PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 13, Fasc. 1 (1992), pp. 59-70

MATHEMATICAL EXPECTATION
 AND STRONG LAW OF LARGE NUMBERS FOR RANDOM VARIABLES WITH VALUES IN A METRIC SPACE OF NEGATIVE CURVATURE

BY
WOJCIECH HERER (WARSZAWA)

Abstract

Let f be a random variable with values in a metric space (X, d). For some class of metric spaces we define in terms of the metric d mathematical expectation of f as a closed bounded and non-empty subset of X. We then prove Kolmogorov's version of Strong Law of Large Numbers corresponding to that mathematical expectation.

0. Introduction. In this paper we introduce a concept of mathematical expectation of a random variable with values in a Polish metric space of negative curvature. This class of metric spaces contains complete simply connected Riemannian manifolds of non-positive (sectional) curvature with the geodesic metric. In [3, Chaper 5] Bussemann has studied a similar metric generalization of a non-positively curved Riemannian manifold (see also [6], Proposition 8.17 and Remark 8.18).

In Section 1 we introduce convex combinations of elements of a metric space. In Section 2 we define mathematical expectation of a random variable with values in a Polish space (X, d) of negative curvature. In Section 3 we prove Strong Law of Large Numbers for independent and identically distributed X-valued random variables together with its converse.

Results of this paper were partially announced in [8].

1. Convex combimation. Let (X, d) be a metric space. By $(F(X), h)$ we denote a metric space of closed bounded and non-empty subsets of X equipped with the Hausdorff metric defined as

$$
h\left(F, F^{\prime}\right)=\max \left\{\sup _{x \in F} d\left(x, F^{\prime}\right), \sup _{x^{\prime} \in F^{\prime}} d\left(x^{\prime}, F\right)\right\} .
$$

We note the following identity:

$$
h(\{x\}, F)=\sup _{y \in F} d(x, y) \quad \text { for } x \in X, F \in \mathbb{F}(X)
$$

which will be used throughout this paper without reference.

Definition 1.1. Let (X, d) be a metric space. For any system of non--negative reals $\left\{p_{1}, \ldots, p_{n}\right\}$ with $\sum_{i=1}^{n} p_{i}=1$ and any subset $\left\{a_{1}, \ldots, a_{n}\right\}$ of X we define inductively a subset of X as follows:

1. If $n=1$, we define: $1 a_{1}=\left\{a_{1}\right\}$.
2. Let $n>1,\left\{a_{1}, \ldots, a_{n}\right\} \subset X$ and $\left\{p_{1}, \ldots, p_{n}\right\} \subset[0,1]$ with $\sum_{i=1}^{n} p_{i}=1$. Suppose the sets $\sum_{i=1}^{k} q_{i} b_{i}$ are already defined for all $k<n$ and any subsets

$$
\left\{b_{1}, \ldots, b_{k}\right\} \subset X \quad \text { and }\left\{q_{1}, \ldots, q_{k}\right\} \subset[0,1] \text { with } \sum_{i=1}^{k} q_{i}=1
$$

We then define: $a \in \sum_{i=1}^{n} p_{i} a_{i}$ iff there exist non-empty disjoint and complementary subsets I_{1} and I_{2} of $\{1, \ldots, n\}$ and elements $a^{1} \in \sum_{i \in I_{1}} p_{i}^{1} a_{i}, a^{2} \in \sum_{i \in I_{2}} p_{i}^{2} a_{i}$, where $p_{i}^{1}=p_{i} / \sum_{i \in I_{1}} p_{i}$ for $i \in I_{1}$ and $p_{i}^{2}=p_{i} / \sum_{i \in I_{2}} p_{i}$ for $i \in I_{2}$ (with the convention $0 / 0 \neq 0$), such that

$$
d\left(a, a^{1}\right)=\left(\sum_{i \in I_{2}} p_{i}\right) d\left(a^{1}, a^{2}\right), \quad d\left(a, a^{2}\right)=\left(\sum_{i \in I_{1}} p_{i}\right) d\left(a^{1}, a^{2}\right)
$$

We say that a metric space (X, d) is convex (strictly convex) if for any two elements a_{1}, a_{2} of X the set $p a_{1}+(1-p) a_{2}$ is non-empty (has exactly one element) for any $p \in[0,1]$.

Remark 1.1. Given two elements $a, b \in X$ and a real $p \in[0,1]$, Definition 1.1 reads as follows:

$$
p a+(1-p) b=\{c \in X: d(c, a)=(1-p) d(a, b) \text { and } d(c, b)=p d(a, b)\}
$$

If a metric space (X, d) is strictly convex, we identify the set $p a+(1-p) b$ with its unique element.

Remark 1.2. If a metric space (X, d) is complete, the above definition of convexity of a metric space agrees with the classical definition of Menger (see [2], Definition 14.1 and Theorem 14.1).

Remark 1.3. If a metric space (X, d) is convex (strictly convex), then the set $\sum_{i=1}^{n} p_{i} a_{i}$ is a closed (finite) non-empty subset of X for any $\left\{a_{1}, \ldots, a_{n}\right\} \subset X$ and $\left\{p_{1}, \ldots, p_{n}\right\} \subset[0,1]$ with $\sum_{i=1}^{n} p_{i}=1$.

This remark is a direct consequence of Definition 1.1 by the use of an inductive argument.

Definition 1.2. We say that a strictly convex metric space (X, d) is of negative curvature iff for any four elements $a_{1}, a_{2}, b_{1}, b_{2}$ of X and any $p \in[0,1]$ the following estimation holds:

$$
d\left(p a_{1}+(1-p) a_{2}, p b_{1}+(1-p) b_{2}\right) \leqslant p d\left(a_{1}, b_{1}\right)+(1-p) d\left(a_{2}, b_{2}\right)
$$

Remark 1.4. Let (X, g) be a complete simply connected Riemannian manifold and let d be a geodesic metric on X induced by g. Then the metric space (X, d) is of negative curvature if and only if the manifold (X, g) is of non-positive (sectional) curvature.

This property of sectional curvature of a Riemannian manifold was established by Bussemann in [3].

Remark 1.5. Let $(X,\| \|)$ be a strictly convex real Banach space (cf. [5]), i.e. such that the metric space (X, d) is strictly convex, where $d(x, y)=\|x-y\|$. Then one verifies easily the following:
(a) For any subsets $\left\{a_{1}, \ldots, a_{n}\right\} \subset X$ and $\left\{p_{1}, \ldots, p_{n}\right\} \subset[0,1]$ with $\sum_{i=1}^{n} p_{i}=1$ the set $\sum_{i=1}^{n} p_{i} a_{i}$ (in the sense of Definition 1.1) is a one-element set containing a linear combination of a_{1}, \ldots, a_{n} with the coefficients p_{1}, \ldots, p_{n}.
(b) The metric space (X, d) is of negative curvature.

Remark 1.6. A metric space (X, d) is said to be outer convex iff for any two elements $a, b \in X$ and any $p \in[0,1]$ there is an element $c \in X$ such that $b=p a+(1-p) c$.

Let (X, d) be a complete convex and outer convex metric space. In [1, Theorem 3.1] the authors have proved that the metric space (X, d) is isometric with a strictly convex real Banach space if and only if for any triplet a_{1}, a_{2}, a_{3} of elements of X the set $\frac{1}{3} a_{1}+\frac{1}{3} a_{2}+\frac{1}{3} a_{3}$ is a one-element subset of X.

Proposition 1.1. Suppose (X, d) is a metric space of negative curvature. Then for any finite subsets $\left\{a_{1}, \ldots, a_{n}\right\},\left\{b_{1}, \ldots, b_{n}\right\}$ of X and any subset $\left\{p_{1}, \ldots, p_{n}\right\}$ of $[0,1]$ with $\sum_{i=1}^{n} p_{i}=1$ the following estimation holds:

$$
\begin{equation*}
h\left(\sum_{i=1}^{n} p_{i} a_{i}, \sum_{i=1}^{n} p_{i} b_{i}\right) \leqslant \sum_{i=1}^{n} p_{i} d\left(a_{i}, b_{i}\right) \tag{1.1}
\end{equation*}
$$

Proof. We proceed by induction. For all one-element sets $\left\{a_{1}\right\},\left\{b_{1}\right\}$ our proposition is true. Suppose it is true for all finite subsets of X with cardinality $k<n$, where $n>1$.

Let $\left\{a_{1}, \ldots, a_{n}\right\},\left\{b_{1}, \ldots, b_{n}\right\} \subset X$ and $\left\{p_{1}, \ldots, p_{n}\right\} \subset[0,1]$ with $\sum_{i=1}^{n} p_{i}$ $=1$. It is sufficient to prove (by symmetry) that for each element $a \in \sum_{i=1}^{n} p_{i} a_{i}$ there is an element $b \in \sum_{i=1}^{n} p_{i} b_{i}$ such that

$$
d(a, b) \leqslant \sum_{i=1}^{n} p_{i} d\left(a_{i}, b_{i}\right)
$$

Suppose $a \in \sum_{i=1}^{n} p_{i} a_{i}$. Thus there are two non-empty disjoint and complementary subsets I_{1}, I_{2} of $\{1, \ldots, n\}$ and two elements $a^{1} \in \sum_{i \in I_{1}} p_{i}^{1} a_{i}$ and $a^{2} \in \sum_{i \in I_{2}} p_{i}^{2} a_{i}$, where $p_{i}^{1}=p_{i} / \sum_{i \in I_{1}} p_{i}$ for $i \in I_{1}$ and $p_{i}^{2}=p_{i} / \sum_{i \in I_{2}} p_{i}$ for $i \in I_{2}$, such that

$$
a=\left(\sum_{i \in I_{1}} p_{i}\right) a^{1}+\left(\sum_{i \in I_{2}} p_{i}\right) a^{2}
$$

(see Definition 1.1 and Remark 1.1). It follows from the inductive hypothesis that there are elements $b^{1} \in \sum_{i \in I_{1}} p_{i}^{1} b_{i}$ and $b^{2} \in \sum_{i \in I_{2}} p_{i}^{2} b_{i}$ such that

$$
d\left(a^{1}, b^{1}\right) \leqslant \sum_{i \in I_{1}} p_{i}^{1} d\left(a_{i}, b_{i}\right) \quad \text { and } \quad d\left(a^{2}, b^{2}\right) \leqslant \sum_{i \in I_{2}} p_{i}^{2} d\left(a_{i}, b_{i}\right)
$$

Let $b=\left(\sum_{i \in I_{1}} p_{i}^{1}\right) b^{1}+\left(\sum_{i \in I_{2}} p_{i}^{2}\right) b^{2}$. Since (X, d) is of negative curvature, we obtain

$$
\begin{aligned}
d(a, b) & \leqslant\left(\sum_{i \in I_{1}} p_{i}^{1}\right) d\left(a^{1}, b^{1}\right)+\left(\sum_{i \in I_{2}} p_{i}^{2}\right) d\left(a^{2}, b^{2}\right) \\
& \leqslant \sum_{i \in I_{1}} p_{i} d\left(a_{i}, b_{i}\right)+\sum_{i \in I_{2}} p_{i} d\left(a_{i}, b_{i}\right)=\sum_{i=1}^{n} p_{i} d\left(a_{i}, b_{i}\right)
\end{aligned}
$$

which completes the induction and the proof of Proposition 1.1.
Lemma 1.1. Suppose (X, d) is a strictly convex metric space. Then for any $a, b \in X$ and $p, p^{\prime} \in[0,1]$ the following holds:

$$
d\left(p a+(1-p) b, p^{\prime} a+\left(1-p^{\prime}\right) b\right)=\left|p-p^{\prime}\right| d(a, b)
$$

Proof. Suppose $p \geqslant p^{\prime}$ and let

$$
c=\left(p^{\prime} / p\right)(p a+(1-p) b)+\left(1-p^{\prime} / p\right) b
$$

We shall prove that $c=p^{\prime} a+\left(1-p^{\prime}\right) b$. To prove this it is sufficient to show that $d(c, b)=p^{\prime} d(a, b)$ and $d(c, a)=\left(1-p^{\prime}\right) d(a, b)$ (Remark 1.1).

We have

$$
d(c, b)=\left(p^{\prime} / p\right) d(p a+(1-p) b, b) \quad \text { and } \quad d(p a+(1-p) a, b)=p d(a, b)
$$

(Remark 1.1), and hence $d(c, b)=p^{\prime} d(a, b)$.
By the triangle inequality we have

$$
d(c, a) \leqslant d(c, p a+(1-p) b)+d(p a+(1-p) b, a)
$$

But (Remark 1.1)

$$
d(c, p a+(1-p) b)=\left(1-p^{\prime} / p\right) d(p a+(1-p) b, b)=\left(1-p^{\prime} / p\right) p d(a, b)
$$

and

$$
d(p a+(1-p) b, a)=(1-p) d(a, b)
$$

Hence we obtain $d(c, a) \leqslant\left(1-p^{\prime}\right) d(a, b)$. But this means (together with $d(c, b)$ $=p^{\prime} d(a, b)$) that $d(c, a)=\left(1-p^{\prime}\right) d(a, b)$, which shows finally that $c=p^{\prime} a$ $+\left(1-p^{\prime}\right) b$.

We thus obtain

$$
\begin{aligned}
d(p a+ & \left.(1-p) b, p^{\prime} a+\left(1-p^{\prime}\right) b\right)=d(p a+(1-p) b, c) \\
\quad & \left(1-p^{\prime} / p\right) d(p a+(1-p) b, b)=\left(1-p^{\prime} / p\right) p d(a, b)=\left(p-p^{\prime}\right) d(a, b)
\end{aligned}
$$

which completes the proof of Lemma 1.1.
Lemma 1.2. Let (X, d) be a metric space of negative curvature and let $\left(F_{0}(X), h\right)$ be a subspace of $(F(X), h)$ of non-empty finite subsets of X. Then the map φ of $[0,1] \times F_{0}(X) \times F_{0}(X)$ into $F_{0}(X)$ defined as

$$
\varphi(p, F, G)=\{c \in X: c=p a+(1-p) b, a \in F, b \in G\}
$$

is continuous.

Proof. We shall show that for any $x, x^{\prime}, y, y^{\prime} \in X$ and any $p, p^{\prime} \in[0,1]$ the following inequality holds:

$$
\begin{gather*}
d\left(p x+(1-p) y, p^{\prime} x^{\prime}+\left(1-p^{\prime}\right) y^{\prime}\right) \leqslant p d\left(x, x^{\prime}\right)+(1-p) d\left(y, y^{\prime}\right) \tag{1.2}\\
+\left|p-p^{\prime}\right| d\left(x^{\prime}, y^{\prime}\right) .
\end{gather*}
$$

By the triangle inequality we have

$$
\begin{aligned}
d\left(p x+(1-p) y, p^{\prime} x^{\prime}+\left(1-p^{\prime}\right) x^{\prime}\right) \leqslant & d\left(p x+(1-p) y, p x^{\prime}+(1-p) y^{\prime}\right) \\
& +d\left(p x^{\prime}+(1-p) y^{\prime}, p^{\prime} x^{\prime}+\left(1-p^{\prime}\right) y^{\prime}\right)
\end{aligned}
$$

Since (X, d) is of negative curvature, we obtain

$$
d\left(p x+(1-p) y, p x^{\prime}+(1-p) y^{\prime}\right) \leqslant p d\left(x, x^{\prime}\right)+(1-p) d\left(y, y^{\prime}\right)
$$

(Definition 1.2). From Lemma 1.1 we have

$$
d\left(p x^{\prime}+(1-p) y^{\prime}, p^{\prime} x^{\prime}+\left(1-p^{\prime}\right) x^{\prime}\right)=\left|p-p^{\prime}\right| d\left(x^{\prime}, y^{\prime}\right)
$$

Thus we obtain (1.2).
The continuity of φ follows directly from the estimation (1.2) and the definition of the Hausdorff metric h.

Proposition 1.2. Suppose (X, d) is a metric space of negative curvature. Then for any finite subset $\left\{a_{1}, \ldots, a_{n}\right\}$ of X the application

$$
\psi\left(p_{1}, \ldots, p_{n}\right)=\sum_{i=1}^{n} p_{i} a_{i}
$$

is a continuous map of a symplex

$$
\Delta_{n}=\left\{\left(p_{1}, \ldots, p_{n}\right): \sum_{i=1}^{n} p_{i}=1, p_{i} \geqslant 0, i=1, \ldots, n\right\}
$$

into $(F(X), h)$.
Proof. We proceed by induction. For all one-element sets $\left\{a_{1}\right\}$ our proposition is true. Suppose it is true for all finite subsets of X with cardinality $k<n$, where $n>1$.

Let φ be a map defined in Lemma 1.2 and let \mathscr{P} be a family of all non-empty sets $I \subset\{1, \ldots, n\}$ with non-empty complements I^{\prime}. For each $I \in \mathscr{P}$ let ψ_{I} be an application of Δ_{n} into $(F(X), h)$ defined as

$$
\psi_{I}\left(p_{1}, \ldots, p_{n}\right)=\varphi\left(\sum_{i \in I} p_{i}, \sum_{i \in I} p_{i}^{1} a_{i}, \sum_{i \in I^{\prime}} p_{i}^{2} a_{i}\right)
$$

where

$$
p_{i}^{1}=p_{i} / \sum_{i \in I} p_{i} \text { for } i \in I, \quad p_{i}^{2}=p_{i} / \sum_{i \in I^{\prime}} p_{i} \text { for } i \in I^{\prime}
$$

It follows from Lemma 1.2 and the inductive hypothesis that the application ψ_{I} is a continuous map from Δ_{n} into $(F(X), h)$ for any $I \in \mathscr{P}$. By the Definition 1.1
of a convex combination of n elements of X we have

$$
\psi\left(p_{1}, \ldots, p_{n}\right)=\bigcup_{I \in \mathscr{P}} \psi_{I}\left(p_{1}, \ldots, p_{n}\right) \quad \text { for }\left(p_{1}, \ldots, p_{n}\right) \in \Delta_{n}
$$

This means that ψ is a continuous map of Δ_{n} into $(F(X), h)$ as a finite union of continuous maps ψ_{I}, which completes the induction and the proof of Proposition 1.2.
2. Mathematical expectation. Let (X, d) be a convex metric space and let (Ω, \mathscr{A}, P) be a probability space. By $\mathscr{S}=\mathscr{S}(\Omega, \mathscr{A}, P ; X)$ we denote the set of simple random variables (r.v.) with values in X, i.e., Borel maps of Ω into X having a finite number of values.

We say that $\pi=\left\{A_{1}, \ldots, A_{k}\right\} \subset \mathscr{A}$ is a partition if $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$, $i, j=1, \ldots, k$, and $\bigcup_{i=1}^{k} A_{i}=\Omega$. If π and σ are partitions, we write $\pi \leqslant \sigma$ if each element of σ is included in some element of π.

Given a function $f \in \mathscr{S}$ we denote by $\Pi(f)$ the set of all partitions π such that $f(\omega)=f(\tilde{\omega})$ for any $A \in \pi$ and any $\omega, \tilde{\omega} \in A$.

Definition 2.1. Given $f \in \mathscr{S}(\Omega, \mathscr{A}, P ; X)$ and $\pi=\left\{A_{1}, \ldots, A_{k}\right\} \in \Pi(f)$ we define

$$
E_{\pi}[f]=\sum_{i=1}^{k} P\left(A_{i}\right) a_{i}, \quad \text { where } a_{i}=f(\omega) \text { for } \omega \in A_{i}, i=1, \ldots, k
$$

and

$$
E[f]=\operatorname{cl}\left(\bigcup_{\pi \in \Pi(f)} E_{\pi}[f]\right) .
$$

Remark 2.1. Suppose (X, d) is a complete convex and outer convex metric space. In [1, Theorem 2.1] the authors have proved that a metric space (X, d) is isometric with a real strictly convex Banach space if and only if for any triplet of elements a_{1}, a_{2}, a_{3} of X the following equality holds:

$$
\frac{1}{2} a_{1}+\frac{1}{2}\left(\frac{1}{2} a_{2}+\frac{1}{2} a_{3}\right)=\frac{1}{2}\left(\frac{1}{2} a_{1}+\frac{1}{2} a_{2}\right)+\frac{1}{2}\left(\frac{1}{2} a_{1}+\frac{1}{2} a_{3}\right) .
$$

Thus, in general, given $f \in \mathscr{S}$ the set $E_{\pi}[f]$ depends on the partition $\pi \in \Pi(f)$.
Lemma 2.1. Given $f \in \mathscr{S}$, the operator $E_{\bullet}[f]$ is increasing: If $\pi, \sigma \in \Pi(f)$ and $\pi \leqslant \sigma$, then $E_{\pi}[f] \subset E_{\sigma}[f]$.

The proof results clearly from Definition 1.1 of a convex combination.
Lemma 2.2. Suppose a metric space (X, d) is of negative curvature. Then for any $f, g \in \mathscr{S}$ and any $\pi \in \Pi(f) \cap \Pi(g)$ the following inequality holds:

$$
h\left(E_{\pi}[f], E_{\pi}[g]\right) \leqslant \int_{\Omega} d(f(\omega), g(\omega)) d P(\omega)
$$

The proof results clearly from Proposition 1.1.
Lemma 2.3. If (X, d) is of negative curvature, then for any $f \in \mathscr{S}$ the set $E[f]$ is a bounded subset of X.

Proof. Since the set $\Pi(f)$ is directed by the relation \leqslant and the operator $E_{\odot}[f]$ is increasing (Lemma 2.1), it is sufficient to prove that

$$
\begin{equation*}
\sup _{\pi \in \Pi(f)} \operatorname{diam} E_{\pi}[f]<\infty \tag{2.1}
\end{equation*}
$$

Let $\pi \in \Pi(f)$ and let $g(\omega)=a, \omega \in \Omega$, for some fixed element a of X. From Lemma 2.2 we have

$$
h\left(E_{\pi}[f],\{a\}\right) \leqslant \int_{\Omega} d(f(\omega), a) d P(\omega)
$$

which implies (2.1).
Proposition 2.1. Let (X, d) be a metric space of negative curvature. Then for any $f, g \in \mathscr{P}(\Omega, \mathscr{A}, P ; X)$

$$
\begin{equation*}
h(E[f], E[g]) \leqslant \int_{\Omega} d(f(\omega), g(\omega)) d P(\omega) \tag{2.2}
\end{equation*}
$$

Proof. To prove (2.2) it is sufficient to show that for any partition $\pi \in \Pi(f)$ and any element $a \in E_{\pi}[f]$ there is a partition $\sigma \in \Pi(g)$ and an element $b \in E_{\sigma}[g]$ such that $d(a, b) \leqslant \int_{\Omega} d(f, g) d P$.

For any partition $\pi \in \Pi(f)$ there is a partition $\sigma \in \Pi(f) \cap \Pi(g)$ such that $\pi \leqslant \sigma$. Since $h\left(E_{\sigma}[f], E_{\sigma}[g]\right) \leqslant \int_{\Omega} d(f, g) d P$ (Lemma 2.2) and $E_{\pi}[f] \subset E_{\sigma}[g]$ (Lemma 2.1), for any $a \in E_{\pi}[f]$ there is $b \in E_{\sigma}[g]$ such that $d(a, b) \leqslant \int d(f, g) d P$.

Suppose (X, d) is a Polish metric space of negative curvature. We say that an X-valued random variable f is integrable iff $\int_{\Omega} d(x, f(\omega)) d P(\omega)<\infty$ for $x \in X$. We denote by $\mathscr{L}=\mathscr{L}(\Omega, \mathscr{A}, P ; X)$ the set of all integrable r.v.'s. and by $L=L(\Omega, \mathscr{A}, P ; X)$ the set of all equivalence classes (for equality a.s.) of integrable r.v.'s. By $S=S(\Omega, \mathscr{A}, P ; X)$ we denote a subset of L corresponding to the set of simple r.v.'s. Let d_{1} be a metric on L given by

$$
d_{1}(f, g)=\int_{\Omega} \dot{d}(f(\omega), g(\omega)) d P(\omega)
$$

Since the metric space (X, d) is Polish, S is a dense subset of $\left(L, d_{1}\right)$ (see Lemma 3.1). It is clear that $E[f]=E[g]$ if $f, g \in \mathscr{S}$ and $f=g$ a.s., i.e. an operator E acts on S. By Proposition 2.1, E is a uniformly continuous map of (S, d_{1}) into $(F(X), h)$. It is known that if a metric space (X, d) is complete, then a metric space $(F(X), h)$ is also complete [9, Vol. 1, §33, IV]. Thus E admits a unique uniformly continuous extension to a map of $\left(L, d_{1}\right)$ into $(F(X), h)$ which satisfies (2.2), for all $f, g \in L(\Omega, \mathscr{A}, P ; X)$.

Definition 2.2. Let (X, d) be a Polish metric space, (Ω, \mathscr{A}, P) a probability space, and $f \in \mathscr{L}(\Omega, \mathscr{A}, P ; X)$. We say that a non-empty closed bounded subset $E[f]$ of X is a mathematical expectation of f. For any f, g $\in \mathscr{L}(\Omega, \mathscr{A}, P ; X)$ an estimation (2.2) holds.

Remark 2.2. Suppose (X, d) is a Polish metric space of negative curvature. Then any $f \in \mathscr{L}(\Omega, \mathscr{A}, P ; X)$ is integrable in the sense of Doss ([7],

Definition 1). This is a consequence of the estimation (2.2) applied to f and $g(\omega)=x, \omega \in \Omega$.

Remark 2.3. Suppose $(X,\| \|)$ is a strictly convex real separable Banach space and $f \in \mathscr{L}(\Omega, \mathscr{A}, P ; X)$, where X is equipped with the metric $d(x, y)=\|x-y\|$. Then $E[f]$ is a one-element set containing a Bochner integral of f (see Remark 1.5).
3. Strong Law of Large Numbers. We say that a metric space (X, d) is finitely compact iff each closed bounded subset of X is compact. Throughout this section we assume that (X, d) is a finitely compact metric space of negative curvature.

We put $\operatorname{Lim}_{n} F_{n}=F$ iff $\lim _{n} h\left(F_{n}, F\right)=0$. We note the following known properties of the convergence in $(F(X), h)([9], V o l$. II, §42,1 and §42,2):
(α) $F_{n} \subset F_{n}^{\prime}$ implies $\operatorname{Lim}_{n} F_{n} \subset \operatorname{Lim}_{n} F_{n}^{\prime}$.
(β) If $\bigcup_{n} F_{n}$ is relatively compact in (X, d), then $\left\{F_{n}\right\}_{n=1}^{\infty}$ is relatively compact in $(\boldsymbol{F}(X), h)$.

Theorem 3.1. Suppose $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of independent and identically distributed (i.i.d.) integrable random variables with values in X and let

$$
F_{n}(\omega)=\sum_{i=1}^{n} \frac{1}{n} f_{i}(\omega) \quad \text { for } \omega \in \Omega, n=1,2, \ldots
$$

Then

$$
\begin{equation*}
\operatorname{Lim}_{n} F_{n}(\omega)=E\left[f_{1}\right] \text { a.s. } \tag{3.1}
\end{equation*}
$$

We shall precede the proof of Theorem 3.1 by three lemmas.
Lemma 3.1. Suppose $f_{n} \in \mathscr{L}(\Omega, \mathscr{A}, P ; X)(n=1,2, \ldots)$ are i.i.d. r.v.'s. Given $\varepsilon>0$ there exists a sequence $g_{n} \in \mathscr{S}(\Omega, \mathscr{A}, P ; X)(n=1,2, \ldots)$ of i.i.d. r.v.'s such that $d\left(f_{n}, g_{n}\right)(n=1,2, \ldots)$ are i.i.d. (real) r.v.'s and $\int_{\Omega} d\left(f_{1}, g_{1}\right) d P \leqslant \varepsilon$.

Proof. Let $\varepsilon>0$ be given and let x be a fixed element of X. Since the metric space (X, d) is Polish, there exists a compact subset K of X such that

$$
\int_{\Omega \backslash f_{1}^{-1}(K)} d\left(x, f_{1}(\omega)\right) d P(\omega) \leqslant \varepsilon / 2
$$

Let $K=\bigcup_{i=1}^{k} B_{i}$, where B_{i} are non-empty pairwise disjoint Borel subsets of X with $\operatorname{diam}\left(B_{i}\right) \leqslant \varepsilon / 2$ for $i=1, \ldots, k$. Suppose $a_{i} \in B_{i}$ for $i=1, \ldots, k$ and let us define

$$
g_{n}(\omega)= \begin{cases}a_{i} & \text { if } \omega \in f_{n}^{-1}\left(B_{i}\right) \text { for } i=1, \ldots, k, \\ x & \text { if } \omega \notin f_{n}^{-1}(K)\end{cases}
$$

It is clear that $\left\{g_{n}\right\}_{n=1}^{\infty}$ and $\left\{d\left(f_{n}, g_{n}\right)\right\}_{n=1}^{\infty}$ are i.i.d. sequences and

$$
\int_{\Omega} d\left(f_{1}, g_{1}\right) d P=\int_{f_{1}^{-1}(K)} d\left(f_{1}, g_{1}\right) d P+\int_{\Omega \backslash f_{1}^{-1}(K)} d\left(f_{1}, x\right) d P \leqslant \varepsilon / 2+\varepsilon / 2=\varepsilon .
$$

Lemma 3.2. Let $f \in \mathscr{P}(\Omega, \mathscr{A}, P ; X)$. Then for each $\varepsilon>0$ there exists a partition $\pi \in \Pi(f)$ such that $h\left(E_{\pi}[f], E[f]\right) \leqslant \varepsilon$.

Proof. Given $f \in \mathscr{S}(\Omega, \mathscr{A}, P ; X)$ the set $F=\bigcup_{\pi \in \Pi(f)} E_{\pi}[f]$ is bounded (Lemma 2.3), and thus relatively compact. Let $\left\{a_{1}, \ldots, a_{k}\right\}$ be an ε-net in F. Then $\left\{a_{1}, \ldots, a_{k}\right\} \subset E_{\pi}[f]$ for some $\pi \in \Pi(f)$, since $\Pi(f)$ is directed by \leqslant and the operator $E_{\bullet}[f]$ is increasing (Lemma 2.1). It is clear that

$$
h\left(E_{\pi}[f], E[f]\right)=h\left(E_{\pi}[f], \mathrm{cl} F\right) \leqslant \varepsilon .
$$

Lemma 3.3. Suppose a probability space (Ω, \mathscr{A}, P) is non-atomic. Then for any partition $\pi=\left\{A_{1}, \ldots, A_{k}\right\}$ there exists a sequence $\left\{\pi_{n}\right\}_{n=1}^{\infty}$ of partitions

$$
\pi_{n}=\left\{A_{i, j}^{n}, B_{l}^{n}: 1 \leqslant i \leqslant k, 1 \leqslant j \leqslant m_{n}^{i}, 1 \leqslant l \leqslant r_{n}\right\} \quad(n=1,2, \ldots)
$$

such that

$$
A_{i, j}^{n} \subset A_{i}, \quad P\left(A_{i} \backslash \bigcup_{j=1}^{m_{n}^{i}} A_{i, j}^{n}\right)<1 / n, \quad P\left(A_{i, j}^{n}\right)=P\left(B_{l}^{n}\right)=1 / n
$$

for $1 \leqslant i \leqslant k, 1 \leqslant j \leqslant m_{n}^{i}, 1 \leqslant l \leqslant r_{n}(n=1,2, \ldots)$.
Proof. Construction of the sequence $\left\{\pi_{n}\right\}_{n=1}^{\infty}$ is clear in view of the well-known property of a non-atomic measure: $\{P(B): B \in \mathscr{A}, B \subset A\}$ $=[0, P(A)]$ for any $A \in \mathscr{A}$.

Proof of Theorem 3.1. If (Ω, \mathscr{A}, P) has an atom, then the existence of a sequence of i.i.d. r.v.'s defined on Ω implies that $\mathscr{A}=\{\varnothing, \Omega\}$ and our S.L.L.N. is trivially true. Thus we suppose that (Ω, \mathscr{A}, P) is a non-atomic probability space.

Assume first that f_{1} is a simple random variable. Let $\varepsilon>0$ be given. By Lemma 3.2 there exists $\pi \in \Pi\left(f_{1}\right)$ such that $h\left(E_{\pi}\left[f_{1}\right], E\left[f_{1}\right]\right) \leqslant \varepsilon$. Suppose $\pi=\left\{A_{1}, \ldots, A_{k}\right\}$ and $f(\omega)=a_{i}$ for $\omega \in A_{i}, i=1, \ldots, k$. Let $\left\{\pi_{n}\right\}_{n=1}^{\infty}$ be a sequence of partitions constructed for that π in Lemma 3.3. Let $\left\{f_{n}^{\prime}\right\}_{n=1}^{\infty}$ be a sequence of simple r.v.'s defined as

$$
f_{n}^{\prime}(\omega)=a_{i} \quad \text { for } \omega \in A_{i}^{n}(i=1, \ldots, k)
$$

where

$$
A_{1}^{n}=\bigcup_{j=1}^{m_{n}^{1}} A_{1, j}^{1} \cup \bigcup_{i=1}^{P_{n}} B_{l}^{n} \quad \text { and } \quad A_{i}^{n}=\bigcup_{j=1}^{m_{n}^{1}} A_{i, j} \text { for } i=2, \ldots, k .
$$

We shall prove that

$$
\begin{equation*}
\lim h\left(F_{n}(\omega), E_{\pi_{n}}\left[f_{n}^{\prime}\right]\right)=0 \quad \text { for all } \omega \in \Omega \backslash N \text { with } P(N)=0 \tag{3.2}
\end{equation*}
$$

Let us define for each $\omega \in \Omega$:

$$
v_{n}^{i}(\omega)=\operatorname{card}\left\{s: 1 \leqslant s \leqslant n, f_{s}(\omega)=a_{i}\right\} \quad(i=1, \ldots, k ; n=1,2, \ldots)
$$

We thus have (Definition 1.1)
$F_{n}(\omega)=\overbrace{n^{-1} a_{1}+\ldots+n^{-1} a_{1}}^{v_{n}^{1}(\omega)} \overbrace{n^{-1} a_{2}+\ldots+n^{-1} a_{2}}^{v_{n}^{2}(\omega)}+\ldots+\overbrace{n^{-1} a_{k}+\ldots+n^{-1} a_{k}}^{v_{n}^{k}(\omega)}$ and

$$
E_{\pi_{n}}\left[f_{n}^{\prime}\right]
$$

$$
=\overbrace{n^{-1} a_{1}+\ldots+n^{-1} a_{1}}^{m_{n}^{1}+r_{n}}+\overbrace{n^{-1} a_{2}+\ldots+n^{-1} a_{2}}^{m_{n}^{2}}+\ldots+\overbrace{n^{-1} a_{k}+\ldots+n^{-1} a_{k}}^{m_{n}^{k}}
$$

Hence, by Proposition 1.1 we see that for each $\omega \in \Omega$ and $i=1,2, \ldots$

$$
\begin{aligned}
& h\left(F_{n}(\omega), E_{\pi_{n}}\left[f_{n}^{\prime}\right]\right) \\
& \quad \leqslant \sup _{1 \leqslant i, j \leqslant k} d\left(a_{i}, a_{j}\right)\left(\frac{\left|v_{n}^{1}(\omega)-m_{n}^{1}-r_{n}\right|}{n}+\frac{\left|v_{n}^{2}(\omega)-m_{n}^{2}\right|}{n}+\ldots+\frac{\left|v_{n}^{k}(\omega)-m_{n}^{k}\right|}{n}\right) .
\end{aligned}
$$

For fixed $i=1, \ldots, k$ the random variables $v_{n}^{i}(n=1,2, \ldots)$ are the n-th partial sums of a sequence of i.i.d. r.v.'s with mean $P\left(A_{i}\right)$. By the construction of the partitions $\pi_{n}, \quad P\left(A_{i}\right)-1 / n<m_{n}^{i} / n \leqslant P\left(A_{i}\right)$ and $r_{n} \leqslant k$ for $i=1, \ldots, k$, $n=1,2, \ldots$ We thus infer, by the (real) S.L.L.N., that the right-hand side of the last inequality converges to zero for almost every $\omega \in \Omega$, which proves (3.2).

Let $x \in X$ and $\omega \in \Omega$ be fixed. An application of inequality (1.1) of Proposition 1.1 (for $a_{i}=x, b_{i}=f_{i}(\omega), p_{i}=1 / n$ for $i=1,2, \ldots, n$) shows that

$$
h\left(\{x\}, F_{n}(\omega)\right) \leqslant \sum_{i=1}^{n} n^{-1} d\left(x, f_{i}(\omega)\right) \quad \text { for all } \omega \in \Omega .
$$

From the (real) S.L.L.N. applied to a sequence $\left\{d\left(x, f_{n}\right)\right\}_{n=1}^{\infty}$ of integrable i.i.d. r.v.'s we obtain

$$
\limsup _{n} h\left(\{x\}, F_{n}(\omega)\right) \leqslant \int_{\Omega} d\left(x, f_{1}\right) d P \text { a.s. }
$$

This estimation means that for $\omega \in \Omega \backslash N^{\prime}$ with $P\left(N^{\prime}\right)=0$ the set $\bigcup_{n} F_{n}(\omega)$ is bounded, and thus relatively compact.

We shall prove that (3.1) holds for every $\omega \in \Omega \backslash\left(N \cup N^{\prime}\right)$. We may assume by (β), extracting a subsequence if necessary, that $\left\{F_{n}(\omega)\right\}_{n=1}^{\infty}$ is convergent in $(F(X), h)$. Thus for $\omega \in \Omega \backslash\left(N \cup N^{\prime}\right)$ we have, by (3.1),

$$
\operatorname{Lim}_{n} F_{n}(\omega)=\underset{n}{\operatorname{Lim}} E_{\pi_{n}}\left[f_{n}^{\prime}\right] .
$$

Since, by construction,

$$
\lim _{n} \int_{\Omega} d\left(f_{n}^{\prime}, f_{1}\right) d P=0
$$

we have $\operatorname{Lim}_{n} E\left[f_{n}^{\prime}\right]=E\left[f_{1}\right]$. But $E_{\pi_{n}}\left[f_{n}^{\prime}\right] \subset E\left[f_{n}^{\prime}\right]$ for $n=1,2, \ldots$, and thus by (α) we obtain $\operatorname{Lim}_{n} F_{n}(\omega) \subset E\left[f_{1}\right]$.

Let us consider the sequence of partitions $\sigma_{n}=\left\{A_{1}^{n}, \ldots, A_{k}^{n}\right\}(n=1,2, \ldots)$. Since

$$
\lim P\left(A_{i}^{n} \Delta A_{i}\right)=0 \quad \text { for } i=1, \ldots, k
$$

by Proposition 1.2 we obtain $\operatorname{Lim}_{n} E_{\sigma_{n}}\left[f_{n}^{\prime}\right]=E_{\pi}\left[f_{1}\right]$. But $\sigma_{n} \leqslant \pi_{n}(n=1,2, \ldots)$, and hence, by (α),

$$
E_{\pi}\left[f_{1}\right] \subset \operatorname{Lim}_{n} E_{\pi_{n}}\left[f_{n}^{\prime}\right]=\operatorname{Lim}_{n} F_{n}(\omega)
$$

We thus finally obtain

$$
E_{n}\left[f_{1}\right] \subset \lim _{n} F_{n}(\omega) \subset E\left[f_{1}\right] \quad \text { for all } \omega \in \Omega \backslash\left(N \cup N^{\prime}\right)
$$

This implies, by the inequality $h\left(E_{\pi}\left[f_{1}\right], E\left[f_{1}\right]\right) \leqslant \varepsilon$, that $h\left(\operatorname{Lim}_{n} F_{n}(\omega), E\left[f_{1}\right]\right)$ $\leqslant \varepsilon$. Since $\varepsilon>0$ was chosen arbitrarily, the proof of (3.1) in the case of a simple r.v. f_{1} is complete.

Let now $f_{1} \in \mathscr{L}(\Omega, \mathscr{A}, P ; X)$ be arbitrary and let $\varepsilon>0$ be given. By Lemma 3.1 there is a sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ of simple X-valued i.i.d. r.v.'s such that $\left\{d\left(f_{n}, g_{n}\right)\right\}_{n=1}^{\infty}$ is an i.j.d. sequence and $\int_{\Omega} d\left(f_{1}, g_{1}\right) d P \leqslant \varepsilon$.

Let $G_{n}(\omega)=\sum_{i=1}^{n} n^{-1} g_{i}(\omega)$ for $\omega \in \Omega, n=1,2, \ldots$ From Proposition 1.1 we obtain

$$
h\left(F_{n}(\omega), G_{n}(\omega)\right) \leqslant \sum_{i=1}^{n} n^{-1} d\left(f_{i}(\omega), g_{i}(\omega)\right) \quad \text { for } \omega \in \Omega
$$

Strong Law of Large Numbers applied to a sequence $\left\{d\left(f_{n}, g_{n}\right)\right\}_{n=1}^{\infty}$ implies that $\lim \sup h\left(F_{n}(\omega), G_{n}(\omega)\right) \leqslant \varepsilon$ a.s.

By the triangle inequality we have

$$
h\left(F_{n}(\omega), E\left[f_{1}\right]\right) \leqslant h\left(F_{n}(\omega), G_{n}(\omega)\right)+h\left(G_{n}(\omega), E\left[g_{1}\right]\right)+h\left(E\left[g_{1}\right], E\left[f_{1}\right]\right)
$$

Since $\lim _{n} h\left(G_{n}(\omega), E\left[g_{1}\right]\right)=0$ a.s. and

$$
h\left(E\left[g_{1}\right], E\left[f_{1}\right]\right) \leqslant \int_{\Omega} d\left(f_{1}, g_{1}\right) d P \leqslant \varepsilon
$$

(see Definition 2.2), we obtain

$$
\lim \sup h\left(F_{n}(\omega), E\left[f_{1}\right]\right) \leqslant 2 \varepsilon \text { a.s. }
$$

Since $\varepsilon>0$ was chosen arbitrarily, this completes the proof of Theorem 3.1.
Strong Law of Large Numbers of Theorem 3.1 admits the following converse:
Theorem 3.2. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of i.i.d. X-valued r.v.'s and let $F_{n}(\omega)=\sum_{i=1}^{n} n^{-1} f_{i}(\omega)$ for $\omega \in \Omega, n=1,2, \ldots$ Suppose there exists $F \in F(X)$ such that $\lim _{n} h\left(F_{n}(\omega), F\right)=0$ a.s. Then $f_{1} \in \mathscr{L}(\Omega, \mathscr{A}, P ; X)$ and $E\left[f_{1}\right]=F$.

Proof. In view of Theorem 3.1 we need to prove only that $f_{1} \in \mathscr{L}(\Omega, \mathscr{A}, P ; X)$, that is $\int_{\Omega} d\left(x, f_{1}\right) d P<\infty$ for $x \in X$. To prove this it is
sufficient to show that for a fixed $x \in X$ there is a constant M such that

$$
\begin{equation*}
\limsup _{n} n^{-1} d\left(x, f_{n}(\omega)\right) \leqslant M \tag{3.3}
\end{equation*}
$$

(for Kolmogorov's proof of the converse of the S.L.L.N. see, e.g., [10, Theorem 3.2.2]).
For each $\omega \in \Omega$ let $\left\{a_{n}(\omega)\right\}_{n=2}^{\infty}$ be an arbitrary sequence of elements $a_{n}(\omega) \in F_{n-1}(\omega)$ and let

$$
b_{n}(\omega)=\frac{n-1}{n} a_{n}(\omega)+\frac{1}{n} f_{n}(\omega) \quad \text { for } n=2,3, \ldots
$$

(Definition 1.1). By, the triangle inequality we obtain

$$
\begin{equation*}
n^{-1} d\left(x, f_{n}(\omega)\right) \leqslant n^{-1} d\left(x, a_{n}(\omega)\right)+d\left(a_{n}(\omega), b_{n}(\omega)\right) \tag{3.4}
\end{equation*}
$$

$$
\omega \in \Omega, n=2,3, \ldots
$$

Since $\lim _{n} h\left(F_{n}(\omega), F\right)=0$ a.s., we have

$$
\lim h\left(\{x\}, F_{n}(\omega)\right)=h(\{x\}, F)=\frac{1}{2} M \text { a.s. }
$$

This implies (since $\left.a_{n}(\omega) \in F_{n}(\omega), b_{n}(\omega) \in F_{n}(\omega), h\left(\{x\}, F_{n}(\omega)\right)=\sup _{y \in F_{n}(\omega)} d(x, y)\right)$ that

$$
\limsup _{n} d\left(x, a_{n}(\omega)\right) \leqslant \frac{1}{2} M \quad \text { and } \quad \limsup _{n} d\left(x, b_{n}(\omega)\right) \leqslant \frac{1}{2} M \quad \text { a.s. }
$$

By the triangle inequality we obtain

$$
\limsup _{n} d\left(a_{n}(\omega), b_{n}(\omega)\right) \leqslant M \text { a.s. }
$$

which implies (3.3) in view of (3.4).

REFERENCES

[1] E. Z. Andalafte, J. E. Valentine and S. G. Wayement, Triangle median properties which characterize Banach spaces, Houston J. Math. 5, No. 3 (1979), pp. 307-312.
[2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford 1953.
[3] H. Bussemann, Spaces with non-positive curvature, Acta Math. 80 (1948), pp. 259-310.
[4] - The Theory of Geodesics, Academic Press, New York 1955.
[5] J. Diestel, Geometry of Banach Spaces, Springer-Verlag, Berlin 1975.
[6] M. Gromov, Structures métriques pour les variétés riemanniennes, Cedic, Paris 1981.
[7] W. Herer, Espérance mathématique au sens de Doss d'une variable aléatoire à valeurs dans un espace métrique, C. R. Acad. Sci. Paris Sér. I 302 (1983), pp. 131-134.
[8] - Espérance mathématique d'une variable aléatoire à valeurs dans un space métrique à courbure négative, ibidem 306 (1988), pp. 681-684.
[9] K. Kuratowski, Topology, Vol. I, II, Academic Press, New York 1966, 1968.
[10] W. F. Stout, Almost Sure Convergence, Academic Press, New York 1974.

Institute of Mathematics, Technical University of Warsaw pl. Politechniki 1, 00-661 Warsaw, Poland

Received on 17.2.1989;
revised version on 12.12.1991

