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Abstract. Let 0 < u < oo, a # 1, and 9 be a non-empty subset of 
Rd, the d-dimensional Euclidean spa=. It is shown that if 9 satisfies 
d + b 9  = Y whenever a, b 2 0 with d + b a  = 1, then Y is a wnvex 
cone with vertex at 0. This, in particular, w n f i  a conjecture of Port 
and Vitale [4]. Using this result, an elementary, completely geometric and 
unified proof is provided for the following known result conamhg the 
positivity properties of densities of a-stable laws on Rd, 0 4 u < 2, a # 1: 
Let X be a strictly or-stable random vector in Rd with tmly d-dimensional 
law p, and let p(t, .) and a be the density of tl"-p, the law of tl"X, and 
the spectral measure of p, respectively. If0 < u < 1 and the support of n is 
contained in a half-space, then, for any t > 0, p(t, x) > 0 if and ollly if 
x belongs to the interior of the wnvex cone generated by support of a; 
and, in all other cases, p(t, x) > 0 for all t > 0 and X E R ~ .  

Let X be a strictly a-stable random vector in Rd with a truly d-dimensional 
law p, where 0 < a < 2 and a # 1; and let p(t, .) be the bounded continuous 
density of t'la p, the law of t1leX, t > -0. Let a and %(a) denote, respectively, the 
spectral measure of p and the interior of the convex cone (equivalently, the 
dosed convex cone) generated by supp(a), the support of a. Finally, 'let 
S(t) = (x: p(t, x) > 0) for any t > 0. 

It follows from the definition of p(-, a )  that 

(1) p(t, x) = p(1, t - l / " ~ ) t - ~ l ~  

for all t > 0 and x E Rd; and using the characteristic property 

(t + s)'Ia - p = tlb-b*s'la.p for t > 0, s > 0 

bf the law p, we obtain * 

(2) p(t+s, -) = p(t,.)*p(s,-) 
for all t, s > 0. As noted in 14, p. 10191, it follows from (I), (2) and the 
continuity of p(t, -) that 

(s + t)'IaS = sllaS+ tllaS for all s, t > 0; 
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equivalently, 

for all a, b 2 0 with aa+ba = 1, where S = S(1). 
In [7], Taylor proved that if 0 < a <  1 and supp(a) is contained in 

a half-space (throughout, by a half-space we mean a set of the type {y 2 0) for 
some y # 0), then p(t, x) = 0 for all t > 0 and xh%'(a); and he conjectured that 
p(t, x) > 0 for all t > 0 and x ~ V ( o ) .  Further, he formulated a theorem stating 
that in all other cases (e.g., 1 < a < 2 or 0 < a  < 1 and supp(o) is not contained 
in a half-space) p ( t ,  x) > O for all t > 0 and x € R d .  

Port [3] pointed out that Taylor's proof of the above-stated theorem is 
incomplete and he provided a complete proof. Later, Kesten [2], using the 
LCvy-It6 representation of d-dimensional Ltvy processes in an essential way, 
supplied a proof of Taylor's conjecture and gave also a different proof of the 
theorem for the case O < a <  1; but, for the case 1 < a < 2, Kesten could 
provide a proof of the theorem only under the additional restrictive condition 
that supp(a) is not contained in a half-space. Port's proof of the theorem seems 
simpler and, unlike Kesten's proof, does not depend on properties of stochastic 
processes. Recently, Port and Vitale [4] provided an alternate proof of Taylor's 
conjecture; in addition, they showed that the analog of the theorem also holds 
for a =  1. Port's proof of the theorem in [3] uses only (3) and some geometric 
arguments; and, as noted above, dos not make use of any ideas from the theory 
of stochastic processes. Similar remarks apply for the proof of the analog of the 
theorem for a = 1 given in [4], except that, in this case, Port and Vitale use 
a modified version of (3). On the other hand, both the proofs of the conjecture 
given in [2] and 141 use, in an essential way, certain properties of stochastic 
processes. Port and Vitale [4] asked if a proof of the conjecture can be 
provided which (like the proofs of the theorem and its analog for a = 1 given in 
[3] and [4], respectively) is based entirely on purely geometric methods, and 
which does not rely on any properties of processes. 

To state the above question more precisely, we recall the definition of the 
open set S (= S(1)). The crucial step in the Port-Vitale proof of Taylor's 
conjecture is to prove the following result: If O < a < 1, then (3) implies that 
S is a convex cone with vertex at 0. In one stage of the proof of this result they 
use properties of processes together with certain geometric arguments (see [4, 
p. 10201 for more on this point). In order to make. their proof of Taylor's 
conjecture free of any properties of processes, they asked for a proof which is 
based on purely geometric arguments. In fact, they conjectured that the 
conclusion of this result is valid for any open subset Y (i.e., one which is not 
necessarily of the type S(1)) satisfying (3) for any a ~ ( 0 ,  I), and they asked for 
a geometric proof of this conjecture. (It must be pointed out that, except in the 
special case where Y = S(1), no proof, geometric or otherwise, of this 
conjecture appears to be available in the literature. There seems to be some 
ambiguity about this point in [4].) 
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The main purpose of this paper is to provide an elementary and simple 
geometric proof of the Port-Vitale conjecture; in fact, a slightly more general 
result is proved in which we do not require that Y be open, and, moreover, 
a can be any positive real number not equal to 1. Specifically, we prove the 
following result: 

THEOREM 1. Let Y be a non-empty subset of R~ and a > 0, a # 1. If 
Y satisjies 

for any a ,  b 2 0  with aa+ba = 1, then Y is a convex cone with vertex at 0. 

Using Theorem 1, some separation arguments and known properties of 
a-stable densities on R, we obtain easily the positivity properties of densities of 
a-stable laws on Rd, O < a < 2, a # 1 (Theorem 2). As noted above, the results 
included in Theorem 2 are known; however, since our methods provide 
a unified proof for both 0  < a < 1 and 1 < a < 2 cases, as opposed to the 
earlier known proofs, and since our proof is more succinct, at least for the case 
a > 1, we have included this proof here. In the statement and proof of Theo- 
rem 2, we have used the notation introduced above. 

THEOREM 2. Let p be a truly d-dimensional strictly a-stable law on Rd and let 
u be the spectral measure of p. If 1 < a < 2 or i f 0  < a < 1 and supp(a) is not 
contained in a half-space, then p(t, x) > 0  for all t > 0 and x E Rd. I f 0  < a < 1 
and supp(u) is contained in a half-space, then, for any t > 0, p(t, x )  > 0  if and 
only if x belongs to %?(a). 

We now proceed to prove Theorem 1. For the proof we need the following 
lemma : 

LEMMA. Let n be a positive integer and let 0  < a < co, a # 1, and 
P =  a(a - 1)- l. Let a,, bk (k  = 1, . . . , n) be real numbers satisfying a, > 0, bk 2 0 
and xi =,  be = 1. Then we have the following: 

(i) ~f o < cr < I, then El= ak bk 2 (xi' afli/fi. 
(ii) 1f a > 1, then z=, akbk 4 a:= af)'lfi. 

Proof of the  Lemma. (i) Let a, = l/a and P1 = l/(l-a); then 
1 < a, < co and l/al + l/P, = 1. Hence, we have 

which yields (i). The proof of (ii) follows by Hijlder's inequality. 

Proof of Theorem 1. We first show that if 0 < a < 1 (resp. a > I), then 
s Y  E Y whenever 0 < s < 1 (resp. s >, 1). Both of these facts are known and 
are proved, for instance, in [3, p. 3681. The proofs of these facts are easy and 



80 M. Ashbaugh et al. 

are included here for completeness. First note that 

{a+(l -aa)lla: 0 < a < 1) = [21-11a, 11 (resp. [I, 21-11a]) 

whenever 0 < a < 1 (resp. a > 1). Hence, from (*) it follows that if 0 < u c 1 
(resp. u > I), then sY c Y whenever 2' -'la < s < 1 (resp. 1 < s < 2'-'la). The 
proof of these two facts now follows by iteration. 

Next we shall prove that if 0 < a < 1, then 

(4) S Y E Y  for some ~ > [ 2 ~ / ( 2 ~ - 1 ) ] ~ / ~ - ~ > 1 ,  

and if a > 1, then 

( 5 )  S Y E Y  for some ~ < [ 2 ~ / ( 2 ~ - 1 ) ] ' / ~ - ~ < 1 .  

Once this is done, the proof of the theorem follows easily. Indeed, (4) and (5) 
and what we have proved above show that Y is a cone; and this fact along 
with (*) implies that Y = 2-'Ia(Y +Y)  = Y + Y 9  and hence Y is a convex 
cone with vertex at 0. 

Now we proceed to prove (4) and (5). Let x be an arbitrary non-zero 
element of 9. Then, using (*) with a = b = 2-'Ia, and a recursive argument, we 
can choose a positive integer n < d and vectors uj9 v j  (j = 1, 2, . . . , n) from 
Y S U C ~  that Uk-1  =2- '1a(~k+~k) ,  1 < k < n, uk$sp{u0, u19 ..., Uk-,), 1 < k 
< n - 1, and un (hence vn) E sp {u,, u,, . . . , un- where u, = x and sp(A) 
denotes the linear span of the set A. Set I (= I(u)) = 2' -'/", w, = u,, and 
w, = Ik- l uk - , - Ak-, uk -,, 2 < k < 'n. Then, clearly, w, , w,, . . . , wn are linearly 
independent, 

and 

@I v k = ~ - k ( ~ l + ~ 2 +  . a .  + w ~ - w ~ + ~ )  
for 1 < k < n-1. 

From (6) we have 
n n 

(9) un = I-"  b,w, and v, = A-" z ckwk 
k =  l k =  1 

for some (unique) b,'s and cis. We shall show that we can choose t,, ti 2 0, 
ck, EL E ( - 1, I), k = 1,2, . . . , n - I, such that the numbers 

n- 1 n- 1 

b = I-"b, + t, and c E A-"cl + ti 
k =  1 k = l  

satisfy the equations 



Positivity of densities of stable laws 8 1 

and 
n - 1  

(1 1) v,+ C t;(wl+w2+ ... + W , + E ~ W ~ + ~ )  = cwl,  
k =  1 

respectively. Recalling (9) and comparing the coefficients of w i s  in (lo), we see 
that (10) is equivalent to the following set of equations: 

n - 1  

The choice of t,'s arid E,'S is now obvious. In fact, take t,-I = /l-"lb,J and 
8,- = -sgn(A-"b,,/tn- ,), with the convention that sgn(0/0) = 1; having speci- 
fied & - I ,  tn-zY ..., tk and &.-I, ..., E ~ ,  we take 

n- 1 n- 1 

- 1  = A n k +  t and = ([A-"bk+ t j ] / t k - l ) ,  2 < k < n. 
j=k j=k 

Then, clearly, b satisfies (12) and hence also (10); a similar choice of ti and E; is 
used to show that c satisfies (1 I). 

From (*) we clearly have a ,  Y + a ,Y  + . . . + a n Y  = Y whenever aj 2 0 
with z=, aj = 1. Using this fan, (lo), (1 1) and the fact that uj and vj  belong to 
9, we inler from (7) and (8) that (1 + l t i ) - l b b w l  belongs to 9. Thus, 
recalling that 

n - 1  

b = /l-"b, + C tk 
k=  1 

and writing 
n-1 

dk = tk Ak [ I  + tjo Aja] - ' I Q  i f  l < k < n - 1  
j=1 

and 
n - 1  

d" = [1 + C gAka] - l'Q, 

k t 1  
we obtain 

A-  1 n-  1 

(13) so = (1 + ~ ? ~ " t : ) - ~ * b  = x dk/2-k+ bldnl-" 
k = l  k=  1 

and so sox belongs to Y (recall that w, = 2.4, = x).  Similarly, sbx belongs to 9, 
where 

n - 1  n- l 

(14) sb = (1 + x /Zkatr)-'lac = z d;A-k+cl&R-", 
k = l  k=  1 

and 6 s  are defined as d,'s by replacing t j  by t[i. 

6 - PAMS 13.1 
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Next, recalling that u, + v, = 21iaun - ,, using (7) and (9), and comparing the 
coefficient of w, ,  we have b, + c, = 2l/". 2' -'Ia = 2. Therefore, either b, 2 1 
and c, < 1 or b, < 1 and c, 2 1. In the first case, writing f l =  a(a - 1)- ' and 
noting that xi=, d; = 1 and that n d d, we infer from the lemma and (12) and 
(13) that 

similarly, using (14) rather than (13), we see that 

In the second case also (using (14) for the case 0 < a < 1 and (13) for the case 
a > 1) one gets similar inequalities. This proves (4) and (5); and the proof is 
completed. 

- As noted above, for the proof of Theorem 2, we shall need positivity 
properties of a-stable densi.ties on R. These properties are known and are 
summarized (without proof), e.g., in [6] ; these can also be deduced from results 
proved in [ 5 ]  (note that the proofs of the results in [ 5 ]  do not make use of any 
properties of 1-dimensional stable laws).. In order to make our proof of 
Theorem 2 completely self-contained, we provide here elementary proofs of 
these positivity properties of a-stable densities on R, 0 < a < 2, a # 1. Our 
proof of these properties depends only on Theorem 1 and some standard facts. 
about a-stable laws on R. Let p be a strictly a-stable law on R, 0 < a < 1, a # 1, 
and let 

dF(x) = c,I(x > O)x-(1+")dx+c21(x < O)l~l-'~+"'dx 

denote the Levy measure of p, where 0 < c,, c, < co, c, +c, > 0. We shall 
prove that if 0 < a < 1 and c, = 0 (resp. c, = 0), then S = {p(l, x) > 0} 
= R+ = (0, co) (resp. S = R- E ( - co , 0)); and, in all other cases, S = R. 

To prove the above result, first we note that from Theorem 1 and (3) 
we have 

(15) S = R +  or R- or R.  

Let now 0 < a < 1 and c, = 0; then 0, the characteristic function of p, is 
given by 

c, dx 

hence p is the weak limit of the sequence (v,} of Poisson laws with 
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Thus, since supp(vn) c [0, GO), we have supp(p) E [0, co). Therefore, by (15), 
we have S = R+. If c, = 0,'a similar argument shows that S = R - ;  if both c, 
and c, are positive, then p = p, * p,, where p, (resp. p,) is the a-stable law with 
Gvy measure c,l(x > 0)x-('+")dx (resp. c,I(x < 0) Ixl-(l+"dx). Hence, since 
(as shown above) the density of-p, (resp. of p,) is positive on Rf (resp. on R-), 
it follows that the density of p is positive on R. Now, let a > 1. Then, in view of 
(15), in order to show that S = R, it is enough to prove that supp(p) intersects 
both Rf and R-. This fact can be deduced from a result in [I, p. 5391, which 
gives a criterion for the support of an i.d. probability measure to be contained 
in [0, oo). We shall, however, provide an alternative, more elementary proof for 
the above fact: If this fact were not true, then either supp(p) z [0, oo) or 
supp(p) G ( -my 01. Suppose supp(p) 5 [O, a). Let Xj's be i.i.d. with the law 
of X, = p. Then, using the characteristic property of p, the fact that ct > 1 and 
that Xj 3 0 as., we have 

where XJ A N denotes min(Xj, N). But, by Chebyshev's inequality, the 
right-hand side of this inequality converges in probability to E(Xl A N) as 
n-+ oo for any N, Therefore, using the above inequalities, we obtain 
X, 2 E(X, A N) a.s. for every N. This, along with the monotone convergence 
theorem, implies that X, 2 E(X,) as.; which, in turn, implies that XI - E(Xl) 
as., a contradiction. Similarly, the assumption supp(p) E (- oo, 01 leads to 
a contradiction. 

Proof of Theorem 2. First we note that, by Theorem 1 and equation 
(3), S = S(i) is a convex cone with vertex at 0. Using this and (I), we have 
S(t) = S;  thus, it is enough to prove the theorem for p(1, .). Now consider the 
first case; s in~e  S is a convex cone with vertex at 0, either S = Rd or 
S E (x: y(x) 2 0) for some y # 0. The second alternative is not possible; far, if 
it were true, then, on the one hand, the non-degenerate strictly a-stable law 
py = pay-I on R will be supported by [O, CQ). On the other hand, as shown 
below, supp(py) = R. In fact, if a > 1, then the fact that supp(p,) = R is proved 
above. If 0 < a < I, then F,, the Lkvy measure of p,, is 

where c1 = aF,([l, oo)) and c, = aF,((- m, - 11). Using the formula 
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for the Lkvy measure F of ,u, we obtain 

c ,=  1 ya(u)a(du) and * c 2 =  j ly(u)laa(du)., 
(~'o)n(llull = 11 { Y ~ O ) ~ { I I U I I  = I )  

Since, by the hypothesis on supp(o), 

G({Y > 0) n {llull = 1)) > 0 and O({Y < 0) n {llull = 1)) > 0, 

c, and c, are both positive. Hence, from the l-dimensional result proved above, 
again supp(p,) = R. 

For the second case, one needs to prove that %(a).= S. We first show that 
%'(a) r S or, equivalently, %'(a) E $ the closure of S, since %'(a) is open and 
Int(@ = Int(S) = S. If the inclusion %(a) E S were not true, then there would 
be a non-zero z in %(0) such that z$S. Then, using a standard separation 
result, we can find a y E Rd such that y(z) < 0 and y(x) 2 0 for all x E S. Thus, on 
the one hand, p,([O, m)) = 1; therefore, using the l-dimensional result 
proved above, we infer that the constant c, in the Lkvy measure 
c,I(x > O ) ~ - ( ~ + ~ ) d x + c , l ( x  < O)lxl-('+")dx of py must be 0. On the other 
hand, since z = tjzj, t j  > 0 and zj€supp(o), there exists a zo E supp(a) such 
that y(zo) < 0. Therefore, as in the previous paragraph, 

Hence we must have %(a) G S, and so %(a) G S. A similar and, in fact, simpler 
argument shows that S E %(a), thus completing the proof. 

Remarks. (i) If (X(t): t 2 0) 'is a strictly a-stable process, 0 < a < 2, 
a Z 1, with stationary and independent increments such that X(0) = 0 and 
such that the law of X(t) is equal to tlla-p, where p is a truly d-dimensional 
strictly a-stable law on Rd, then, clearly, the density of X(t) is p ( t ,  a )  as defined 
in this note. The authors of [3], [4] and [7] defined the densities p(t, .), t > 0, 
by introducing the process {X(t): t 2 0) as above. However, since we are not 
concerned with any aspects of stable processes in this note, we have introduced 
these densities in an alternate and more direct manner. 

(ii) As noted earlier, Port and Vitale [4] proved that if {X(t): t 2 0) is 
a Cauchy (i.e., a-stable, a = 1) process in Rd and p(t, .) is the density of X(t), 
then p(t, x) > 0 for all t > 0 and x E Rd. This9 along with Theorem 2, provides 
purely geometric proofs for the positivity properties of densities of a-stable laws 
on Rd for all a ~ ( 0 ,  2). In this regard, we would like to mention here that 
Rajput [S], 'independently of [4], proved several positivity and analyticity 
properties of densities of more general id. laws on Rd9 and deduced' the 
above-noted positivity properties of stable densities as corollaries to these more 
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general results. However, his methods of proof, unlike those used in Theo- 
rem 2 and Theorem 2 of [4], are non-geometric and use advanced results from 
measure theory (via known results on supports of i.d. laws) and the theory of 
complex variables. 

(iii) We conclude this note by making two minor observations con- 
cerning the Port-Vitale proof of Theorem 2 of [4]. First, we note that, by 
using the elementary (and easy to prove) fact that the only dense convex 
subset of Rd is Rd itself, their proof can be simplified somewhat. This is 
pointed out next where we have used the same notation as in the proof of 
Theorem 2 of [4]. 

As noted in [4], using the property of 1-dimensional Cauchy density and 
a separation argument, we infer that conv(S), and hence conv(S) = Rd. Hence, 
from (15) of [4] we have 

(1') R~ = S-L (= S-[0, llb). 

From (13) of [4] we have S 2 S- [0, (2/?r)ln m]a for any m; hence 

where (recall) b = -[(2/7c)ln(d+ l)]a. Now, using (l'), (2') and an argument 
similar to the one used towards the end in the last but one paragraph of [4], 
one sees easily that S = Rd. 

The second observation concerning the Port-Vitale proof is that 
there seems to be a minor oversight in their proof: They seem to imply 
that b = b(d) = - [(2/x)ln(d+ l)]a, used in equation (15) d [4], and b(2), used 
in the end of the last but one paragraph of the proof, are equal. But, as 
obviously it is not so, one cannot necessarily conclude, contrary to the 
assertion in [4], that (1 -A)b(d) belongs to L(2) 5 [0, llb(2); hence a minor 
modification in the proof is needed: By iterating S+L(2) c S, one ob- 
tains S+ [0, co)b(2) (= S+ [0, co)b(d)) c S; therefore, necessarily z+ b(d) 
= z + Ib(d) +(1 - A)b(d) E 3. This completes the proof of the fact that S = Rd. 
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