K R , ~ .  Then v satisfies v^jl) = O, v = v " ,  and for al1 X E K ^  

Therefore, as f E N&';"(K) with f (e)  = 0, 

and 

contradicting Our assumption, and thus the proposition is proved. 

2.10. THEOREM. Nb') ( K )  c N t )  (K). 

Pr O of. Let f E N&!) ( K ) .  By Proposition 2.9, Ra : = ( A  + f )- E PB ( K )  for 
each Â > O, Write 

Now 

Since lim,f, = f on K, we have lim, exp (- tf,) = exp (- t f )  for all t > O.  Now 
exp ( - tf) E Cb ( K ) ,  and hence exp ( - tf) E PB ( K )  for al1 t > O. Appealing to [8], 
Theorems 1.7 and 1.17, there exist E M f  (K ") with @, = exp ( - tf), which just 
says that f E N t )  ( K ) .  

211. THEOREM. We have 

Nt '  ( K )  = Np: ( K )  = Nsj  ( K )  = NkT' ( K )  c Nk:' ( K )  c N&') ( K )  = N&:" ( K )  

for aEE i, j~ (0, 1 ,  2 ,  3,4) and k ,  Z E  (1, 2, 3, 4). Furthermore, there exist 
hypergroups for which the second inclusion is proper. 
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P r  O of. The equalities NS) (K) = Nt:  (K) = Ns, (K) for i ,  j E (O, 1,2,  3, 4) 
follow imrnediately from [8], Theorem 1.17, which is just the corresponding 
statement for the underlying spaces of positive definite functions. Now the 
obvious inclusions between the test spaces give 

Appealing 'to ~ e ~ m a  2.7 we infer from S ,  + C,(K) o, c S,  and S, * Cc (K) wK 
c S, that 

Nb:) ( K )  c IV$,:) (K) and ( K )  c Nky) (K) . 

Putting these inclusions together gives 

NL:' ( K )  c NS";' (K) c Nk:' (K) = N&;)(K) c N&) (K) . 

A sirnilar argument gives the analogous statement for S-weakly' negative 
definite functions. 

We now show that 

NB' (K) c N&?' (K) . 
First consider f E NB1(K) so that for each t > O there exists v, E M: (K ") such 
that V, = exp (- tf). An immediate consequence is that f - =f: Moreover, for 
p€S4 with @ 2 O and k(1) = O, 

which gives f E NS!) (K). 
To complete the equalities between Ng)(K) and the spaces of S,-weakly 

definite functions for k ~ { l ,  2, 3, 4) just use Theorem 2.10. 
We next show that N"')(K) c Nb.') (K) which will give equality of the 

spaces of SI-weakly' negative definite functions. Indeed, let f E Nk;" (K) and 
choose p E Mb (K) with fi  (1) = O. NOW there exists (pu) in S, with lima p, = p, 
and replacing pE by pa-fla(1)~, if necessary, we can further assume that 
@,(l) = O for al1 a. By the choice of f we have 

so that f E N&') (K). 
Finally, we observe that by Proposition 2.8 (a), Re(f) 2 f (e) 2 O for al1 

f EN&'Z['(K). It is known (see [28], Remark 4.8) that for every polynomial 
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hypergroup (2, , *) there exists f E N&I'~(Z+) for which f (n) < O for al1 n E M 
(in fact, f (n) = -Pn(x) is such a function). This shows that N g l ( K )  could 
be a proper subset of N&;''(K), and this completes the proof of the 
theorem. 

2.12. Remark. In view of the preceding result it is not possible in general 
to prove that 

(cf. [28], ~ e m a r k  2.6 (c)) which would give N$)(K) = Nk?"(K), and hence 
equality of al1 the spaces in Theorem 2.11. 

3. NEGATIVE DEFINITE FUNCTIONS 
ON THE DUAL SPACE OF A COMMUTATIVE HYPERGROUP 

Negative definiteness has an analogous interpretation for the dual K A  
when K is commutative. 

3.1. DEFINITION. Let T be any subspace of M~ (KA)  containing E,. 

A locally bounded measurable function f on K A  is cailed T-weakly negatiue 
definite if f (1) 2 O, f - = Tand S,, fdv < O for al1 v E T with Y 2 O and V(e) = 0. 

We denote by N(TW)(K ") the space of continuous T-weakly negative definite 
functions on K. It should be noted that membership off in N',"'(KA) (see 
below) is only affected by the behaviour off  on supp(T). 

3.2. DEFINITION. Let T be any subspace of M ~ ( K ^ )  containing E, .  

A locally bounded measurable function f on K A  is called T-strongly negative 
definite if f (1) 2 O and exp(- t f)~P$l(K^) for all t > 0. 

We denote by NP(KA) the space of continuous T-strongly negative 
definite functions on K A .  Note that 1 EN$)(K^) for any such subspace T 
Also Ng) (K A ) denotes the corresponding strong space with PT) (KA ) replaced 
by P,(K "). Tstrongly negative definite functions have been studied for the 
various choices of T c Mb(KA) appearing in Section 1. 

3.3. PROPOSITION. We have 

N F ( K A ) c N X ) ( ~ ^ )  and N $ ) ( K ~ ) C N ~ ) ( K " ) .  

Proof.  The first Iine of inclusions follows from [a], Proposition 2.4. The 
inclusion Ng (K ") c N'T",) (KA) follows frorn the inclusion T, c 7''. To prove 
that N$)(KA) c Np-"'(KA) consider v E T with V 2 O and +le) = 0, and let 
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the last equality and the inequality using Y (e) = O and exp (-tf) E PF1 (KA), 
respectively. 

. 3.4. PROPOSITION. (a) For f E Nyi (K A) and y E supp InK), 

(b) If f, ~ E N $ ) ( K ~ )  (respectively, N',")(KA)), and c > 0, then 

fl cf, f + g, Re (f) EN$' ( K  ") (respectinely, N$") (K 9). 

f - f (1) E N$) (KA ) (respective, Np) (K " )) . 

(d) If f E P$) (K " ) (respectively, PB (KA )), then 

f (1) -f E NT) (KA) (respectively, N$) (K ̂)). 

(e) If Vn) in N$)(K " )  (respectively, Np) (KA)) converges uniforrnly on 
compact subsets of K A  to f ,  then 

f EN$)(K^) (respectively, N ~ ( K ^ ) ) .  

Proof .  The proof of (a) is given in [27], Lemma 3.5. The other parts are 
straightforward. FA 

3.5. Remark. Proposition 3.4 (a) should be compared with the following 
result : For f E NT: (K ") and for al1 y E K " , Re (f (y)) 2 f (1) 2 O. Indeed, 

- - 
exp ( - tf) E P(ri (K ") so that 

e x p ( - t ~ e ( f  (y))) < IIexp(-tS)ll, < exp(-tS(1)) for al1 y € K A ,  t > 0, 

and the desired inequality follows. Note that Ng',(KA) is the smailer space, 
giving a stronger result, in which case it is probably true that the behaviour of 
f off supp(n,)u{l) is dready determined. 

3.6. PROPOSITION. Let f E Ng (KA ) and A > O. Then R, : = (A + f )- l  is 
continuous and bounded on supp(n,)u(l), and every continuation of RA to 
a bounded continuous function on K A  belongs to @],(KA). 

The proof of Proposition 3.6 can be found in [27], Lemma 3.6. 
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3.7. Rem ar k. As in Proposition 3.6, for f EN?: ( K  ") and ;1 > O we have 
(A +f)- l E Ppl ( K  "). The proof which is somewhat more direct goes as follows. 
Let v E Mb(K ") and assume f (1) > O. Then, using Remark 3.5, we obtain 

j le-tfldtdlvl  < j e-'f(l 'dtdlvl  = f ( l ) - l l v l ( K A ) <  m. 
KA R +  K A  B +  

Applying Fubini's theorem gives for v' 2 O 

1 f - l d v -  j 1 e - t s d t d v =  j j e - ' f d v d t 3 0  
K A  K "  R+ R+ K A  

as e- ' l  E P$; (K A ), ;O that f '' E Pg), (KA ). NOW consider arbitrary / E N(Ej ( K A )  
and R > O. By Proposition 3.4 (b) we have A+f EN$', ( K A ) ,  and using the 
argument above we obtain ( A  + f )- E Pt:  (K "). 

A key result in the theoxy of negative definite functions is the Schoenberg 
correspondence which was given in [27], Theorem 3.7. 

3.8. THEOREM. (a) To each continuous convolution semigroup (pJtg0 on 
K thare corresponds a uniquely detemined function f izNf'(KA) with 
fi, = exp (- tf) for al1 t > 0. 

(b) To each f E N K ) ( K A )  there corresponds 2s aniqueIy determined con- 
tinuous convolution semigroup I ' J ~ ) ~ ~ ~  on K satisfying 

We can use Theorem 3.8 to refine Proposition 3.3. The latter result shows 
that of the five spaces of negative definite functions in common use Ng)(K A )  is 
the smallest, and N',"!(KA) the largest. However, these two spaces, and hence 
al1 five, agree when restricted to supp(x,). 

3.9. PROPOSITION. We h v e  

Proof.  In view of the inclusions in Proposition 3.3 it sufices to prove 
that 

NT2) (K A 1 ISUPP[IFX) (K "1 lsupp(xK).  

Let f €NK)(KA). By Theorem 3.8 (b) there exists a unique convolution 
semigroup (ji,),3 with 

Now use Theorem 3.8 (a) to deduce the existence of a uniquely determined 
function g E N p  (KA)  with fi, = exp (- tg) so that 
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Since the function exp is one-to-one, we have 

which just proves that NK1(K " )  1 ,,,, (,,) c N$)(K ") 1 ,,,, (,,, as required. i 

4. APPLICATION: POSITIVE AND NEGATIVE DEFINITENESS 
WITH RESPECT TO A SUBSET OF THE DUAL SPACE 

-In the application of negative definite functions to continuous convolution 
sémigroups and their associated additive (Lévy) processes further restricted 
versions of the original definitions occur (see [SI); we sketch one of these. 

We are remaining within the framework of a commutative hypergroup 
K  with sets K* and K A  of continuous semicharacters and characters, 
respectively. Let L denote a nonempty subset of K*. 

4.1. DEPINITION. A continuous function f on K is said to be positive deJinite 
with respect to L if for al1 fi E Mc (K) with f i  (x) 2 O whenever x E L  we have 

and f is said to be negative definite with respect tu L provided f (e) 2 O, f - = f 
and for al1 p~ M,(K) with p(K)  = O and @(x) 2 O whenever x E L  we have 

The classes of functions on K  that are positive or negative gefinite with 
respect to L will be denoted by 

P1" ( K  , L)  : = PMcla) ( K  , L)  and MW' ( K  , L) : = Ngic,, (K, L), 

respectively. For the special choice L  : = K* we obtain 

. P ( " ) ( K , K * ) c P ( K ) n C ( K )  and P ( " ( K , K * ) c N ( K ) n C ( K ) .  

As for the reverse inclusions only partial results are available (see [26] and 
C281)- 

4.2. Polynomial hypergronps in one variable. This class of discrete hyper- 
groups together with its most known subclasses appears for exaniple in [16]. 

For real-valued functions f on a polynomial hypergroup (Z, , * (Q,)) the 
notions of positive and negative definiteness with respect to L := K* = R 
coincides with the unrestricted ones. Moreover, defining 

Ts(Q,J:=f(n)  for al1 ~ E Z ,  

we see that 



(a) f E P(')(Z + , R) if and only if Ts is a positive linear functional on R [x] if 
and only if there exists a (not necessarily unique) measure p~ M +  (R) satisfying 

f (n)  = j Q, (x) p (dx) for al1 n E 2,. 
R 

(b) f with f (O) = O belongs to N(")(Z , ,  R) if and only if Tf is a linear 
functional on R [x] satisfying 

for a l  Q E R [XI with Q (1) = O and Q (x) 2 O whenever x E W. 

In the special case where L : =  K A  = D,:= [-1, 11 and f (O) = O  the 
following conditions are equivaient : 

(i) f E N ( ~ ) ( Z + ,  [-1, 11). 
(ii) Tf(Q) < 0 for al1 Q E R  [x] with Q (1) = 0 and Q (x) 3 O whenever 

X E [ - 1 ,  11. 
(iii) The mapping 

from Z+ into R gives rise to a linear function T on R [x] satisfying T(Q) < O 
for al1 Q E R [ x ]  with Q  2 O on [-1, 11. 

(iv) There exists p E M +  ([- 1, 11) such that for al1 n E Z +  

In fact, the equivalence (i)-(iii) remains true for L := K A  = D, (not 
necessarily coinciding with [-1, 11) and real-valued functions f on Z ,  
satisfying f (0) 2 O. Under these assumptions it is shown in [28] that (i) implies 

(v) f E N ( Z + )  and f (n) >f (O) 2 0. 
For the c~nverse implication (v) * (i) additional assumptions are -- needed, 

for example: 

(Al)  Ds 3 c- 1, 11 
and 

(A2) For every n E Z, there exist y,,, 3 O with k E Z + , k $ n, such that 

Examples of polynomial hypergroups (2,  , + (Q,)) satisfying (Al) and (A2) 
are the ultraspherical hypergroups (of the form ( Z ,  , * (QA,P)) with a = 2 -$), 
the generalized Chebyshev (polynomial) hypergroups ( Z , ,  * (Qn.8)) with a- 1 
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2 2 -$, and the Cartier hypergroups (2, , * (Q:)) with a EN, a 2 2. On the 
other hand, the implication (v) - (i) for general Jacobi polynornial hypergroups 
(z,, *(QA,~)), where a > 0, remains an open problem. 

5. APPLICATION: REPWESENTATIONS OF NEGATlVE DEFINITE FUNCTIONS 

At first we note that bounded (continuous) negative definite functions on 
hypergroups are of little interest in Lévy-Khintchine type representation 
theory. . . 1s fact, any function f E N (K)n C, (K) is of the form 

for al1 x E K ,  where E M$ (K ") (see [28]). In particular, such representations 
are readily available once the underlying hypergroup is compact. 

On the other hand, establishing Lévy-Khintchine representations for 
unbounded negative definite functions on hypergroups K and their dual spaces 
K A  in the sense of the various definitions given in Sections 1 and 2 remains an 
involved matter unless at least one-sided boundedness conditions are satisfied. 

In the subsequent listing of examples we shall emphasize the relationship 
of the definitions of negative definiteness treated in the literature to the 
hierarchy of classes discussed in the previous sections. 

5.1. Onedimensional hypergroups. 

5.1.1. Jacobi polynornial hypergroups of the form (Z+,  *(QA,P)) with 
a 2 f i  > - 1 and (fi 2 -) or a + p 2 O). These hypergroups are hermitian and 
Pontryagin with 22 rz D, = [- 1 ,  11. There are several sources where the 
following representation occurs ([IO], [14], [20], Cg]). 

Any f EN(Z+) satisfying f (O) 2 O admits a representation 

f(n)=f(O)+q(n)+ ( l-Q,"*B)dq for al1 ~ E Z , ,  
[-l,lI 

where q is a nonnegative quadratic form on Z +  given- by 

for al1 ~ E Z ,  and some a 2 0, and q€M+([-1,  IL). 

5.1.2. Sturrn-Liouville hypergroups ([O, n/2], *(A))  of compact type. We 
consider the dual space [O, 71/21 A of [O, 71/21 which can be identified with the 
set (4, : n E Z,) of normed eigenfunctions 6, associated with the countably 
many simple eigenvalues A, S O of the Sturm-Liouville operator LA defining 
the given hypergroup. In [l] it is shown that a real-vaIued function f on the 
dual Z +  = (4,: n € Z + )  of [O, x /2 ]  belongs to the class N~,}(z+) (with 
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To : = Mc (2.)) if and only if there exist a constant a 2 O and q E M + (10, TF/~]) 
satisfying 

such that 

f (n) = f (O)+aA,+ (1 - 4 , ) d y  for al1 ~ E Z , .  
lO3ri/21 

We note that the characters #, of [O, 71/21 are related to the Jacobi 
polynomials Q:?< n E Z ,  , via the equality 

4 4 n l n + a + b  + I) ( x )  = QisP ( ~ 0 ~ 2 x 1  

valid for al1 X E  [O, x/2]. Consequently, in this case ([O, ~121, *(A)) is isomor- 
phic to the dual Jacobi polynomial hypergroup (1- 1, 11, * ( Q ; s B ) ) .  

5.13. Sturm-Liouville hypergroups of noncompact type. Let ( R , ,  * (A))  be 
a Sturm-Liouville hypergroup of noncompact type with dual space 

where Q denotes the index of the Sturm-Liouville operator LA definjng the 
underlying hypergroup, and 4, is the eigenfunction associated with the 
eigenvalue A2 + e2. By [23] every 4, can be expanded on R + as 

where the functions b, are determined by 

In particular, b, is given by 

The following representations have been given in [3] and [Il], [12], 
respectively. For every f E N , , ( R + )  there exist a constant a 2 O and 
~ E M + ( R + \ ( ~ Q ) )  such that q I R +  is bounded and 

satisfying 
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On the other hand, given a function f ' ~  Ngl(R;) there exist a constant a 2 O 
and q E M + (R + \{O}) satisfying 

such that 

. - While the first cited representation can be also obtained from a generaI 
result in [9j, the second one remains still subject tû ad hoc methods. 

5.2. Higher dimensional hypergroups. 

5.2.8. The disc polynomial hypergroups ((Zf, *(Pm,,)) with ol > O). These 
are (non-herrnitian) Pontryagin hypergroups with dual hypergroup (z:) A 

identified with the unit disc D. In C221 and [2] we find the following 
representation, which for functions with lower bounded real part can also be 
obtained from [9]. 

A complex-valued function $ on 2: belongs to the class N&:1(Z2,) if and 
only if there exist a, b ,  c, $ E R ,  a, b ,  d >, 0, and y E M+ (D\((B, O))) satisfying 

S ( l - x l r l ( d ( x , ~ ) ) < a  
D\t(l,O)} 

such that 

+ J (l-Qm,n(~7 ~ ) + i ~ ( m - n ) ) ~ ( d ( x ,  Y)) 
D\{(l*O)) 

whenever (m, n) E Z: . 
5.2.2. Product hypergroups. We consider the product hypergroups 

(Rd x R+ , *), where the first factor denotes the Euclidean group, and the second 
one the Bessel-Kingman hypergroup with parameter a : = (d - 1)/2 for d >, 1. 
This hypergroup is again Pontryagin. In fact, its dual (Rd x R+)" can be written 
in the form 

which in turn is identifiable with Rd x R+ under the homeomorphism 
B: r -t Rd x R+ given by 

for al1 (A, , u ) E ~ .  Inspired by [25] we find the following representation in 141. 
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A cornplex-valued function f on r belongs to N$)(K ") with K : = Rd x R+ 
if and only if there exist b, b , ,  .. ., bd€P1, b 3 O, a quadratic form q on 
r defined by 

d 

q(A ,  p) := C ajkk j ; lk+cp2  for al1 (II, , U ) E ~ ,  
j,k = 1 

where A : = (A, ,  A,, , . . ,A,) E Rd, (ajk)  is a positive semidefinite matrix in M (d, R), 
c 3 0, and PIE M +  (K\{(O, O))) satisfying 

whenever ( A ,  p ) ~ r .  The characters #,,, of K appearing in the integral term 
have a product form and can be written as 

# (x, ) = e x  j d  (r ) for all ( x ,  r) E Rd x R + , 

where j(,- denotes the modified Bessel function of the first kind and of order 
(a - 1)/2. 

5.2.3. Mixed Jacobi hypergroups. Finally, we consider the mixed Jacobi 
hypergroups (R+ x [-n, TC], *), where the convolution * is introduced as 
follows. For a 2 0, A E Z ,  and p E C let #p.") denote the Jacobi function 
associated with parameters a, A and p. The functions 4% defined by 

#?',(yI 8) : = ei"(cosh y)":,"(y) for al1 (y, O)ER+ x [ - n ,  TC] 

satisfy the praduct formula 

where 7;:"fL) is the generalized translation operator given explicitly in [24]. Now 
the convolution of two Dirac measures on K := R+ x [ - n ,  TI] is given by 

whenever (y, O) ,  (t, z) E K and f E C,(K); it can be extended to al1 
bounded measures on K .  The hypergroup fK, *) has an involution 
(y, 0) + (y, 6)- := (y, -O), and hence 

(y, 8) = (t, T)-¢>y = t and cos(O+ 1) = 1. 
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It follows that (K, *) is not hermitiaa. Much of the harmonic analysis on K can 
be developed from the more general discussion in [SI]. In particular, 

= {(A, ~ ) E Z X C :  IIrn(g)t d c r f l )  

u{(;l, p ) ~ Z x  C:  p = iv, v 2 - (o l+ l ) ,  A = f (a+Sm+l+n), n f M )  

= : .,r,. . . 

. .. 

Moreover, 
WK = A B R R t @ ~  

with 
A, ( y )  : = S2("+ ')(sinh cosh y for al1 y E W+ , 

and 

where 

A : =  CA, 

and 
D:= U ((A, p ) € Z x G :  p =  iv,v>O, A =  f (a+2rn+l+q)}. 

 EN 

Obviously, the unit character 1 of K corresponds to the element (O, i(a + 1)) of 
ï, and 

(Z x R +)uD" = supp(x,). 

The necessary Fourier analysis is carried out on the subset supp(nK)u(l) 
of K A .  From [21] we know that any f E N ~ ) ( K " )  is of the form 
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for all (A, p)~supp(n~)u(%},  where a, b, c, d~ R, a, b,  d 2 O, u is a function in 
the class 

o* (KI: 

= (f E C ~ ( R  x(]-TC, O [ u ] O ,  TC[)): y + f ( y ,  0) is even with compact support, 

O -+ f (y, 8) is 2~-periodic} 

such that O < u < 1 and u = l on a neighbourhood of (0, O) ,  and 
q E M + @\((O, O))) .. with - - 

It is clear that the above representations yield canonical decompositions of 
continuous convolution semigroups on K once the Schoenberg correspondence 
in tesms of negative definite functions on K A  has been established. Theorem 3.8 
provides the required information for the class N i )  ( K  "1. 
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