ON AN INVARIANCE PRINCIPLE FOR UNIFORMLY STRONG MIXING STATIONARY SEQUENCES WHEN $\mathscr{E} X^{2}=\infty$

BY

ZBIGNIEW S. SZEWCZAK (TORUŃ)

Abstract

We prove that for uniformly strong mixing strictly stationary sequences a weak invariance principle holds for random variables with the second moment divergent. This is an extension of the result of Peligrad [8] for random variables with finite variance.

1. Introduction and notation. Let $\left\{X_{k}\right\}_{k \in Z}$ be a strictly stationary random sequence on probability space $(\Omega, \mathscr{F}, \mathscr{F})$ and let \mathscr{P}_{k}^{m} denote the σ-field generated by $\left\{X_{i} ; m \leqslant i \leqslant k\right\}$. Define:

$$
\begin{aligned}
& \varphi_{n}=\varphi_{n}\left(\left\{X_{k}\right\}\right)=\sup \left\{|\mathscr{P}(B / A)-\mathscr{P}(B)| ; A \in \mathscr{F}_{-\infty}^{0}, B \in \mathscr{F}_{n}^{\infty}, \mathscr{P}(A)>0\right\}, \\
& \varrho_{n}=\varrho_{n}\left(\left\{X_{k}\right\}\right)=\sup \left\{|\operatorname{Corr}(f, g)| ; f, g-\text { real }, f \in L^{2}\left(\mathscr{F}_{-\infty}^{0}\right), g \in L^{2}\left(\mathscr{F}_{n}^{\infty}\right)\right\} .
\end{aligned}
$$

The sequence $\left\{X_{k}\right\}_{k}$ is said to be uniformly strong mixing or φ-mixing if $\lim _{n \rightarrow \infty} \varphi_{n}=0$. It is well known that $\varrho_{n} \leqslant 2 \varphi_{n}^{1 / 2}$.

In this note, unless otherwise stated, we shall deal with strictly stationary φ-mixing sequences only.

Let $S_{n}=\sum_{k=1}^{n} X_{i}$ and define the random element in $\mathscr{D}((0,1])$:

$$
\mathscr{X}_{n}(t)=\sigma_{n}^{-1} S_{[n t]}, \quad t \in(0,1]
$$

where $\sigma_{n}^{2}=\operatorname{Var} S_{n}$ and [] denotes the greatest integer function. \mathscr{X}_{n} satisfies the weak invariance principle (WIP) if \mathscr{X}_{n} converges weakly $\left(\Rightarrow_{w}\right)$ to the standard Wiener measure \mathscr{W}.

Peligrad [8] proved that in the case $\mathscr{E} X_{1}^{2}<\infty$ WIP is equivalent to the Lindenberg condition. On the other hand, in the iid case the Central Limit Theorem holds for random variables with the second moment barely divergent [2].

The purpose of this note is to formulate and prove a WIP when $\mathscr{E} X_{1}^{2}=\infty$. We use the following notation: let $b_{n} \rightarrow_{n}+\infty$ for every $n \in N$ and denote by
$\left\{\hat{X}_{k}\right\}_{k}$ an independent copy of $\left\{X_{k}\right\}_{k} ;$

$$
\begin{gathered}
X_{i}^{n}=X_{i} I\left(\left|X_{i}\right|<b_{n}\right)-\mathscr{E} X_{i} I\left(\left|X_{i}\right|<b_{n}\right) ; \\
\hat{X}_{i}^{n}=\hat{X}_{i} I\left(\left|\hat{X}_{i}\right|<b_{n}\right)-\mathscr{E} \hat{X}_{i} I\left(\left|\hat{X}_{i}\right|<b_{n}\right) ; \\
U_{i}^{n}=X_{i}^{n}-\hat{X}_{i}^{n} ; \quad T_{k}^{n}=\sum_{i=1}^{k} X_{i}^{n} ; \quad Z_{k}^{n}=\sum_{i=1}^{k} U_{i}^{n} ; \quad T_{n}=T_{n}^{n} ; \quad Z_{n}=Z_{n}^{n} ; \\
Y_{i}^{n}=X_{i} I\left(\left|X_{i}\right| \geqslant b_{n}\right) ; \quad R_{k}^{n}=\sum_{i=1}^{k} Y_{i}^{n} ; \quad R_{n}=R_{n}^{n} ; \\
\hat{S}_{n}=\sum_{i=1}^{n} \hat{X}_{i} ; \quad\left(\tau_{k}^{n}\right)^{2}=\operatorname{Var} T_{k}^{n} ; \quad\left(z_{k}^{n}\right)^{2}=\operatorname{Var} Z_{k}^{n} ; \quad \tau_{n}=\tau_{n}^{n} ; \\
z_{n}=z_{n}^{n} ; \quad \mathscr{W}_{n}^{\prime}(t)=\tau_{n}^{-1} T_{[n t]}^{n} ; \quad \mathscr{W}_{n}^{\prime \prime}(t)=\tau_{n}^{-1} S_{[n t]} ; \\
\mathscr{W}_{n}(t)=\tau_{n}^{-1}\left(S_{[n t]}-[n t] \mathscr{E} X_{1} I\left(\left|X_{1}\right|<b_{n}\right)\right)
\end{gathered}
$$

The Theorem we shall prove, in the case $b_{n}=+\infty$ for all $n \in N$, is Corollary 2.2 in [8]. As an application two corollaries will be proved, the second one is a recent result of Peligrad [9].
2. Auxiliary results and definitions. In this section we group some facts adapted for this note from more general theorems.
(2.1) $\left\{\max _{1 \leqslant i \leqslant n} \tau_{n}^{-2}\left(X_{i}^{n}\right)^{2}\right\}_{n}$ is uniformly integrable if and only if so is

$$
\left\{\max _{1 \leqslant i \leqslant n} \tau_{n}^{-2}\left(T_{i}^{n}\right)^{2}\right\}_{n}
$$

(see the proof of Proposition 2.1 in [8]).
(2.2) Let $\left\{X_{k}\right\}_{k}$ be a centered L^{2}-stationary random sequence; then

$$
\left(1-\varrho_{p}\right)^{1 / 2} \max _{1 \leqslant i \leqslant n} \sigma_{i} \leqslant \sigma_{n}+2 p \sigma_{1}
$$

(see Lemma 4.2 in [7]).
(2.3) For any $\left\{X_{k}\right\}_{k}$ such that

$$
\varphi_{1}+\max _{1 \leqslant i \leqslant n} \mathscr{P}\left(\left|S_{n}-S_{i}\right|>x_{0}\right) \leqslant \eta<1
$$

for $x \geqslant x_{0}$ we have

$$
\mathscr{P}\left(\max _{1 \leqslant i \leqslant n}\left|S_{i}\right|>2 x\right) \leqslant(1-\eta)^{-1} \mathscr{P}\left(\left|S_{n}\right|>x\right)
$$

(see Lemma 1.1.6 in [4]).
(2.4) Let $\left\{X_{k}^{*}\right\}_{k}$ denote an iid sequence with $\mathscr{L}\left(X_{1}^{*}\right)=\mathscr{L}\left(X_{1}\right)$; then for $x>0$:

$$
\left(1-\varphi_{1}\right) \mathscr{P}\left(\max _{1 \leqslant i \leqslant n}\left|X_{i}^{*}\right|>x\right) \leqslant \mathscr{P}\left(\max _{1 \leqslant i \leqslant n}\left|X_{i}\right|>x\right) \leqslant\left(1+\varphi_{1}\right) \mathscr{P}\left(\max _{1 \leqslant i \leqslant n}\left|X_{i}^{*}\right|>x\right)
$$

(see Proposition 3.1 in [9]).
(2.5) $\mathscr{L}\left(X_{1}\right)$ is said to be in the domain of attraction of the normal law $\left(\mathscr{L}\left(X_{1}\right) \in \mathscr{D} \mathscr{A}(2)\right)$ if there exist sequences $\left\{A_{n}\right\}_{n}$ and $\left\{b_{n}\right\}_{n}$ such that

$$
\mathscr{L}\left(b_{n}^{-1} \sum_{k=1}^{n} X_{i}^{*}-A_{n}\right) \xrightarrow{w} \mathscr{N}(0,1), \quad n \rightarrow+\infty .
$$

This is equivalent [2] to the slow variation of $\mathscr{E} X_{1}^{2} I\left(\left|X_{1}\right|<x\right)$, and then

$$
b_{n}:=\inf \left\{x ; x^{-2} \mathscr{E} X_{1}^{2} I\left(\left|X_{1}\right|<x\right) \leqslant 1 / n\right\} .
$$

(2.6) If $\mathscr{E} X_{1}^{2} I\left(\left|X_{1}\right|<x\right)$ is slowly varying, then for $\left\{b_{n}\right\}_{n}$ from (2.5) we obtain

$$
\frac{n}{b_{n}} \mathscr{E}\left|X_{1}\right| I\left(\left|X_{1}\right|>b_{n}\right) \xrightarrow{n} 0, \quad n \rightarrow+\infty
$$

(this follows easily from Theorem 2, VIII, §9, in [2]).
(2.7) If $x^{2} \mathscr{P}\left(\left|X_{1}\right|>x\right)$ is a slowly varying function, then so is $\mathscr{E} X_{1}^{2} I\left(\left|X_{1}\right|<x\right)$ (see the same Theorem as in (2.6)); however, according to Exercise 32, VII, §10, in [2], the converse is not true.
(2.8) If $x^{2} \mathscr{P}\left(\left|X_{1}\right|>x\right)$ is a slowly varying function, then

$$
n \mathscr{P}\left(\left|X_{1}\right|>a_{n}\right) \xrightarrow{n} 1, \quad a_{n}=\inf \left\{x ; \mathscr{P}\left(\left|X_{1}\right|>x\right) \leqslant 1 / n\right\}
$$

(see Lemma 1.8 in [10]).
(2.9) If $x^{2} \mathscr{P}\left(\left|X_{1}\right|>x\right)$ is a slowly varying function, then

$$
\mathscr{E}\left|X_{1}\right| I\left(\left|X_{1}\right|>x\right) \sim 2 x \mathscr{P}\left(\left|X_{1}\right|>x\right), \quad x \rightarrow+\infty
$$

(see Theorem 8.1.4 in [1]).
(2.10) Assume $n \mathscr{P}\left(\left|X_{1}\right|>b_{n}\right) \xrightarrow{n} 0$, and $\tau_{n} \rightarrow+\infty, n \rightarrow+\infty$, and $\left\{\tau_{n}^{-2} T_{\sigma_{n}}\right.$ is uniformly integrable. Then

$$
\left(\mathscr{W}_{n}^{\prime}(1)\right) \xrightarrow{w} \mathcal{N}(0,1), \quad n \rightarrow+\infty
$$

(see Theorem 3 in [6]).

3. Results and proofs.

Theorem. Assume that

$$
\begin{gather*}
\lim _{n \rightarrow \infty} n \mathscr{P}\left(\left|X_{1}\right|>b_{n}\right)=0, \tag{3.1}\\
\lim _{n \rightarrow \infty} \tau_{n}=+\infty, \tag{3.2}\\
\lim _{n \rightarrow \infty} \tau_{n}^{-2} \mathscr{E}\left(\max _{1 \leqslant i \leqslant n}\left(X_{i}^{n}\right)^{2}\right)=0 . \tag{3.3}
\end{gather*}
$$

Then

$$
\begin{equation*}
W_{n} \stackrel{w}{\Rightarrow} \mathscr{W}, \quad n \rightarrow+\infty \tag{3.4}
\end{equation*}
$$

Conversely, if $\varphi_{1}<1$ and (3.4) holds, then (3.3) is satisfied.

Corollary 1. Let $\mathscr{L}\left(X_{1}\right) \in \mathscr{D} \mathscr{A}(2), \mathscr{E} X_{1}=0$ and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \tau_{n} b_{n}^{-1}>0 \tag{3.5}
\end{equation*}
$$

where b_{n} is defined in (2.5). Then

$$
\begin{equation*}
\mathscr{W}_{n}^{\prime \prime} \xlongequal{w} \mathscr{W}, \quad n \rightarrow+\infty \tag{3.6}
\end{equation*}
$$

Corollary 2. Assume $x^{2} \mathscr{P}\left(\left|X_{1}\right|>x\right)$ is slowly varying, $\mathscr{E} X_{1}=0, \varphi_{1}<1$. Then (3.6) holds, and

$$
\begin{equation*}
\sqrt{\pi / 2} \mathscr{E}\left|S_{n}\right| \sim \tau_{n}, \quad n \rightarrow+\infty \tag{3.7}
\end{equation*}
$$

for some $\left\{b_{n}\right\}_{n}$:
Proof of the Theorem. We shall consider only the case $\mathscr{E} X_{1}^{2}=\infty$, i.e., $b_{n} \xrightarrow{n}+\infty$, since the other case can be proved analogously. From (3.1) we see that

$$
\max _{1 \leqslant k \leqslant n} \tau_{n}^{-1}\left|R_{k}^{n}\right| \xrightarrow{\mathscr{P}} 0, \quad n \rightarrow+\infty .
$$

Thus in the proof we can restrict ourselves to \mathscr{W}_{n}^{\prime} random elements.
The direct half. An examination of the proof of Theorems 1 and 2 in [5] shows that it is enough to prove that

$$
\max _{1 \leqslant i \leqslant\left[n \delta_{n}\right]} \frac{\left(\tau_{i}^{n}\right)^{2}}{\left(\tau_{n}\right)^{2}} \xrightarrow{n} 0, \quad n \rightarrow+\infty
$$

for any $\left\{\delta_{n}\right\}_{n}$ such that $\lim _{n} \delta_{n}=0$. By (2.2), for any $\varepsilon>0$ and $n \in N$ such that $\delta_{n} \leqslant \varepsilon$, we have

$$
\max _{1 \leqslant i \leqslant\left[n \delta_{n}\right]} \frac{\tau_{i}^{n}}{\tau_{n}} \leqslant\left(1-\varrho_{p}\right)^{-1 / 2}\left(\frac{\tau_{[n \epsilon]}^{n}}{\tau_{n}}+2 p \frac{\tau_{1}^{n}}{\tau_{n}}\right),
$$

so the required condition is satisfied if $\left(\tau_{n}\right)^{2}$ is a regularly varying sequence with index 1 (see [1], p. 52), and

$$
\begin{equation*}
\frac{\left(\tau_{[n t]}^{n}\right)^{2}}{\left(\tau_{[n t]}\right)^{2}} \xrightarrow{n} 1, \quad t \in(0,1], n \rightarrow+\infty . \tag{3.8}
\end{equation*}
$$

From (2.1) we infer that $\left\{\tau_{n}^{-2} T_{n}^{2}\right\}_{n}$ is uniformly integrable, so by (2.10) and (3.1) we obtain

$$
\begin{equation*}
\mathscr{L}\left(z_{[n t]}^{-1} Z_{[n t}^{n}\right) \xrightarrow{w} \mathcal{N}(0,1), \quad n \rightarrow+\infty . \tag{3.9}
\end{equation*}
$$

On the other hand, by (2.2) we have

$$
\begin{aligned}
\left(\tau_{n}\right)^{2} & =\mathscr{E}\left(\sum_{j=1}^{[n /[/ n t]]} \sum_{i=1}^{[n t]} X_{[n t](j-1)+i}^{n}+\sum_{i=[n /[n t]][n t]+1}^{n} X_{i}^{n}\right)^{2} \\
& \leqslant 2^{n /[n t]}\left(\tau_{[n t]}^{n}\right)^{2}+2 \max _{1 \leqslant k \leqslant[n t]}\left(\tau_{k}^{n}\right)^{2} \\
& \leqslant\left(\tau_{[n t)}^{n}\right)^{2}\left(2^{2 / t}+4\left(1-\varrho_{p}\right)^{-1}\right)+8 p^{2}\left(1-\varrho_{p}\right)^{-1}\left(\tau_{1}^{n}\right)^{2},
\end{aligned}
$$

so there exists a constant $C=C\left(\varrho_{p}, t\right)$ such that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\liminf } \tau_{n}^{-1} \tau_{[n t]}^{n} \geqslant C>0, \tag{3.10}
\end{equation*}
$$

since $\lim _{n \rightarrow \infty} \tau_{n}^{-1} \tau_{1}^{n}=0$ by (3.3). From (3.10) and (2.1) we infer that $\left\{\left(\tau_{[n t]}^{n}\right)^{-2}\left(T_{[n t]}^{n}\right)^{2}\right\}_{n}$ is uniformly integrable for $t \in(0,1]$, so by (3.1) and (2.10) we get

$$
\begin{equation*}
\mathscr{L}\left(\left(z_{[n t]}^{n}\right)^{-1} Z_{[n t]}^{n}\right) \xrightarrow{w} \mathscr{N}(0,1), \quad n \rightarrow+\infty . \tag{3.11}
\end{equation*}
$$

From (3.11), (3.9) and the Theorem of Convergence of Types we get (3.8).
Now observe that by assumption and (2.10) we have

$$
\mathscr{L}\left(z_{n}^{-1}\left(S_{n}-\hat{S}_{n}\right)\right) \xrightarrow{w} \mathscr{N}(0,1), \quad n \rightarrow+\infty .
$$

Thus, by Theorem 18.1.1 in [3] we have

$$
\begin{equation*}
\frac{\left(\tau_{k n}\right)^{2}}{\left(\tau_{n}\right)^{2}} \xrightarrow{n} k, \quad k \in N, n \rightarrow+\infty \tag{3.12}
\end{equation*}
$$

Since

$$
\begin{aligned}
\mathscr{P}\left(\left|X_{1}-\hat{X}_{1}\right|>\varepsilon z_{n}\right) & \leqslant \mathscr{P}\left(\left|X_{1}^{n}-\hat{X}_{1}^{n}\right|>2^{-1} \varepsilon z_{n}\right)+2 \mathscr{P}\left(\left|X_{1}\right| \geqslant b_{n}\right) \\
& \leqslant 4 \varepsilon^{-2}\left(z_{1}^{n}\right)^{2} z_{n}^{-2}+n \mathscr{P}\left(\left|X_{1}\right| \geqslant b_{n}\right),
\end{aligned}
$$

so by (3.3) and (3.1) we obtain

$$
\mathscr{L}\left(z_{n}^{-1}\left(S_{n+1}-\hat{S}_{n+1}\right)\right) \xrightarrow{w} \mathscr{N}(0,1), \quad n \rightarrow+\infty .
$$

Thus $\lim _{n \rightarrow \infty} z_{n} z_{n+1}^{-1}=1$, so

$$
\begin{equation*}
\tau_{n+1} \tau_{n}^{-1} \xrightarrow{n} 1, \quad n \rightarrow+\infty . \tag{3.13}
\end{equation*}
$$

Let $q \in N$; then

$$
\frac{\left.\left(\tau_{q[n q-1}\right)^{1}\right)^{2}}{\left(\tau_{[n q-1]}\right)^{2}} \xrightarrow{n} q, \quad n \rightarrow+\infty
$$

But $q\left[n q^{-1}\right]=n, n-1, \ldots, n-q-1$ and, by (3.13),

$$
\begin{equation*}
\frac{\left(\tau_{n}\right)^{2}}{\left(\tau_{[n q-1]}\right)^{2}} \xrightarrow{n} q, \quad n \rightarrow+\infty \tag{3.14}
\end{equation*}
$$

so by (3.12) we have

$$
\begin{equation*}
\frac{\left(\tau_{[\omega n]}\right)^{2}}{\left(\tau_{n}\right)^{2}} \xrightarrow{n} \omega, \quad n \rightarrow+\infty \tag{3.15}
\end{equation*}
$$

for every ω rational. Let r be irrational and $r \in(0,1], c=r-\omega>0$. We show, following Peligrad [7], that

$$
\begin{equation*}
\frac{\left(\tau_{[r n]}\right)^{2}}{\left(\tau_{n}\right)^{2}} \xrightarrow{n} r, \quad n \rightarrow+\infty \tag{3.16}
\end{equation*}
$$

From (2.2) we have

$$
\left|\tau_{[\omega n]}^{n}-\tau_{[r n]}^{n}\right| \leqslant \tau_{[r n]-[\omega n]}^{n} \leqslant\left(1-\varrho_{p}\right)^{-1 / 2}\left(\tau_{[n(r-\omega)]+2}^{n}+2 \tau_{1}^{n}\right),
$$

so taking limsup over both sides we have, by (3.3),

$$
\left.\limsup _{n \rightarrow \infty} \tau_{n}^{-1} \mid \tau_{[\omega n]}^{n}-\tau_{[r n]}^{n}\right] \leqslant\left(1-\varrho_{p}\right)^{-1 / 2} \limsup _{n \rightarrow \infty} \tau_{n}^{-1} \tau_{[n(r-\omega)]}^{n}
$$

Now, it remains to show that the right-hand side disappears when $\omega \nearrow r$. We have

$$
\frac{\tau_{[n c]}^{n}}{\tau_{n}}=\frac{\tau_{[n / 2]}^{n}}{\tau_{n}} \times \frac{\tau_{\left[n / 2^{2}\right]}^{n}}{\tau_{[n / 2]}^{n}} \times \frac{\tau_{\left[n / 2^{3}\right]}^{n}}{\tau_{\left[n / 2^{2}\right]}^{n}} \times \frac{\tau_{\left[n / 2^{4}\right]}^{n}}{\tau_{\left[n / 2^{3}\right]}^{n}} \times \ldots \times \frac{\tau_{[n c]}^{n}}{\tau_{\left[n / 2^{[-\log c \log 2]]}\right.}^{n}}
$$

Note that limsup of the last multiplier is bounded by $\left(1-\varrho_{p}\right)^{-1 / 2}$, so

$$
\limsup _{n \rightarrow \infty} \frac{\tau_{[n(r-\omega)]}^{n}}{\tau_{n}} \leqslant\left(1-\varrho_{p}\right)^{-1 / 2} 2^{-(1 / 2)([-\log c / \log 2]-1)} \leqslant K(r-\omega)
$$

where K is a constant depending on ϱ_{p} only, i.e., (3.16) holds. By (3.8) and (3.16), for every $r \in(0,1]$ we have

$$
\frac{\left(\tau_{[r n}\right)^{2}}{\left(\tau_{n}\right)^{2}} \xrightarrow{n} r, \quad n \rightarrow+\infty
$$

so by Theorem 1.3 in [10] the above holds for every $r>0$, i.e., $\left\{\left(\tau_{n}\right)^{2}\right\}_{n}$ forms a regularly varying sequence with index 1 .

The converse half. We have

$$
\begin{aligned}
& \varphi_{1}+\max _{1 \leqslant j \leqslant n} \mathscr{P}\left(\left|Z_{n}-Z_{j}^{n}\right|>z_{n} x_{0}\right) \leqslant \varphi_{1}+\max _{1 \leqslant j \leqslant n} \mathscr{P}\left(\left|Z_{n}-Z_{j}\right|>2^{-1} z_{n} x_{0}\right) \\
& \quad+\max _{1 \leqslant j \leqslant N_{\delta}} \mathscr{P}\left(\left|Z_{j}-Z_{j}^{n}\right|>2^{-1} z_{n} x_{0}\right)+\max _{N_{\delta}<j \leqslant n} \mathscr{P}\left(\left|Z_{j}-Z_{j}^{n}\right|>2^{-1} z_{n} x_{0}\right),
\end{aligned}
$$

where N_{δ} is such that $\mathscr{P}\left(\tau_{n}^{-1}\left|R_{n}\right|>2^{-1} x_{0}\right) \leqslant n \mathscr{P}\left(\left|X_{1}\right|>b_{n}\right) \leqslant \delta$ for $n>N_{\delta}$. The right-hand side of the above inequality can be estimated by

$$
\varphi_{1}+\frac{8}{x_{0}^{2}}\left(1+\max _{1 \leqslant j \leqslant n} \frac{\left(\tau_{j}\right)^{2}}{\left(\tau_{n}\right)^{2}}\right)+o(1)+\delta
$$

i.e., there exists $N_{0}=N\left(\delta, \varphi_{1}\right)$ such that for $n \geqslant N_{0}$ and sufficiently large x_{0}.

$$
\varphi_{1}+\max _{1 \leqslant j \leqslant n} \mathscr{P}\left(\left|Z_{n}-Z_{j}^{n}\right|>z_{n} x_{0}\right) \leqslant \eta<1,
$$

since $\max _{1 \leqslant j \leqslant n} \tau_{j} \tau_{n}^{-1}$ is bounded, by (3.4). Using (2.3), for $n \geqslant N_{0}, x \geqslant x_{0}$ we obtain

$$
\begin{equation*}
\mathscr{P}\left(\max _{1 \leqslant i \leqslant n}\left|Z_{i}^{n}\right|>2 x z_{n}\right) \leqslant(1-\eta)^{-1} \mathscr{P}\left(\left|Z_{n}\right|>x z_{n}\right) \tag{3.17}
\end{equation*}
$$

and since

$$
\mathscr{P}\left(\max _{1 \leqslant i \leqslant n}\left|U_{i}^{n}\right|>x\right) \leqslant 2 \mathscr{P}\left(\max _{1 \leqslant i \leqslant n}\left|Z_{i}^{\eta}\right|>2^{-1} \dot{x}\right),
$$

so, by (3.17), $\left\{\max _{1 \leqslant i \leqslant n} z_{n}^{-2}\left(U_{i}^{n}\right)^{2}\right\}_{n}$ is uniformly integrable. By the proof of Theorem 1 in [5] we have

$$
\begin{equation*}
\max _{1 \leqslant i \leqslant n} \tau_{n}^{-1}\left|X_{i}^{n}\right| \xrightarrow{\mathscr{P}} 0, \quad n \rightarrow+\infty, \tag{3.18}
\end{equation*}
$$

so for $\mu_{n}=\operatorname{med}\left(\max _{1 \leqslant i \leqslant n} \tau_{n}^{-1}\left|X_{i}^{n}\right|\right)$ we obtain

$$
\begin{equation*}
\mu_{n} \xrightarrow{n} 0, \quad n \rightarrow+\infty . \tag{3.19}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& \mathscr{P}\left(\max _{1 \leqslant i \leqslant n} z_{n}^{-1}\left|X_{i}^{n}\right| \geqslant x\right) \leqslant \mathscr{P}\left(\left|\max _{1 \leqslant i \leqslant n} z_{n}^{-1}\right| X_{i}^{n}\left|-\mu_{n}\right| \geqslant x-\mu_{n}\right) \\
\leqslant & 2 \mathscr{P}\left(\left|\max _{1 \leqslant i \leqslant n} z_{n}^{-1}\right| X_{i}^{n}\left|-\max _{1 \leqslant i \leqslant n} z_{n}^{-1}\right| \hat{X}_{i}^{n} \mid \geqslant x-\mu_{n}\right) \leqslant 4 \mathscr{P}\left(\max _{1 \leqslant i \leqslant n} z_{n}^{-1}\left|U_{i}^{n}\right| \geqslant x-\mu_{n}\right) .
\end{aligned}
$$

From this, (3.19), (3.18) and the uniform integrability of $\left\{\max _{1 \leqslant i \leqslant n} z_{n}^{-2}\left(U_{i}^{n}\right)^{2}\right\}_{n}$ the equality (3.3). holds true.

Proof of Corollary 1. By (2.6), (3.5), (2.4) it suffices to prove that

$$
\left\{b_{n}^{-2} \max _{1 \leqslant i \leqslant n}\left(X_{i}^{*} I\left(\left|X_{i}^{*}\right|<b_{n}\right)\right)^{2}\right\}_{n}
$$

is uniformly integrable, but this follows easily from the iid case.
Proof of Corollary 2. Under the assumptions of the corollary Peligrad [7] proved that for every $k \in N$:

$$
\frac{k^{2} a_{n}^{2}}{\sigma^{2}\left(k a_{n}\right)} \xrightarrow{n} 0, \quad n \rightarrow+\infty,
$$

where

$$
\sigma^{2}\left(k a_{n}\right)=\operatorname{Var}\left(\sum_{i=1}^{n} X_{i} I\left(\left|X_{i}\right|<k a_{n}\right)-\mathscr{E} X_{i} I\left(\left|X_{i}\right|<k a_{n}\right)\right)
$$

and $\left\{a_{n}\right\}_{n}$ is defined in (2.8). So there exists $\left\{r_{n}\right\}_{n}, \lim _{n} r_{n}=+\infty$, such that, for
every $\left\{x_{n}\right\}_{n}, \lim _{n} x_{n}=+\infty$ and $x_{n}=o\left(r_{n}\right)$,

$$
\begin{equation*}
\frac{x_{n}^{2} a_{n}^{2}}{\sigma^{2}\left(x_{n} a_{n}\right)} \xrightarrow{n} 0, \quad n \rightarrow+\infty \tag{3.20}
\end{equation*}
$$

On the other hand, by Theorem 1.1 in [10], there exists $\left\{r_{n}^{\prime}\right\}_{n}, \lim _{n} r_{n}^{\prime}=+\infty$, such that, for every $\left\{x_{n}\right\}_{n}, \lim _{n} x_{n}=+\infty$ and $x_{n}=o\left(r_{n}^{\prime}\right)$,

$$
\begin{equation*}
n x_{n}^{2} \mathscr{P}\left(\left|X_{1}\right|>x_{n} a_{n}\right) \xrightarrow{n} 1, \quad n \rightarrow+\infty . \tag{3.21}
\end{equation*}
$$

Now let $b_{n}=x_{n} a_{n}$, where $\lim _{n} x_{n}=+\infty, x_{n}=o\left(r_{n} \wedge r_{n}^{\prime}\right)$, and $\tau_{n}=\sigma\left(x_{n} a_{n}\right)$; then (3.1)-(3.3) are fulfilled, so (3.4) holds. Observe that by (2.9) we have

$$
\begin{aligned}
\frac{[n t]}{\tau_{n}}\left|\mathscr{E} X_{1} I\left(\left|X_{1}\right|>b_{n}\right)\right| & \leqslant \frac{[n t]}{\tau_{n}} \mathscr{E}\left|X_{1}\right| I\left(\left|X_{1}\right|>b_{n}\right) \\
& \sim 2 \frac{[n t]}{\sigma\left(x_{n} a_{n}\right)} x_{n} a_{n} \mathscr{P}\left(\left|X_{1}\right|>x_{n} a_{n}\right), \quad n \rightarrow+\infty
\end{aligned}
$$

so this and (3.20), (3.21) give (3.6). Since $\tau_{n} \sim \sqrt{\pi / 2} \mathscr{E}\left|T_{n}\right|$ and

$$
\left|\frac{\mathscr{E}\left|S_{n}\right|-\mathscr{E}\left|T_{n}\right|}{\mathscr{E}\left|T_{n}\right|}\right| \leqslant \frac{n \mathscr{E}\left|X_{1}\right| I\left(\left|X_{1}\right|>b_{n}\right)}{\mathscr{E}\left|T_{n}\right|} \sim \frac{2 n b_{n} \mathscr{P}\left(\left|X_{1}\right|>b_{n}\right)}{\sqrt{2 / \pi} \tau_{n}}, \quad n \rightarrow+\infty,
$$

so, as above, (3.7) holds.
Remark. There are strictly stationary random sequences with infinite variance, φ-mixing, satisfying CLT and not satisfying WIP (i.e. (3.6)). As an example one can use a 1 -dependent sequence in Example 2 of [6]. For this sequence, (3.5) does not hold.

Acknowledgments. I would like to thank Professor M. Peligrad for preprint and Professor A. Jakubowski for suggesting the method which helped to simplify the earlier version.

REFERENCES

[1] N. E. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge 1987.
[2] W. Felle r, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., Wiley 1971.
[3] I. A. Ibragimov and Yu. Linnik, Independent and Stationary Sequences of Random Variables, Walters-Nordhoff, Gröningen, The Netherlands, 1971.
[4] M. Iosifescu and R. Theodorescu, Random Processes and Learning, Springer, New York 1969.
[5] A. Jakubowski, A note on the invariance principle for stationary φ-mixing sequences: Tightness via stopping times, Rev. Roumane Math. 33 (1988), pp. 407-412.
[6] - and Z. S. Szewczak, A Normal Convergence Criterion for strongly mixing stationary sequences, in: Limit Theorems in Probability and Statistics, Pécs (1989), Coll. Math. Soc. J. Bolyai 57 (1990), pp. 281-292.
[7] M. Peligrad, Invariance principle for mixing sequences of random variables, Ann. Probab. 10 (1982), pp. 968-981.
[8] - An invariance principle for φ-mixing sequences, ibidem 13 (1985), pp. 1304-1313.
[9] - On Ibragimov-Iosifescu conjecture for φ-mixing sequences, Stochastic Process. Appl. 35 (1990), pp. 293-308.
[10] E. Seneta, Regularly Varying Functions, Springer, Berlin-Heidelberg-New York 1976.

Nicholas Copernicus University
Computing Centre, ul. Chopina $12 / 18$
87-100 Toruń, Poland

Received on 28.9.1989;
revised version on 13.2.1991

