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Abstract. Within the rapidly developing theory 01 random limit 
theory for real-valued random variables the concepts of geometric 
convolution and geometric stability play a fundamental role. In several 
reoent investigations it was pointed out that there is a one-to-one 
correspondence between "classical" limit theorems and stability con- 
cepts and their geometric counterparts (cf. [2], [3]. [53, [Ill, 
E141-[161). 

We are going to prove analogous results for randomized 
products of random variables taking values in a simply connected 
h i ~ ~ o t e n t  Lie group G. This class of groups is natural in this setup 
since classical stability concepts were generalized to nilpotent groups 
(cf. [6] and [lq). 

0. In the following, G is a locally compact second countable topological 
group (especially, a simply connected nilpotent Lie group), and Aut (G) is the 
group of topological automorphisms of G. Let us put 

R ,  = [0, a), z+ = { O ,  1,2, . . . I ,  N = {1,2, ...}. 

A1 (G) and d1 (R , )  are the sets of all Bore1 probability measures on G and 
R,, respectively. Convergence of probability measures is always understood as 
weak convergence a(A1(G), Cb(G)), where Cb(G) is the space of bounded 
continuous complex-valued functions on G. In this case A1 (G), supplied with 
convolution product *, is a topological semigroup with identity E,, where e is 
the identity in G, and E, is the probability measure degenerated at the point 
x E G. Let vn denote the n-th convolution power of v E A1 (G), vD : = E,. In the 
sequel, (pr)t30 usually denotes a continuous convoIution semigroup (c.c.s.) in 
d1 (G), i.e. 

Pt*CL,=&+s, tYS20; !++Ee,  t+O. 
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If VEA'  ( G ) ,  (p1)120 is a c.c.s., and 5 ,  QEA'  (R , ) ,  then 

The mappings 5 c, vr and Q w p, are continuous semigroup homomorphisms 
from d1 (Z+), respectively (R,) ,  into -A1 (G) (see [73). Moreover, 

(vti)<* = v(tiE2), 
5 1 ,  52€A1 (Z+). 

IF z,: a H ole, a, c E R + ,  and a E Aut (G), then z, (t) and a (v) are the images of 
E A1 ( R + )  and v E dl1 (G) under T, and a, respectively. 

If X is a random variable with values in G (respectively R+), we denote by 
X (P) the distribution of X. 

Let (X,,), n,  k 2 1,  be an array of rowwise i.i.d. G-valued random variables 
with distributions Xnk (P) =: v, E A1 (G), IC 2 1. Define X,, : = e, n 2 1 .  Let T, 
be an R ,  -valued random variable ('"random time") independent of (Xn&> 
with distribution T, (P) =: {, E A' (R,). Then a random product 

has the distribution Z,(P)  = v$. 
Let (Q*,, be a G-valued random process with stationary independent 

increments, the distributions of which are a c.c.s. kt),,,. Let T be an R+-valued 
random variable ("random time") independent of (I.;),,, with distribution 
T (P) = : Q E A1 (R,). Then U : = YT has the distribution YT (P) = p,. (Cf. [7] for 
a survey on limit theorems for randomized products of group-valued random 
variables.) 

Now we formulate several results which are the essential tools for the 
following investigations. 

0.1. THEOREM (transfer theorem of Gnedenko and Fahim [4]). Let 
V, E dl1 (G), k, E Z+, k,  jl ao, and 5, E A' (R+) .  Assume that vLkmtl, the distributions 
of the deterministic products ~ I ~ Z X , ,  converge to p,, the distributions of x ,  
t 2 0. Assume further that T ~ , ~ , ,  (t,,), the distributions of normaiized random times 
TJk,, converge to Q, the distribution of T Then v$, the distributions of the 
randomized products nz, X,,, converge to q, the distribution of Y, (See [7].) 

0.2. THEOREM (see Nobel [17]). Let G be aperiodic and strongly root- 
-compact (e.g., a simply connected nilpotent Lie group) and let v,, p~ A1(G), 
k, E 2, , k,  r a, n 2 1. Assume vim -t p.  Then there exists a c.c.s. (p,)t30 
satisjyiag p1 = ,u and there exists a subsequence (n') such that 

vLknt' + pt 
(n') 

for every t 2 0. 



On Szasz's compactness theorem 145 

0.3. COROLLARY. Let v n ~ A 1 ( G ) ,  k , , € Z + ,  k , j l m ,  and let ( v ? ) , , ~ ~  be 
relatively compact. Assume C, E A1 ( R  ,) and let ( T ~ , ~ ,  ((n))n be relatively 
compact. Then ( ~ f i " ) , ~ ~  is relatively compact. 

In Section 1 we prove an inverse result to Theorem 0.1, which is due to 
Szasz for real-valued random variables (see [19]), namely that under natural 
assumptions the convergence of the distributions of the randomized products % . . _ .  

V? 4 IC yields the relative compactness of the normalized random time 
distributions Zl ikn(t , , )  and the existence of deterministic limits vLkntl + p,, t 2 0, 
at Ieast for a subsequence (n'). 

The investigations in Sections 2 and 3 are based on Szasz's theorem and 
on the transfer theorem, as well as on the limit behaviour of deterministic 
products (see [lo], [13], and [17]). In Section 2 the limit behaviour of 
geometric convolutions is considered. The limit of normalized geometric 
distributions is the exponential distribution E. Hence limit measures of 
geometric convolutions take the form 

In Section 3 we introduce the notions of geometric stability, semistability 
and the domains of attraction (cf. 1141 for G = R1). We will see that these 
measures have representations rc = p, as exponential mixtures of stable 
(respectively semistable) C.C.S. 

Note that we have only weak Iimit laws in mind, therefore throughout we 
consider only the distributions vk,", v$, t,, p,, p, instead of the corresponding 
random variables or processes. 

1. The inverse transfer theorem. For real-valued random variables an 
inverse transfer theorem was first proved in [19]. We prove an analogous result 
for simply connected nilpotent Lie groups under slightly stronger conditions 
on the random times. 

1.1. THEOREM. Let G be a simply connected nilpotent Lie group. Let 
v, E dtl (G), and t, E A1 (R +). Furthermore assume that 

(1) there exist h, E N ,  h, r oo, such that {z~,,,, (tn))n3 is relatively compact 
and E* is not an accumulation point; 

(2) v% + rc E dl1 (G). 
Then : 
(a) { ~ : n ) , ~ ,  is relatively compact; 
(b) there exist a c.c.s. (pt, t 2 0) in A1 (G), Q E&' ( R + )  and a subsequence 

(n') such that 

and hence rc = p,. 

I0  - PAMS 16.1 
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The proof is based on several steps which are of independent interest, and 
therefore are formulated in a more general setup of locally compact groups. 

1.2. DEFINITION. Let K G G be compact, v E A1 (G). The concentration 
function of v is defined as 

QK (v j  : = sup v ( K x ) .  
XEG 

Note that m H QK(vm) is non-increasing. Furthermore, a subset 
d r dl1 (G)  is relatively shift-compact i f f  for every E > 0 there exists a compact 
K ,  such that QKc (v) > 1 - E  for every v E d. 

1.3. PROPOSITION. Let v, EM' (GI, k, 7 co. Let K be n compact subset of 
G and rn E A1 (R,) .  Then 

The inequality follows immediately from the representation 

vP(Kx) = ( C + C )viIKx)<,(Ck, k +  1)). 
k < k ,  kBk,  

1.4. CORDLLARY. Let. (v?),, , be relatively shift-compuct and assume that 

a, : = lim inf 5 ,  ([k,, m)) > 0 .  
n 

Then ( v : ~ ) , ~ ~  is relatively shift-compact. 

P r o  of. Assume that 

inf QK (vin) < 1 - Po < 1 
n 

for all compact K. Then 

lim inf Q ,  (vp) d lim inf [ l -  (1 - Q ,  (vin)) 5,  ([k,, a))] < 1 - Po - a,, 
n n 

for all K. But this contradicts the relative shift-compactness of ( v ? ) , ~ , .  s 

1.5. PROPOSITION. Assume (1) and (2)  of Theorem 1.1 hold true. Then there 
exists some c0 E (0,  1) such that (v?),> is reIativeEy shift-compact, where 
k, = [c, h,], and (1)  is fulfilled (if h, is replaced by kn, n 2 1). 

Proof.  1. First we show that there exists c O ~ ( O ,  1) such that 

Indeed, assume that cn (Ich,, a)) -, 0, n E (n'), as n -, co for all c > 0. Then 

and hence rlih, cn + 8,. But this contradicts (1). 
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2. Put k, = [co hn]. By Corollary 1.4, (v?),> is relatively shift-compact. 
3. On the other hand, 

Hence ( T ~ , ~ ,  inherits the properties of (T,,~, {n)n rn 

In the next step we use for the first time the special structure of G. 

1.6. LEMMA. Let G be a simply connected nilpotent Lie group, and N w R1 
be a central subgroup. Let v n ~ d l  (G), k ,cN,  k,  r a. Assume ( 1 )  (where h, is 
replaced by kn) and (2) of Theorem 1.1 hold true. Furthermore, assume the 
existence of x i  E N such that (v: * E~.), is relativeiy compact. Then ( v ! ~ ) , ~  is 
relatively compact. 

PI o of. Let 4 : R N be an (algebraic and topological) isomorphism. For 
t E R and x E N define tx : = # (t - 4- ' (x)). Hence, especially, x,/k,, n 2 1,  i s  well 
defined. 

1. Since N is central, we obtain 
k v," * Ex,, = (v,  * E,,,!~~)~. = : A?. 

Hence (I:"),, , is relatively compact. According to Corollary 0.3, is 
relatively compact. 

2. Let (X,,} be an array of rowwise i.i.d. random variables with 
distribution Xnk(P) = v,. Let T, be random times independent of the row X,,, 
k 2 1,  with distributions T,(P)  = t,. Put 

Then we have 2, (P)  = v% and W, (P) = A?, respectively. 
3. The group G is topologically isomorphic to a vector space Rd. 

Analogously, since N E R1, GIN E Rd-l, we obtain a decomposition 
G s Rd-l x R1. For any vector Y €Rd let Y = (Y(1),Y(2)) be the corresponding 
decomposition with Y ( ' ) E  Rd-l, Y(')E R1. Hence, if we apply this decom- 
position to Z, and W,, we obtain 

Z = , Wja-.Z?) = (T,/k,) x,. 

(Here we identify X,EN with the 4-l picture in R1.) 
4. The sets of distributions of ZL2' and Wj2) are relatively compact. Then 

( x , ) , ~ ~  is also relatively compact since E, is not a limit point of 
{(TJkn)(P) = T ~ , ~ ,  (5,)). Therefore (e = * E,; I ) , ~ ,  is relatively compact. H 

1.7. COROLLARY (cf. [lg]) .  Let G = R. Then conditions (1) and (2) of 
Theorem 1.1 imply that (vin),,, is relatively compact, 

In [I91 this result is proved with (1) replaced by the condition 
(1') T, -, a stochastically. 
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P r o  of  of Theorem 1.1. (a) Assume (1) for some sequence {h,) and (2) 
hold true. Choose k, , := [c h,J for some c > 0 according to Proposition 1.5. 
Hence especially (1) holds for k,, and ( v ? ) , ~ ~  is relatively shift-compact. 

1. We have to prove that (v:), , , is relatively compact. We prove this by 
induction on the dimension d = dim (G). 

For d = 1, G w R1, see Corollary 1.7. Assume the assertion holds for 
dim (G) d d. Let dim (G)  = d + 1. The group G, being nilpotent and simply 
connected, has a central subgroup N rz; R1. Let n: G 4 GIN be the canonical 
projection Since rc(v,), <,, and k ,  fulfil the assumption of the induction 
hyp6thesis, (n (v,)~"),,~ is relatively compact in A1 ( G / N ) .  On the other hand, 
( v ~ " ) , ~ ~  is relatively shift-compact. Hence there exist x , ~  N such that 
(vln a E ~ , ) , , ~  is relatively compact. Now Lemma 1.6 is applied and yields the 
relative compactness of (vp), , ,. 

2. Now we have to prove that {v:~},,~ is relatively compact. 
This is obvious, since v i m =  vkkn"nl, where c,ER+, O < C ,  = hdk, 

< [l/c] + 1. Hence (a) is proved. 
(b) follows from the transfer theorem 0.1. Indeed, for any subsequence (n') 

there exist another subsequence (nu) and a c.c.s. (p, ,  t 2 0) such that 

(See Theorem 0.2 and (I).) According to the transfer theorem we obtain K = p,. 
The theorem is proved. H 

1.8. Remarks. (a) Obviously, if P (T,, = 0) 4 0, then (1) implies (If). 
(b) Assume conditions (1') and (2) with K = E,, XEG, are satisfied. Then 

there exists some sequence k, r oo such that v!" 4 r, and (z l ik ,  is 
relatively compact (cf. [19]). 

To see this, let K ,  be compact, K, 4 (x}, E, 10, without loss of generality 
E! < 1/2, and choose a sequence N I+ no (N) E N  such that 

(Note that n,(N)Too.) Let 

be the (1 - &)quantile. We have 

E h c e  there exist k ,  2 m,, n, ( N )  6 n < no (N+ I), such that 
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Then vkn -+ 6, as n + m. On the other hand, 

and hence ( T ~ , ~ ,  t,,) is relatively compact. 
(c) For G = R1 it is sufficient to assume that (1') holds if K # E, (see 1191). 

Then (1) is satisfied. This holds true for nilpotent groups if we assume that IC is 
a full measure. 

Indeed, if IC is full (see [9]), then there exists a projection n: G -+ R with 
K ( K )  f E ~ .  Hence Seasz's proof for G = R is applicable. 

(d) Assume (1') and (2) with IC # E ,  are satisfied. Assume moreover that 
(~,k"),,~ and (al lk,  are relatively compact. Then (1) holds true. 

To see this let for some subsequence (n') 

Then, again by the transfer theorem, we have K = p, + 8, by assumption. 
Hence we have proved that Q # e ,  for any accumulation point of (T,,~,<,). 

2. Geometric convolntions. Following the development for real-valued 
random variables (cf. [Z], [3], [ 5 ] ,  [14], and 1151) we assume now that the 
random times T, have geometric distributions. We start with definitions and 
more or less well-known arithmetic properties of geometric and exponential 
distributions, which can easily be checked using generating functions. 

2.1. DEFINITIONS. Let 0 < p < 1, q : = f -p, a > 0. Define the geometric 
distributions as 

Furthermore we define the Poisson distribution 

and the exponential distribution E = El with parameter 1. 

2.2. LEMMA. (a) 5 (p) = E, * (p), p E (0, 1). 
(b) 5 ( ~ 1 ) " ~ "  = ((PI PZ)~ PI> ~z ~ ( 0 ,  1)- 
(c) q (pl)~(P2) = (p), where p, pl, p2 E (0, 1) are related by 

P = ~ 1 ~ 2 / ~ 1 - ( 1 - ~ , ) ~ 1 )  or P ,=P/ (P+P~C~-P)) -  

(d) z, (E)S(P) = E, p E (0, 1). 
Ce) (z,)E = ? ( P I ,  a > O, p (O, = I/(' + Or a = q / ~ '  

2.3. COROLLARY. Let G be a. locally compact group, v E A1 (G). Then 
(a) v < ( ~ )  = * V ~ ( P )  = ,,'I(P) * V; 
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(bj vq(P) = ,IE = 1; Ate-' dt, where 

i.e. generalized geometric distributions vq(*) are representabk as exponential 
mixtures of compound Poisson distributions, and conversely: 

(c) let A, = exp (tcr (v-E,)), t 2 0, u > 0; then A, = vHP), where p = 1/(1 +a). 

2.4. LEMMA. (a) t, (r (p)) + E as p + 0. 
, z ~ ( ? ( P ) ) + E  as p + o .  

(c) Therefore, for any sequence p,10, k, EZ,, k, 7 m, with k, p, + 1 as 
n + m, and 5, : = 5 (p,) (respectively, 5, : = q (p,)), condition (1) from Theorem 1.1 
is fulfilled. 

2.5. LEMMA. Let G be a locally compact group, (p,, t 2 0) and (A,, t 2 0) be 
c.c.s. in dl1 (G). Assume p, = A,. Then ,ut = A,, t 2. 0. 

P r o  of. For a€ A1 (G) let T,: f H 0 * f be the convolution operator on the 
Banach space Co(G). Then (qt, t 3 0) and (TL,, t 2 0) are C,-contraction 
semigroups, the resolvents of which coincide: 

Let M and L be the generators of (T,) and (qz). Then equality of resolvents 
(M - I)-' = (L- 1)- l implies M = L, and therefore T,, = TA,, t 2 0. ta 

2.6. PROPOSITION. Let G be a simply connected nilpotent Lie group. Let 
v,, K E  (G), p,JO. Then (i) -, K &T(ii) v:'~") + K, and in this case v, -+ E ,  

(infinitesimality). 

Proof .  Choose k,tm such that k,p,  -+ 1. Then according to Lem- 
ma 2.4 (c) and Theorem 1.1 each of the conditions (i) and (ii) implies that (vk) 
is relatively compact. Hence infinitesimality follows from Proposition 1 
of [17]. Now Corollary 2.3 (a) shows the equivalence of (i) and (ii). a 

We give by analogy with the case of real-valued random variables (cf. 
1141) the following 

2.7. DEFINITION. K E d1 (G) is called geometrically inJinitely divisible if for 
any p ~ ( 0 ,  1) there exists K , E A ~ ( G )  such that (rcJ"P) = u. (See [I41 for 
G = R1.) 

The "compound geometric" distributions play the role of compound 
Poisson distributions within the class of infinitely divisible distributions. 

2.8. PROPOSITION. Let v E dl1 (G), p E (0, 1). Then K : = vq") is geometrically 
inJinitely divisible. 

The proposition follows immediately from Lemma 2.2 (c). Indeed, let 
p2 ~ ( 0 ,  I), p1 = p/(p +p2 (1 -p)), and put uP2 : = vB(P1). Then (K ~2 ) < ( P ~ )  = K. 
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More generally, we have 

2.9. PROPOSITION. Let ( R t ) , 3 D  be a c.c.s. in M1 (G) .  Then the exponential 
mixture K : = AE is geometrically infinitely divisible. 

Indeed, applying Lemma 2.2 (d) we have (r,(~))"p' = E. Hence for 

m 

xp : = A(Zp(E,) = 1 ,ItlP e-' dt 
0 

we obtain 
J$(P) = = K 
P E m  . . 

The following theorem will enable us to describe completely the structure 
of geometrically infinitely divisible laws on simply connected nilpotent Lie 
groups. 

2.10. T~~o~~~.Letp~10,k,~Z+,k,~oo,andk,p,+l.Letv,,~~A~(G). 
Then the following assertions are equivalent: 

(i) v;(PnI + K; 

(ii) v : ( ~ ~ ~  3 K; 

(iii) vikn'] + p,, t 2 0, a c.e.s., and K = pE. 

Pro of. For (i) e-(ii) see Proposition 2.6; (iii) 3 (i) follows from Theo- 
rem 0.1 and Lemma 2.4 (a). To prove (ii) * (iii) we consider the representation 

m 
v ; ( ~ n )  = j exp (tB,) e-' d t ,  

0 

where B, is the Poisson generator Bn := qnp i l  (vn-E,) (cf. Corollary 2.3 (b)). 
Let A, be the Poisson generator A, : = k, (v, -6,). By the choice of k,, 
obviously, exp(tB,) + p,, t 2 0, iff exp(tA,) + p,, t 2 0 (where (p,) is a c.c.s.). 
Furthermore, we have vkkntl + p,,  t 3 0, iff exp(tA,) + p,, t 2 0 (cf., e.g., [17], 
Remark 2; [12], Section IX, 8 2; see also 1181). 

NOW we apply Theorem 1.1 to ( v $ ~ ~ ) ) , ~ , .  Note that zllkn(q (p,)) + E 
implies (1). Hence (v:),~, is relatively compact. Let (n') be any subsequence 
of N. There exist a subsequence (nu) c (n') and a c.c.s. (p,, t >, 0)- such that 

and rc = ,uE. Therefore, by the considerations above, we obtain the convergence 
of the resolvents of convolution semigroups 

Moreover, according to Lemma 2.5, (p,) is uniquely determined. Hence we have 

m m 

J exp(tBJ e-'dt J pte-* dt. 
0 0 
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But the convergence of resolvents is equivalent to the convergence of 
convolution semigroups (see [12], [I], [S]). Hence we obtain 

The theorem is proved. EA 

2.11. Remark. The assertions (iHiii) of Theorem 2.10 are further 
equivalent to 

(iv) vk 4 K, where (, E d1 (R +) fulfil the "geometric law of large numbers" 
r,,, (en) -, E  equivalent^^, rllkn (r.)-, EI. 

Indeed, (iii) *(iv) follows from Theorem 0.1. Assume (iv) holds. By 
Theorem 1.1, ( v : ~ ) , ~ ~  is relatively compact. Hence, for any T >  0, {vkknt3, 
0 < t 6 ?: n 2 1) is uniformly tight. The assertion follows since T ~ ~ ~ ,  (q ( p n )  - en) 
-+O, n+ m. 

Now we are ready to characterize completely the set of geornet- 
rically infinitely divisible distributions on simply connected nilpotent Lie 
groups. 

2.12. THEOREM. T k  following assertions are equivaZent for k- E A1 (G): 
( i )  K is geometrically infinitely divisible; 

(ii) there exist sequences p, 10, V ,  E A1 (G) such that vitPn) = K ;  

(iii) there exist sequences p,JO, v n ~ A 1 ( G )  such that ~ 2 ' ~ ~ '  + rc;  
(iv) there exist sequences p, 10, v, E A' (G) such that v:@-) + rc ;  
(v) there exists a c.c.s ( P ~ ) ~ > ~  in A'(G) such that K = ,up 

Obviously, (i) 3 (ii) * (iii). The equivalence (iii) G- (iv) holds accoraing to 
Proposition 2.6. (iv)* (v) by Theorem 2.10, and (v) *(i) by Proposition 2.9. 

2.13. COROLLARY. The set 9 : = { rc  E A1 (G): rc is geometrically inJinitely 
divisible) is closed in A1(G). 

The corollary follows immediately from the equivalence (i) e (v) in 2.12 
and from the closedness of the set of exponential mixtures of c.c.s. 

3. Geometrically stable and semistable measures. In this section we apply 
the previous considerations in order to obtain a complete description of 
geometrically (semi-) stable distributions. These concepts were introduced for 
real-valued random variables in [14]. 

Note that the underlying groups are in general non-Abelian, therefore 
throughout our concepts are generalizations of strict (semi-) stability. 

3.1. DEFINITION. u E A" (G) is called geometrically ((a, p)-) semistable if for 
some a E Aut (G), p ~ ( 0 ,  I), the relation 

holds. 
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K is geometrically stable if for any p E (0, 1) there exists a, E Aut (G) such that 

holds. 
I f  T=  (b,, t > 0)  G Aut ( G )  is a continuous one-parameter group, we call 

K geometrically Tstable if we can choose a, E T, p E (0, 1). 
Stability concepts in the usual sense (cf. [17]) are closely related to 

domains of attraction. Hence we have 

3.2. DEF!NITION. Let v, KE&' (G). v belongs to the geometric domain oJ' 
partial attraction of the measure K if there exist pn E (0, I), p,  J 0, a,, E Aut (G) such 
that 

am (v<@n))  + K . 

v is in the domain of geometric p-semistable attraction of K, denoted by 
v G DGSSA (K, p), if v is in the geometric domain of partial attraction and 
P ~ + ~ / P ~ + P E ( O ,  11. 

v i s  in the domain of geometric stable attraction o f  u, denoted by 
V E D G S A ( K ) ,  if there exist a,€ Aut(G), p ~ ( 0 ,  I), such that 

(Obviously, DGSA (u)  )c < p <  DGSSA (u ,  p).) 
Recall that a c.c.s. (p,) is called (a,  c)-semistable for a E Aut (G), c E (0,  I ) ,  if 

a(,u,) = p,,, t 2 0. Let T =  (a,),,, be a continuous one-parameter group of 
automorphisms of G. Then (p,) is called T-stable if a,(,us) = p,, t > 0, s 2 0. 

We say that v belongs to the domain of partial attraction of (p,) if 
( A )  there exist sequences a,, E Aut (G), k, E Z , ,  k, r co, such that a, v[kntl 

+ p,, t 2 0. 
v belongs to the domain of semistable attraction of &) if (A) is satisfied with 

kJkn+ 1 + c E (01 11. 
v belongs to the domain of stable attraction of (p,) if (A) is satisfied with 

kJkn + + 1. (Cf. [I71 and [6].) 

3.3. PROPOSITION. Let v ,  IC E d1 (G), (,u,),> be a c.c.s. Furthermore, let p, 10, 
k , € Z + ,  k,p,+ 1, a , ~ A u t ( G ) .  

(a) Assume that v  belongs to the domain of partial attraction of (pt), i.e. 
a, (vEkntl) + p,, t 2 0. Then v belongs to the geometric domain of partial attraction 
of K : = P . ~ ,  precisely 

a,, (v<(Pn)) + IC . 
(b) Conversely, let v  belong to the geometric domain of partial attraction of 

K ,  i.e. a, (vt@")) + K, Then there exists a c.c.s. (p,) such that a, (vEkntl) 4 k ,  t 3 0, 
and K = pE. 

The proposition is a reformulation o f  Theorem 2.10 with v,: = a,(v). 



154 W. H a z o d  and Yu. S. Khokhlov 

3.4. COROLLARY. Let u be geometrically (a, p)-semistabZa (respectively, 
geometrically stable with respect to T= (a,) G Aut (GI). Then there exists an 
(a, p)-semistable (respectiuely, a T-stable) c.c.s. with rc = p,. 

P r o  of. The existence of (p, = limn a" (K[~~"'~)),,, follows from Proposi- 
tion 3.3 since by assumption a ( ~ ~ ( ~ ) )  = u. Hence an(u~@")) = K. It is easily seen 
then that a h , )  = p,,, t 2 0. The proof for the stable case is analogous. rn 

3.5. COROLLARY. Conversely, let the c.c.s. (pJtgo be (a, p)-semistable 
(respectiuely, T-stable). Then p, = K is  geometricalIy (a, p)-semistable (respec- 
tiveIj, T-stable). 

Proof ,  We use Lemma 2.2 (d): T,(E)'(~) = E. Let ', : = a-  ' (pi) = ptlp, 
t g 0. Then 

The proof for the stable case is analogous. rn 

3.6. COROLLARY. v belongs to the geometric domain of semistable (respec- 
tively, stable) attraction of K €A1 (G) iff there exists a c.c.s. (pr)t30 with K = pE 
such that v belongs to the domain of semistable (respectiuely, stable) attraction of 
@,I* 3 om 

Note that, in Corollary 3.6, (pJt3,, need not be semistable (respectively, 
stable). To prove sharper results we need by analogy with the classical situation 
the notion of full measures in order to obtain the convergence-of-types- 
-theorem. Recall that a probability measure l€A1 (G) is called full if it is not 
concentrated on a proper closed connected normal subgroup of G (cf. 191 and 
[17]). Obviously, an exponential mixture u = p, is full iff p, is full, t > 0. Hence 
we obtain 

3.7. PROPOSITION. Let rc be full. Then v belongs to the domain of geometric 
semistable (respectively, stable) attraction of h: iff there exists a semistable 
(respectively, stable) c.c.s. with K = ,uE, and v is in the domain of semistable 
(respectively, stable) attraction of (pj),2 0. 

Indeed, according to Corollary 3.6 we have to show that for full K the 
convolution semigroup @r)tso in 3.6 is semistable (respectively, stable). But 
(p,),,, is full and the domain of (semi-) stable attraction is nonempty. The 
assertion follows from Corollary 4 in [17]. 

As an immediate consequence we obtain 

3.8. COROLLARY. Let K be geometrically semistable (respectively, stable). 
?hen the domain of geometric semistable (respectively, stable) attraction is 
nonempty. Conversely, let K be full and assume the domain of geometric semistable 
(respectively, stable) attraction is nonempty. Then K: is geometrically semistable 
(respectively, stable). 
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Proof.  The first assertion is obvious, since we have an(rcS(Pn)) = ti, n 3 1, 
and hence K E DGSSA (K, p )  (respectively, K E DGSA (rc)). Conversely, let K be 
full and Y E  DGSSA (rc, p). Then, according to Propositions 3.3 and 3.7 there 
exists a semistable C.G.S. (pJtBo with rc = p,. Hence Corollary 3.5 yields that K is 
geometrically semistable (respectively, stable). 

In the group case we have to distinguish between domains of attraction of 
convolution semigroups ("functional attraction" [lo]), i.e., a, ( v [ ~ ~ ' ] )  + p,, t 2 0, 
and domains of attraction of a single measure, i.e., a,(vkn) + p. For full 
measures we can improve- Proposition 3.7 in the following way: 

3.9. PROPOSITION. Let p be a f i l l  measure in dl (G). Let v belong to the 
domain of semistable attraction of p, i.e. for a,EAut(G),  EN, k ,  r co, 
k, /k ,+,-+c~(O,  11, we have a,(vk")+p. Let p,e(O, I), k,p,+ 1. Then there 
exist b, E 1 (p) : = (or E Aut (G): a (p) = p) such that b, a, (vs(pnl) -t rc and K: is 
geometricafiy semistable, i.e. v belongs to the domain of geometrically semistable 
attraction of K. 

Furthermore, ifc = 1, then p is stable and in this case we can choose b, = id, 
n 2  1. 

Proof.  p is embeddable into a semistable C.C.S. (pJZ3, such that p, = p 
I 

and b, a, ( v [ ~ ~ ~ ] )  + pr, t 2 0 ([lo], Theorem 4.2). Therefore, b, a, (v5(Pn1) + K: = p, 
I and the assertion follows from Proposition 3.7. If c = 1, p is stable, and then 

is uniquely determined by ,u, = p ([17], Proposition 6). Hence we can 
choose b, = id in this case ([lo], Corollary 4.2). rn 

Semistable (respectively, stable) C.C.S. (p,), on nilpotent simply connected 
Lie groups correspond in a one-to-one way to operator semistable (respec- 
tively, operator stable) c.c.s. (ft)t20 on the tangent space 3 (see [lo]). Now we 
are ready to show that this holds true for geometric (semi-) stability. 

Let $9 w Rd be the Lie algebra of G. We use the notations introduced in 
[lo] to denote the correspondence between C.C.S. (pt)r30 on G and (y",),,, on 
$9 via the generating distributions. 

3.10. PROPOSITION. Let ti E A1 (G) be geometrically semistable (respectively, 
stable). Then K: = p,, where (pJtgo is a semistable (respectively, stable) c.c.s. Let 
(f,) be the corresponding operator semistable (respectively, stable) c.c.s. on the 
vector space 3 and define &:= j,, Then & is geometrically semistable (respec- 
tively, stable) on the vector space 9. Conversely, to any geometrically semistable 
(respectively, stable) & on 3 the corresponding geometrically semistable (respec- 
tiuely, stable) rc on G is uniquely determined. 

The assertion follows easily from Theorems 0.1 and 2.10 (see also [7]). 

Note added in proof. The investigations in geometric divisibility and 
semistability are continued by the first-named author in: On geometric 
convolutions of distributions of group-valued random variables, in: Probability 
Measures on Groups and Related Structures. XI (Proc. Oberwolfach 19941, 
World Scientific, 1995, pp. 167-181. 
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