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Abstract. We prove that for uniformly strong mixing strictly 
stationary sequences a weak invariance principle holds for random 
variables with the second moment divergent. This is an extension of 
the result of Peligrad [a] for random variables with finite variance. 

1. Introduction and notation. Let {X,},,, be a strictly stationary random 
sequence on probability space (O, F9 9) and let denote the o-field generated 
by {Xi; m < i 6 k} . ~ef ine:  

The sequence {X,}, is said to.  be uniformly strong mixing or q-mixing if 
lim,,,q, =O. It is well known that en < 2q,'I2. 

In this note, unless otherwise stated, we shall deal with strictly stationary 
cp-mixing sequences only. 

Let S,, = x', Xi and define the random element in $B((O, I]): 

- 1 %.(t)=on S[,], t~(0311, 

where = Var S, and [ ] denotes the greatest integer function. % satisfies the 
weak invariance principle (WIP) if %, converges weakly (*,) to the standard 
Wiener measure W. 

Peligrad [8] proved that in the case &'Xi < oo WPP is equivalent to the 
Lindenberg condition. On the other hand, in the iid case the Central Limit 
Theorem holds for random variables with the second moment barely diver- 
gent [2]. 

The purpose of this note is to formulate and prove a WIP when &Xi = m. 
We use the following notation: let b, 4, + oo for every n~ M and denote by 
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{gk}, an independent copy of {X,},; 

Xl = XiI(lXil < b,)-&XiZ(lXil < b,); 

81 = 8,1(18~l < b,) - c ~ 8 ~ ~ ( l S ~ l  < b,); 
k k 

u; =x;-*; T,"= C x;; z:= uq; r,= c; z ,=z ; ;  
i = l  i=  1 

k 

= X i  2 b); R; = C y'; R, = Ri; 
i = l  

- z, = g; w; (t) = 7, q:,,; W/(t) = z; S[,q; 

K(t) = T, (S[nt,  - Cntlgxl Z(lX1 l < b,)). 
The Theorem we shall prove, in the case b, = + oo for .all n e N ,  is 

Corollary 2.2 in [8}. As an application two corollaries will be proved, the 
second one is a recent result of Peligrad [9]. 

2. Auxiliary results and definitions. In this section we group some facts 
adapted for this note from more general theorems. 

(2.1) {max, z; 2(X1)2}n is uniformly integrable if and only if so is 

{ max 2;2(77)2}, 
l < i S n  

(see the proof of Proposition 2.1 in [8]). 

(2.2) Let {X,}, be a centered L2-stationary random sequence; then 

(1 - qJ1/' max oi ,< on + 2po, 
1 <id, 

(see Lemma 4.2 in 171). 

(2.3) For any (X,}, such that 

cp, + max B(IS, - SiI > x,) ,< q < 1, 
l d i d n  

for x 3 x, we have 

9( max lSil > 2x) < (1 -q)-'B(IS,I > x) 
l S i Q n  

(see Lemma 1.1.6 in 143). 

(2.4) Let {X,*}, denote an iid sequence with Y(XT) = 9(X1); then for x > 0: 

(1 - cpl)B( max lXf 1 > x) < B( max [Xi( > X) < (1 + cpl)B( max IXf( > x) 
l < i Q n  l S i < n  l d i d n  

(see Proposition 3.1 in [9]). 
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(2.5) 9 ( X , )  is said to be in the domain of attraction of the normal law 
( ~ ( X , ) E  a d ( 2 ) )  if there exist sequences {A,), and {b,}, such that 

m 

This is equivalent [2] to the slow variation of &X:I(IX,I < x) ,  and then 

(2.6) If 8'X: I(IXII < x )  is slowly varying, then for {b,}, from (2.5) we obtain 

n 
-QIXllI(lXll > b,) 5 0,  n -+ + a 
b, 

(this follows easily from Theorem 2, VIII, $9, in [2]). 

(2.7) If x28(IXlI  > x )  is a slowly varying function, then so is bX:I(IX,( < x )  
(see the same Theorem as in (2.6)); however, according to Exercise 32, VII, 8 10, 
in [2], the converse is not true. 

(2.8) If x28(IX, (  > x )  is a slowly varying function, then 

n B ( I X I I > a J A l ,  a n = i n f { x ;  B ( I X , I > x ) < l / n )  

(see Lemma 1.8 in [10]). 

(2.9) If xZB(IX,(  > x) is a slowly varying function, then 

8(X,lI(lX,l > x )  - 2xB(IXl(  > x),  x -, + oo 
(see Theorem 8.1.4 in [I]) .  

(2.10) Assume nB(IX,I > b,) 4 0, and z, -, + a, n -, + oo, and ( 2 ~ ~  q, 
is uniformly integrable. Then 

( 1 ) )  ( 0 ,  1 ,  n -+ + oo 
(see Theorem 3 in [6]). 

3. R~esulrs and proofs. 
THEOREM. Assume that 

(3.1) lim nB(IX,I > b,J = 0 ,  
a-m 

(3.2) lim 7, = + m ,  
n-r m 

(3.3) lim 2; 6( max (X;)2) = 0. 
m 1 B i B n  

Then 

Conversely, if up, e 1 and (3.4) holds, then (3.3) is satisfied. 
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COROLLARY 1. Let 9 (XI) E 9d (2), &XI = 0 and 

(3.5) liminfz,bL1 > 0, 
PI-+ m 

where b, is defined in (2.5). Then 

(3.6) , n - , + a o .  

COROLLARY 2. Assume x2B(IXlI > x) is slowly varying, &XI = 0, cp, < 1. 
Then (3.6) holds, and 

(3.7) ~ & I s , I - ~ , ,  n + + m ,  

for some {b,),. 

P r o  of of the  The o r  em. We shall consider only the case &X: = a, i.e., 
b, A + a ,  since the other case can be proved analogously. From (3.1) we see 
that 

9 max -0, n-+ +a. 
1 S k Q n  

Thus in the proof we can restrict ourselves to Wi random elements. 

T h e direct  h a 1 f. An examination of the proof of Theorems 1 and 2 in 
[S] shows that it is enough to prove that 

(21)' n max - 0 ,  n - , + a ,  
1 Q i Q [nS.] (',I2 

for any {a,), such that lim,6, = 0. By (2.2), for any E > 0 and  EN such that 
13, < E ,  we have 

2: 
max - < (1 -Qp)-1/2 

lQi<[n8.] ' n  

so the required condition is satisfied if (z,)' is a regularly varying sequence with 
index 1 (see [I], p. 52), and 

From (2.1) we infer that (7;' x2), is uniformly integrable, so by (2.10) and (3.1) 
we obtain 
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On the other hand, by (2.2) we have 

< 2n1[nt1(21nt1)2 + 2 max (T;)~ 
1 6 k d [ n t ]  

d (2;,32(221f +4(1 -ep)-1)+8P2(1 -h)p)-1(27)2, 

so there exists a constant C = C(eP, t) such that 

lim inf z; 7rntl 2 C > 0, 
n+ m 

since lim,,,z;lz; = 0 by (3.3). From (3.10) and (2.1) we infer that 
{(2~nt,)-2(7;~,1)2), is uniformly integrable for t ~ ( 0 ,  11, so by (3.1) and (2.10) we 
get 

(3.1 1) ( ( n l l n )  1 )  n + + c o .  

From (3.11), (3.9) and the Theorem of Convergence of Types we get (3.8). 

I Now observe that by assumption and (2.10) we have 
I 

~ ( z ; ~ ( s , - ~ ~ ) ) ~ N ( O , ~ ) ,  n + + c o .  

Thus, by Theorem 18.1.1 in [3] we have 

I (3.12) @ ~ k ,  k ~ N , n + + m .  
(2A2 

I Since 
I 

9 ( l x 1 - & l  j EZ,) G ~ ( 1 x 1 - 2 1  j 2 - 1 ~ ~ n ) + 2 @ ( ~ ~ l j a  b,) 

2 n 2  < 48- (zl) ~ ; ~ + n @ ( l x , I  5 b,), 

so by (3.3) and (3.1) we obtain 

( l ( n + - n + ) ) N ( O y l ) ,  n -++co .  

Thus limn,, znz,-,ll = 1, so 

(3.1 3) n + l n l  1, n +  +m. 

Let  EN; then 

(rq[nq - ~ 3 ) ~  q ,  n + + c o .  
(21.q - 11) 

But q[nq-l] = n, n-1, ..., n-q-1 and, by (3.13), 
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so by (3.12) we have 

for every w rational. Let r be irrational and r E (0, 11, c = r - w > 0. We show, 
following Peligrad [71, that 

From (2.2) we have 
112 n 

I ~ f c o n ~  -TKII $Ll -[con] G (1 -ep)- (7[n(r-coJl + 2 + 22!)9 
so taking limsup over both sides we have, by (3.3), 

-1 n lim sup 7, Iqcon, - T:~,,]I < (1 - eP) - 'I2 lim sup T; 7;n(r -w), . 
n+ m n- ca 

Now, it remains to show that the right-hand side disappears when w r r. We 
have 

7?nc1 ~!n/21 ~!n1221 fIn1231 G'n/241 , . -- 7rncl 

Tn 7 n  ~!n/21 $n/221 TIn/231 ~ : ~ ~ ~ t  - 1osc/1on211 

Note that limsup of the last multiplier is bounded by (1 -QJ- ' /~,  so 

'k-~)l< (1 l122-(1/2nr -logc/loga- 1) < K(r-w)  lim sup - 
n-rs ,  7, 

where K is a constant depending on Q, only, i.e., (3.16) holds. By (3.8) and (3.16), 
for every r ~(0, 11 we have 

so by Theorem 1.3 in [lo] the above holds for every r > 0, i.e., {(T,)'), forms 
a regularly varying sequence with index 1. 

The  converse half. We have 

rp, + max P(JZ,-Z?I > znxo) G cp, + max B(IZn-Zjl > 2-'znx,) 
16 j 6 n  1 4 j 4 n  

+ max B(lZj-ZJ > 2-lznx0)+ max P(IZj-Zjnl > 2-lznxO), 
1 a ~ S N ,  N a < j 6 n  

where N, is such that B(z;llR,I > 2-'x0) < nB(IX,I > b,) < S for n > N,. 
The right-hand side of the above inequality can be estimated by 
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i.e., there exists No = N ( S ,  cp,) such that for n 2 No and sufkiently large xo 

v l +  max P((Z,-Z;I > z,x,) < y < 1, 
1 d j d n  

since maxldjbnzjr,' is bounded, by (3.4). Using (2.3), for n 2 No, x 2 x, we 
obtain 

and since 

P( max lull > x) < 29( max (Zq( > 2-lx), 
I d i S n  I G i d n  

so, by (3.17), {maxldiQ,z;2(U~)2), is uniformly integrable. By the proof of 
Theorem 1 in [5] we have 

so for p,, = med(maxl, i,, r, ' IXql) we obtain 

(3.19) 0 n + + o o .  

Thus 

B( max z i  ' IX;I 2 x) S @(I max 2;' 1x71 -pn/ Z x -p$ 
1 d i Q n  l b i d n  

S W(1 max z; 1x1- max 2;' IRII 2 x -pn) d 4P( max z;'JU112 x- PA. 
1 d idn  l d i d n  1 d i $ n  

From this, (3.19), (3.18) and the uniform integrability of (max, dis,, z; 2(U;)2), 
the equality (3.3) holds true. 

Proof of Corol lary  1. By (2.6), (3.9, (2.4) it suffices to prove that 

(b i2  max (XTI(IXT1 < bn))2)n 
l < i Q n  

is uniformly integrable, but this follows easily from the iid case. 

P r o  of of C o r  o 11 a r y 2. Under the assumptions of the corollary Peligrad 
[7] proved that for every  EN: 

where 
n 

a2(ka,) = Var( Xi I(IXiI < ka,)- bX,I(IXi( < ka,)), 
. i = l  

and {a,), is defined in (2.8). So there exists {r,}, , limnr, = + GO, such that, for 
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every {x,),, lim,x, = +ao and x, = o(r,), 

x," a," 
0 ,  n + + a o .  

o2 (x, a,) 

On the other hand, by Theorem 1.1 in [10], there exists {r;),, limn r; = + oo, 
such that, for every {x,),, limn x, = + oo and xn = o(r;), 

Now let b, = xna,, where limn x, = + ao, x, = o(rn A r:), and z, = o(x,a,); then 
(3.1H3.3) are fulfilled, so (3.4) holds. Observe that by (2.9) we have 

so this and (3.20), (3.21) give (3.6). Since r, - ~ Q I ~ J  and 

~ ~ S ~ I - B I T , I  1 1 l 1 1 l ,  2nb,~(IX,l>b,) I Q1T.I I - , n++oo,  
QI  T,I f i z n  

so, as above, (3.7) holds. 

Rem a r k. There are strictly stationary random sequences with infinite 
variance, cp-mixing, satisfying CLT and not satisfying WIP (i.e. (3.6)). As an 
example one can use a 1-dependent sequence in Example 2 of [6]. For this 
sequence, (3.5) does not hold. 
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