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THE CLUSTER SET OF {S,(2nLLn)-1/2;  EN) IN BANACH SPACES 
BY 

MAREK SL ABY (LINCOLN, NEBRASKA) 

Abstract. Let X,, X,, . . . be a sequence of independent identical- 
ly distributed random vectors with values in a Banach space E, weak 
mean zero and weak second moment. Let S,, = X, + . . . + X ,  and let 
K, be the unit ball of the reproducing kernel Hilbert space associated 
with p = Y ( X , ) .  We show that for any infinie set JV of positive 
integers the cluster set of {S,(2n log log n)- ' I 2 ;  n E N }  equals almost 
surely aK,, where ct satisfies 0 < ct < 1 and can be determined in terms 
of .N and p by the convergence of certain series. 

1. Introduction. Let E be a separable Banach space and let X,  X I ,  X , ,  . . . 
be a sequence of independent identically distributed (i.i.d.) E-valued random 
vectors. S, will denote X I  +X, + .. . + X , ,  and a, will denote the LIL 
normalizing sequence, i.e. 

a, = (2nLLn)lI2, where Ln = 
if n = 1,  2 .  

We will write XE WM$ if Ef ( X )  = 0 and Ef 2 ( ~ )  < co for every f EE*. 
Let X E W M ; ,  p = 9 ( X ) .  For every f E E* define 

sf = J x f  (x)dp(x).  

Then S is an operator from E* into E. The completion of the range of S with 
respect to the norm llSf l i p  = J l  f (x)12dp(x) is called the reproducing kernel 
Nilbert space of p and is denoted by H,. K, will denote the 
details on W, and K, we refer the reader to [2] .  

For any sequence (x,),"=, , C((x,),"= ,) will denote its cluster set. For any 
M c N we define 

OD 

B ( N )  = {B 2 0; k - 8 2 ~ { I ( ~ , / a , l l  < 6 for some  EN n I,) = co 
k =  1 

for all 6 > 0). 

Alexander obtained in [I] the following cluster set result: 

PRo~os~no~ 1.1. Let x E VIM;, y > 1, zk = [ [ y k ] ,  [yk+']) for k = 1 , 2 ,  . . . 
and let a = sup B(N),  whenever B(N) # 0. Then ct does not depend on the 
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choice of y > 1 and 

It follows from the one-dimensional law of the iterated logarithm (LIL) 
that the assumption X E WM; is an obvious necessary condition. The purpose 
of this paper is to characterize the cluster set of (SJa,),, for an arbitrary 
infinite set N af positive integers. This question has been studied in the 
real-valued case or finite-dimensional situations by Torrdng [6], Weber [7] 
and the author [5 ] .  In [5]  we have also obtained the following infinite- 
-dimensional result. (See Theorem 2.4 in [5].)  

PROPOSITION 1.2. Let X E WM; and let JV be any infinite set of positive 
integers. If 

then 
C((SJa,)n,,) = 6: (JV) K, ass. 9 

where 

E:(JV) = sup E*(&!); c N ,  A = {mk; k = 1,2 ,  . ..}, limsup - I *k < l} 
k + m  m k + l  

and , 

a, 

E* (A) = id{& > 0; C (log mk)-" < GO}. 
k = 3  

Remark 1.1. (a) Since in finite dimensions the finite second moment 
implies (1.1), Proposition 1.2 includes the general cluster set statement for 
subsequences in finite-dimensional spaces. 

(b) It can be shown that ET can be expressed in an alternative form 
m 

&?(N) = SUP ( B  > 0; C k - B 2 ~ { k : ~ , ( y ) n ~ ~ ~ )  = 00) 
k = 1  

which resembles Alexander's definition of a. 

In the following result we characterize the cluster set of {S,/a,; n ~ J l r )  
without assuming (1.1). It is therefore a generalization of Proposition 1.1 and 
Proposition 1.2. 

THEOREM 1.1. Let XE w M ~ ,  JV be an arbitrary injnite set of positive 
integers, I ,  = I,(y) be deJined as in Proposition 1.1, and let a ( N )  = sup B ( N )  
whenever B ( X )  # O. Then a ( N )  does not depend on the choice of y > 1 and 
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Remark  1.2.1f S J ~ ,  ns 0 in probability, then a ( M )  = .$(M). Indeed, for 
large k ' 

$z {k : I rnN20)  P ( IISJan 1 1  < 6 for some n E M n 1,) ,< I{k:lknN+@); 
hence, by Remark 1.1 (b), a ( X )  = ~f (N). Thus Propositions 1.1 and 1.2 as well 
as finite-dimensional results of [5] are all special cases of Theorem 1.1. 

2. Characterization of the cluster set. The idea of the proof of Theorem 1.1 
is that of Alexander's proof of Proposition 1.1. In fact, some of his lemmas can 
be applied, here directly. The main ingredient of his proof however, i.e. Lem- 
mas 2.15 and 2.16 in [I], can be neither applied nor their proof can be 
immediately altered for the case of a general set of positive integers N. In our 
Lemmas 2.5 and 2.6, working with the more general index set, we were able to 
obtain not only more general but also simplified statements. 

It is well known (see [2]) that X E  WMg implies G((S,/a,)&,) c K, a.s. 
Therefore to establish Theorem 1.1 it is enough to prove the following result 
(cf. Theorem 2.3 in [I]): 

THEOREM 2.1. Let X E WMg and let h E H,.  The following conditions are 
equivalent: 

(0 h C((sJa,)n,~Ar) a-s. 
(ii) For every p < llhll, [or P = 0 9 h = 01 and for every 6 > 0 there is 

y > 1 such that 
00 

k - B 2 ~ { ~ l ~ ~ a n l ~  < 6 for some n ~ l , ( y ) n N )  = a. 
k =  1 

(iii) For every p < Ilhll, [or B = 0 i f  h = 01, for every 6 > 0 and for every 
y > l  

~ - ' * P { I I s J ~ ~ ~ ~  < 6 for some n s Z , ( y ) n X }  = m 
k =  1 

We introduce first some notation. We try to be consistent with the 
notation used by Alexander in [I]. 

We will consider bounded partitions I7 = (E,, El, . . . , E j )  of E, i.e. such 
that E, is the only unbounded set in the partition. Let to, 5,, ..., 5,  be 
independent and such that for every A E B ( E )  

where B(E) denotes the Borel a-algebra of subsets of E. Let qo,  q1 , . . . , q , be 
independent of (5j)f=o and such that 

9 
( ~ 0  q~ - . - 9  V J )  = (IIxE~,,),  IIXEE~I, . - , I I X ~ E ~ } ) .  

Then it is easy to verify that 
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Let now { (~~k) j"=~;  k = 1, 2, . . .} be a sequence of independent copies of (Cj)j"=, 
and let { ( v ]  jk)iJ= ; k = 1, 2, . . .) be a sequence of independent copies of (qj)iJ= o .  
Assume also that {(<jk)j"=o; k = 1,2 ,  . . .} and {(v]jk)3= O ;  k = 1 ,  2, . ..} are 
independent. -Then 

Let 9 be the o-algebra generated by {X-l(Ej))$o, and assume that 
P(X€E0) > 0. Then we can define E(XI9) in Pettis' sense. For every 
k = 1 ,  2, . . . let now 9, denote the o-algebra generated by {X,l(Ej)}$o and 
let X i  = E(X 19,) and X'i = Xk-Xk. Let 

n  n 

S:, = C Xi and S t  = C Xi'. 
If we assume that 

J n J  

Xk = C v]jkljk, k = I ,  2, .. ., and Sn = C C qjktjk, n = 1, 2, ..., 
j = O  k = l  j = O  

then 
J  n J  

= x v]jkECjk and S:, = C qjkCjk. 
j = O  k = l  j = O  

Let for every n and j =  1, 2, ..., J 

By comparing the Fourier transforms one can show that for every n 

has the same ioint distribution as 

Hence for every n 

Therefore we can actually assume that 
J Tjn J Tj, 

Sn = x x t j k ~  Sb = x x E l j k ~  
j = O  k = l  j = O  k = l  

(2.11 
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Our first lemma is a particular case of Lemma 2.4 in [I]. 

LEMMA 2.1. Let (F,; n E Jlr}  be any sequence of events and let f l >  0. Then 
the convergence or divergence of Ckm=, k-Q {F, occurs for some n E N n Zk(y ) )  
does not depend on y > 1. 

Proof.  By an application of Lemma 2.4 in [I] with F, = 0 for n $ N .  H 

The next lemma is a generalization of Kuelbs' result and it can be proved 
by a slight modification of the proof of Lemma 4 in [3]. 

LEMMA 2.2. Let y > 1 and y E E. Then 

y E C({S  ja,; n E N } )  a.s. 
if and only if 

m 

~ P { I I S j a , - y l j < c  for some n ~ N n I , ( y ) } = a o  for every c>O. 
k =  1 

LEMMA 2.3 (cf. Proposition 2.6 in [I]). Let r be a bounded partition of E, let 
X E W M ;  and let 0 > 0. Suppose that y E C((S,/a,; n E N)) as .  Then a partition 
A can be chosen so that A rejines r and ' 

m x P{IISL/a,-yll < 8 and I15'Janll < 0 for some n ~ J l r n Z , )  = co, 
k= 1 

where SA and S: are defined in terms of A. rn 

The proof is again a slight modification of the proof of Proposition 2.6 in 
[I] with Lemma 2.2 used instead of Lemma 4 from [3]. 

The next lemma follows immediately from Lemma 2.8 in [I]. 

LEMMA 2.4. Let 6 > 0. If y - 1 is small enough, then 

f P { l y I l  1 6  for some n ~ X n I , ( y )  
k=l 

where nk = [ y k ] .  H 

Next we modify Lemma 2.12 of [I]. 

LEMMA 2.5. Assume that XE W M ; ,  8 > 0,  0 < p < B < 1 (or ,u = f l =  0) ,  
A is a bounded partition of E and for every 6 > 0 

m 

k-BP{IISn/anll < 6 for some n e  N n I,} = ao. 
k = 1  

Then a bounded partition l7 can be chosen so that Il refines A and 

m 

k-'P{lIX/a,ll < 0 for some  EN n I,} = oo. 
k= 1 
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We omit the proof which is a repetition of the proof of Lemma 2.12 in [ I ]  
with Lemmas 2.1, 2.3 and 2.4 used instead of Lemma 2.4, Proposition 2.6 and 
Lemma 2.8 of [ I ] ,  respectively. 

Before we will present the last two lemmas we introduce some additional 
notation that are taken mostly unchanged from Alexander's paper: 

tjn = [npj], where pj = P {X E E j )  ; mj, = [8pj/2an]; 

W, = {k 2 Q; Ik - tonl < mo,) ; 

R, = {(k l ,  k2, ..., k J ) € Z $ ;  lkj-tjnl < mjny 1 < j < J ) ;  

Q n = w n x R , ;  U , = ( T I ~ , . . . , C , ) ;  

T o  - C Ck= {K,€Qn).  
n€Ik 

Let Y I L  Y,, . . . be an independent copy of the sequence X, X,, X,, . . . and let 
2, 81, X,, ... be a sequence of i.i.d. random vectors such that 

P ( $ E A )  = P ( X E A  1 XEE;). 

Given a bounded partition lI of E let Y = Y'+ Y" and 8 = I?'+X" be the 
decompositions induced by IT. It is easy to verify that for every k 

r 

Thus for every n 
n J  

(2.2) nk" qjkO. 
k = l  k = l  j = l  

Finally, let us write 

A,@) = { IIx/a,ll < 6 for some n E JV n I,), 

B,(6, h) = { 11 Sb Ja,, - h 1 1  < 61, where n, = [yk] . 
LEMMA 2.6. Let ~ E K ,  and let 

a(EhZ(X"))1/2 < 6, where a2 = sup Ef '(X), 6 > 0. 
I l f  11 

If p, = P ( X E  E,) < 1/100, then 

for y - 1 small enough. 

Before we start the proof we make some observations. We shall assume 
that p, = P(X E E,) > 0. If p, = 0, some steps of our proof become obviously 
superfluous. Let q, E W,,, i.e. 14, - nkp,l < 8pA12 a,, . Define a stopping time 
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N = infin; Ton = q,}. Note that N 2 q, and Ton = q,. It follows from (2.2) that 

n-nk 
I 1  9 SN+n-nk = Si+ r' for n > n,. 

i= 1 
Let 

40 nk-40 n-nk 

Hn=  x(<oi-Etoi)+ x R:'+ for n z n , .  
i= 1 i= 1 i = l  

Observe that for k large enough we have 

and so, by Lemma 2.14 in [I], 
OD OD 

(2.3) x P{IN-nkl 2 nk} d x P(C;) < m. 
k = 1  k = l  

I 

I P r o  of  of Lemma 2.6. The following inequalities hold for sufficiently 
I large k, sufficiently small y -  1 and 1 < c < y: 

P(Ak(8)) 4 P(Ak(6) n {IN- n.1 < cnk}) + P {IN - nkl 2 en,. 
G PIS:: < 6yank for some n E JV n Ik,  IN - n,l < cn,} + P ( C )  

G P{IIsi+,,-nkll < 26yank for some n E K n I,, IN-cn,J < cnk) 

C P{IIHnII < 36ya, for some n E JV n I,, IN - nkl < cn,) 
I 

i=nk 

where the last inequality follows from Lemma 2.7 in [I). Thus 

P(Ak(6)) C P{IJHnII < 36ya, for some n s K n I,} 
IN - nkl 

+P{II 1 ell =- ayank, IN-nkl < cn,] 
i= l  

[(I +c)nrl 

+ 2P(lI x X"1I > 46~a,,) + P(CE) 
i=nk 

< P{IINnII < 3dya, for some n e N n I , )  
[mkl k n k l  

+zP(l/ x ell > ! 6 ~ a ~ ~ )  + 2P{ll 1 X"1) > $6ya,} +P(C&). 
i =  1 i=  1 



26 M .  S l a b y  

Putting 

we see that for every qo E Wnk 

where C;=, ,Ik < oo by Lemma 2.13 in [ I ]  and (2.3). Now 

(2.5) P(Ak(44 I Ton, = qo) G C P(Ak(4S) I V,, = (qo, 4) 
reR,, 

where, by (2.21) in [I], P(Un,$ R,, I Ton, = qo) < k - 2  for large k. 
Let q = (qo, r)  E Q, and let q' E Q,, be such that qb = qo. We will show that 

m 

(2.6) P(Ak(4d) I K k = q ' ) < P ( A k ( 5 S )  I Kk=.q )+Xk ,  where C ,Ii.;,<ao. 
k=l 

We have 

for some n E N  n Zk) 

for some n E N A Ik) 

where the last inequality is a consequence of a version of Lemma 2.7 in [ I ] .  
Putting 

we infer from Lemma 2.13 in [ I ]  that xkm=, IZ; < oo, and so (2.6) is proved. 



I 
I 
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Combining (2.5) and (2.6) we get for every q = (q,, . . . , q,) 

for sufficiently large k. Therefore from (2.4) we obtain 

gP(Ak(56)  I K,  = q)+A,+A;+k-'. 
Now 

BY (2.23) in [I] we have P(Kk4Qnk I Bk(6, h)) < k-' for k large enough (here 
the assumption o(Eh2(X"))112 < B is used). Note also that for every q such that 
P(G,  = q ,  Bk(.6, h)) > 0 we have 

e7) P(Ak(56)  1 Kk = q) = P(Ak(56) I Kk = 99 Bk(8, h)). 

Thus 

P(Ak(6))  P(Ak(56) I = q ) P ( L = q  I Bk(6, h))+Ak+&+2k-' 
4EQnr 

= z P(Ak(56) I Gk = 9 ,  Bk(6, h) )P(K,  = q 1 Bk(6, h)) 
qfQnr 

+Ak+&+2k-2 

G P(Ak(56) I Bk(8, h))+Ak+A;+2k-', 
where 

m 

(Ak-kA;+2k-') < 0. 
k= 1 

LEMMA 2.7 (cf. Lemma 2.16 in [ I ] ) .  Let ~ E K ,  and let o(Eh2(X"))1'Z < 6, 
where 02 = sup11 1, Ef ' ( X ) .  If  po = P ( X E  E,) < 1/100, then 

provided y I is suficiently small. 

P r o  of. As in Lemma 2.6 we assume that p ,  > 0. Let q = (go, q,, . . . , q,) 
EQ,,; then by (2.6) for every Y E  R,, we have 

m 

P(Ak(a) I K, = q) b f'(Ak(26) I V, = (go, r))+A;, where 1 2; < m. 
k =  l 

Thus 

= ~ ( ~ ~ ( 2 6 )  I TO,, = 90, u,, E R,,) + n;. 
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Now 

P(Ak(6) 1 h)) G P(Ak(a), K,  E Qnk I &(a, h)) + P(Kk 4 Q,, I Bk(6, h)) 

C P(Ak(S), K,  = q I 4 ( 6 ,  h)) 
W Q n r  

+P(Kk$Qnk I Bk(61 h)) 

G P(Ak(a) I K k  = 4 ,  Bk(6, h))P(K, = q I Bk(6, h)) 

+P(Kk4Qnk I Bk@, h)), 
where the last sum is over all ~ E Q , ,  for which P('V,, = q,  *Bk(6, h)) > 0. 
From (2.7) and (2.23) of [I] we obtain 

P(Ak(6) I Bk(6~ h)) < P(Ak(6) I Kk = q)P(1/, = q I Bk(6, h))+km2, 
4 ~ Q n r  

and, by (2.8), 

Now by (2.22) in [I] we have 

Therefore 

P(Ak(6) I B,(& h)) 

C P(Ak(26) 1 Tonk = qo)P(%nk = 40 I Bk(6y h))+ 3k-2 + 1;- 
qw%r 

In a similar way to that we have proved (2.4) we can show that 
m 

P(Ak(2d) I TO,, = go) ,< P(A,(56)) + &', where C A$ < ao . 
k =  1 

Thus 
f'(Ak(6) I Bk(Sy h)) < P(Ak(56))+A;+/2;1+3k-2, 

where C,"=,(l;+1;:+3k-2) < oo. r 
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Proof  of  Theorem 2.1. (i) - (ii). Let h~c((S,/a,),,) a.s. Since 
C((Sn/an)nEX) c K, as., we can assume that h s K,. Let y - 1 be so small that 
Lemmas 2.4 and 2.7 are satisfied and, for every y s  E, (ly/a,- hl( < 8 for some 
n € I k  implies 

Ily/an, - hll < 26. 

We choose a partition f so that the assumptions of Lemma 2.7 are satisfied. By 
Lemma 2.3 there is a partition A that refines r and such that 

m 

m = P(IIS:,/a,-hll < 8 ,  IIS;/a,II < 8 for some n ~ N n 1 , )  
k= 1 

m 

< P(IISk/ank - hll < 28, IIS:/a,,ll < 8 for some n E N n I,) 
k=1 

m 

d z P(IIS.k/ank- hII < 38, IIS;/a,ll < 6 for some ~ E K  n lk) 
k = 1  

m 

+ z P(II(S: - &k)/a,ll > B for some n e N n Zk). 
k = 1  

It follows then from Lemma 2.4 that 

From Lemma 2.10 in [ I ]  we infer that for every /3 < Ilhll, (or B = 0 if h = 0) 
m x k - r 2 p ( ~ k ( 3 8 )  I Bk(38, h)) = m. 

k= 1 

Since the partition A also satisfies the assumption of Lemma 2.7 we obtain 

~ - ~ ' P ( A ~ ( I S B ) )  = m. 
k = 1  

Since X' is finite dimensional with finite second moment, Sk/annymO in 
probability, i.e. P(Bk(158, 0)) - 1. ~ h u s  

k-r  m 

w x k - P 2 ~ ( ~ k ( 1 5 8 ) ) ~ ( ~ k ( 1 5 8 ,  0)) = m. 
k= 1 

By Lemma 2.6 we have 
00 

= k - P 2 ~ ( ~ k ( 7 5 8 )  I Bk(150, 0))P(Bk(150, 0)) 
k=l 
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I 

I Finally from Lemma 2.4 we conclude that 
m 

co = k -P 'P(~k(758) ,  IIS,,/anll < 150 for all n~ M n I,) 
k =  1 

I m 

< k - p ~ ( I I ~  ~a, l l  < 900 for some n E M  n I,). 
k = l  

(ii) * (iii). This is an immediate consequence of Lemma 2.1. 

(iii) (i). If h = 0,  this is a consequence of the Borel-Cantelli Lemma. We 
shall assume therefore that h # 0. Suppose that 

w 

k-82~(IIS,,/a,,ll < 6 for some n e . N  n I,(y)) = cr, 
k =  1 

for every f l <  Ilhll,, 6 > 0,  y > 1. Let E > 0, (P = ( 1 - ~ ) h  and let a ,  f l ,  tj > 0 
satisfy 

llhll, > B > a > (1+r)Ilcoll,. 

Let 0 > 0 and let A be a bounded partition of E such that 

We choose y - 1 so small that the following three conditions are satisfied: 
(1)  Lemma 2.4 applies with 6 = 0. 
(2) Lemma 2.6 applies with 6 = 0 and h = rp. 
(3) For k large enough 

(2.10) Ily/a,,-cpll < 20 implies Ilyla,-qll < 30 

for all n E I, and every y E E. 

By Lemma 2.5 there is a bounded partition I7 which refines A and satisfies 

m 

C ~-*'P(A,(B)) = a. 
k =  1 

Since 17 also satisfies (2.9), by Lemma 2.1 1 in [I] for sufficiently large k we have 

k-" < 2P(Bk(6, (P)). 

Thus by Lemma 2.6 we obtain 

A= 1 

It follows from (2.10) and Lemma 2.4 that 

P(IISt/a,,ll < 50, IISh/a,-qII < 38 for some n c M n 1 , )  = co. 
k= 1 
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Therefore 
m 

P(IIS,/a,-PI/ < 80 for some n c M n I , )  = m, 
k'l 

and so by Lemma 2.2 we have q c C((SJa,),,) as. Since E is arbitrary and 
I C((S,/a,),,,) is a closed set, we conclude that 
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